
How Apex Automates CPM-GOMS

Michael Freed*º, Michael Matessa*, Roger Remington*, Alonso Vera*

* MS 262-4 NASA Ames Research Center / Moffett Field, CA 94035 / USA
º IHMC / University of West Florida / 40 South Alcaniz St. / Pensacola, FL 32501 / USA

Abstract

Although acknowledged to be a powerful technique
for predicting skilled behavior, CPM-GOMS (John
and Kieras, 1996) is not widely used in interactive
system design. We hypothesize that this is because
creating CPM-GOMS models requires extensive
expertise and is tedious and error-prone. To address
these problems, we used the Apex architecture (Freed,
1998b) to automate critical parts of the CPM-GOMS
analysis process. This paper describes how modelers
represent CPM-GOMS models in Apex and how Apex
translates those representations into predictions of
skilled behavior. This information should prove
helpful in reproducing CPM-GOMS capabilities in
other cognitive architectures.

Introduction
This paper describes an approach to applied human
performance modeling based on the automatic
scheduling of low-level cognitive, perceptual, and
motor (CPM) resources that underlie actions such as
moving and clicking a mouse, pressing a button, or
speaking a phrase. Specifically, our computational
architecture, Apex, automates a modeling technique
known as CPM-GOMS (Gray, Atwood and John,
1993; John and Kieras, 1996). The practical value of
CPM-GOMS is that it has been shown to provide
very accurate zero-parameter predictions of human
performance in highly practiced tasks. Its capacity for
making accurate predictions for tasks of practical
significance is well illustrated by its use in Project
Ernestine (Gray, Atwood and John, 1993). A CPM-
GOMS model was used to generate predictions of the
average time for a telephone operator to handle a
customer transaction using newly designed equipment
and procedures. Accurately, but contrary to the
system designer’s expectations, the model predicted
an average task duration .63 seconds greater than that
required with existing equipment. With each second
of transaction time costing NYNEX three million
dollars annually, purchasing the new equipment
would have been a costly mistake.

Given successes like project Ernestine,
CPM-GOMS is acknowledged in the human-
computer interaction community as a powerful
predictive technique. However, CPM-GOMS is also
considered an onerous and error-prone process that
requires a great deal of specialized expertise to apply
(John, Vera, Matessa, Freed and Remington, 2002).
These factors have almost certainly inhibited CPM-
GOMS from coming into widespread use.

Elsewhere (John et al., 2002) we have
described the benefits of using the Apex cognitive

architecture (Freed, 1998b) to automatically construct
CPM-GOMS models, and demonstrated the validity
of the resulting human performance predictions.
Here we describe in detail how Apex automates
CPM-GOMS. In keeping with its goal of providing a
simplified modeling framework for engineering
domains, Apex provides a flexible behavior
representation language that permits the Apex
modeler to represent behavior at a relatively high
level, thus facilitating model development.
Underlying this high-level language is a complex
action selection architecture that selects and
schedules tasks and resources. A more detailed
treatment of how the Apex architecture interprets the
high-level representation of task knowledge will be
useful in developing human performance models in
Apex. The description also attempts to highlight
abstract properties needed for any automation of
CPM-GOMS, and should facilitate its implementation
in other computational architectures.

GOMS and CPM-GOMS
CPM-GOMS (John and Kieras, 1996) is an extension
of GOMS (Card, Moran and Newell, 1983), a
methodology for predicting how long a person will
take to carry out a well-learned machine-interface
task. GOMS represents tasks in terms of Goals,
Operators, Methods, and Selection rules. For
example, an analysis of the task of deleting a file
from one’s computer directory structure might start
with a top-level goal such as (delete-file oldpic.jpg).
Methods are generalized action sequences for
decomposing goals into subgoals. For example, a
method for goals of type delete-file might consist of
the sequence: visually find target file icon, move
mouse pointer to icon, hold mouse button, move
mouse pointer to trash-icon, release mouse button.
Selection rules are used to choose between
alternative methods for accomplishing a goal – e.g. a
rule might choose between the file removal method
above and a text-based method depending on whether
a graphical or command-line interface is being used.
Method-based goal decomposition continues
recursively on (sub)goals, stopping if the goal
corresponds to a primitive operator. What
constitutes an operator is decided by the modeler
based on how fine-grained an analysis is desired.
Usually, GOMS modelers define operators at the
level of interface actions such as clicking a mouse or
reading a value off a display.

The process of recursively applying methods
to non-primitive goals (those that do not correspond

to an operator) produces a goal hierarchy. Ordered
by a depth-first traverse, the leaf nodes of this
hierarchy form a sequence of operator-level actions
(o1 .. on) whose total execution time (_oi) is the
predicted total time for the task. This approach to
predicting task duration makes strong assumptions
about operator independence – that operators are
executed in strict sequence and that the specific
nature of an operator has no effect on the time
required to execute other operators in the sequence.
These assumptions do not hold for highly practiced
sequences where the execution of adjacent operators
may overlap in time and the degree of overlap can
depend on operator order and identity (cf. Agre and
Shrager, 1990). As a result, the sum duration of
operators whose assigned individual durations are
correct in isolation will tend to predict excessive
overall task duration.

The CPM-GOMS method extends GOMS to
account for overlapping execution. A CPM-GOMS
analysis is derived from a GOMS analysis of the
same task. However, the interface-level behaviors in
the resulting sequence are no longer considered
operators. Instead they are template-level goals. We
denote the template-level goal sequence (t0 .. tn).
Unlike operators, which cannot be further
decomposed, and unlike regular goals in the goal
hierarchy which are decomposed using methods, a
template-level goal is decomposed using a new
structure called a template.

A template specifies decomposition of an
interface-level goal into discrete cognitive, perceptual
and motor (CPM) actions consistent with the Model
Human Processor (e.g. Card, Moran and Newell,
1983); see also Gray and Boehm-Davis, 2000). Each
of these actions is considered an operator and each is
considered a user of a particular cognitive, perceptual
or motor resource. Operators in a template can be
carried out concurrently if they use different
resources and are not order-constrained by the logic
of the task. For instance, two eye-movement
operators cannot be carried out concurrently, nor can
an eye-movement and a hand-movement if the former
is used to visually identify a target for the latter.

In CPM-GOMS, operators from one
template-level goal in the sequence can sometimes
begin before all operators from a preceding template-
level goal have finished. Several kinds of constraints
(described below) govern the interleaving of
operators from different templates. The essence of
the interleaving phenomenon is that activities
specified by a template do not use all resources all of
the time; idle time (slack) in the use of a resource by
one template’s operators represents an opportunity for
operators from a later template to “slip back” and
begin execution. Interleaving at the level of CPM-
GOMS operator-level goals corresponds to overlap in
the execution of higher-level goals – i.e. at the level
of classic GOMS operators – and thus accounts for
the different predictions of the CPM-GOMS and
classic GOMS approaches.

The problem of determining how to
interleave operators from a sequence of template-
level goals can be formulated as a scheduling
problem with three kinds of constraints determining
what constitutes a correct schedule. Logical
constraints, where one action is required to specify
or enable another and therefore must precede it, may
apply between operators within a single template or
across templates. Within a template, logical
constraints can be represented as explicit orderings
between operators. To enforce logical constraints
across templates requires representing each operator’s
preconditions and effects. A logical constraint exists
if the effect of executing an operator from an earlier
template is required to satisfy a precondition for an
operator of a later template. Since CPM-GOMS
allows operators from one template to slip back into
the temporal scope of earlier templates, enforcing
cross-template logical constraints is required to
guarantee correct behavior.

Unary resource constraints specify that
when two operators use a non-sharable, non-
depletable resource (e.g. the left-hand), they cannot
be carried out concurrently. Within a template,
operators requiring the same resource must be
explicitly sequenced. Across templates, operators
must follow a template precedence rule – i.e. given
template sequence t1 .. tn, operator A from template-
level goal ti that requires resource R, operator B from
tj that also requires R, and i<j, operator A has
precedence. An important nuance in applying this
rule applies in situations where the earlier template
has an interval of slack time immediately prior to A
that is not long enough for B to run to completion.
The template precedence rule extends to this case; B
cannot be scheduled for that interval.
 Slack exclusion constraints are restrictions
a template places on the use of slack time by
operators that are brief enough to fit into a slack
interval but have some “undesirable” property.
Templates in the model described by John et al.
(2002) employed a slack exclusion constraint on
cognitive operators representing the initiation of a
motor response. In particular, the model employed a
cognitive initiation exclusion rule defined as follows:
given a set of operators A1..Am from template-level
goal ti that all use resource R, operators B and C from
template-level goal tj where C uses R and B
represents a cognitive action that initiates action in C,
and i<j, B cannot execute until A1..Am are complete.
This rule contributed to very accurate predictions in
the referenced model; however, its generality and
scientific basis are a topic of ongoing research.

So far, we have provided an architecture-
independent characterization of the CPM-GOMS
framework implemented in Apex. The remainder of
the paper will describe how task knowledge is
represented in Apex and how these representations
can be made to meet the specific requirements of a
CPM-GOMS analysis as described above.

Apex
When performed by hand, the goal decomposition
and operator scheduling process needed to generate a
correct CPM-GOMS analysis is difficult and time-
consuming. Apex provides a conceptual and
computational framework for formalizing and
automating some of the most demanding parts of the
process. Apex is a software tool for simulating the
behavior of intelligent agents, especially human
agents (Freed 1998b). The conceptual approach
taken in Apex is to treat the intelligent agent as
resource-limited, and to provide capabilities needed
to model how the agent allocates its limited resources
to accomplish a set of tasks.

The agent architecture incorporates a plan
execution system (Firby 1988; Pell et al. 1997) that
provides capabilities needed for CPM-GOMS such as
hierarchical task decomposition and enforcement of
logical preconditions. An integrated dispatch
scheduler (Zweben and Fox, 1994) and other
mechanisms (Freed, 1998a, 2000) provide the ability
to allocate resources based on priority determinations
and constraints. This section describes how task
knowledge in Apex invokes and parameterizes these
mechanisms.

 (procedure
 (index (delete-file ?file using mouse))
 (profile right-hand)
 (step s1 (find-and-grasp mouse))
 (step s2 (vis-locate ?file icon => ?icon))
 (step s3 (mouse-move to ?icon) (waitfor ?s1 ?s2))
 (step s4 (mouse-drag ?icon to trash) (waitfor ?s3))
 (step ctl1 (terminate ?self) (waitfor ?s4))
 (step ctl2 (reset) (waitfor (interrupted ?self))))

Figure 1: A procedure

The central construct in Apex’s task knowledge
notation, the procedure, is used to represent different
kinds of “how-to” including CPM-GOMS methods,
templates and operators. Every procedure includes at
least an index clause and one or more step clauses.
The index identifies the procedure and specifies the
class of goals for which it is appropriate. Each step
clause describes a subgoal or auxiliary activity.

Steps are concurrently executable unless
otherwise specified. A waitfor clause is used to
indicate preconditions. Goals created with waitfor
preconditions become eligible for execution (enabled)
only when all the events specified in the waitfor
clause have occurred. Thus, goals created by the
steps labeled s1 and s2 in Figure 1 begin enabled and
may be carried out concurrently. The remaining steps
specify pending goals – i.e. goals that are created with
unsatisfied preconditions and therefore cannot
execute right away.

Events arise primarily from two sources.
First, perceptual processes produce a stream of events
to represent new or updated observations of the
external world. Second, the agent architecture

generates events to reflect the status of goals it is
executing or considering for execution. Two such
events are particularly important for CPM-GOMS
modeling. First, the architecture generates events of
the form term (terminated <goal>) whenever a goal
completes. Steps with waitfor clauses such as
(waitfor ?s4), an abbreviation of (waitfor (terminated
?s4)), specify that the termination (completion) of
one goal is a precondition for starting another. This
constitutes an ordering constraint. In Apex CPM-
GOMS models, task logic constraints are represented
as explicit ordering constraints.

Another important kind of event signals that
the execution of a goal has been interrupted in order
to carry out a conflicting goal with higher priority.
When an interruption occurs, the architecture
generates an event of the form (interrupted <goal>).
This can trigger contingency handling behaviors
represented by steps that wait for specified goals to
become interrupted. For example, the step labeled
ctl2 in Figure 1 specifies restarting the from the
beginning of the procedure if the delete-file goal is
interrupted, rather than trying to pick up at the point
where the task was interrupted (Apex’s default
behavior). Interruption-handling behaviors are
specified in Apex representations of CPM-GOMS
operators.

Apex automatically allocates non-sharable
resources among competing goals. A goal’s resource
requirements are determined when all of its non-
resource (waitfor) preconditions have been satisfied
and a procedure for carrying out the goal has been
selected. The procedure’s profile clause specifies
what resources the goal needs before it becomes
eligible for execution. Resource preconditions are
satisfied when the architecture determines that the
goal is either the sole competitor or highest priority
competitor for all of the resources it needs. A profile
clause specifies resources a goal needs from the
moment it begins execution until the time it is
complete. The step action hold-resource can be used
to assert a resource requirement that arises during
execution. For instance, if (step spcl (hold-resource
cognition) (waitfor ?s3)) were added to the above
procedure, this would cause the executing goal
(delete-file oldpic.jpg) to require the “cognition”
resource in addition to the “right-hand” resource (the
latter requirement having been established by the
profile clause). Adding a new resource requirement
during execution triggers a new resource competition,
possibly resulting in the goal failing to get the
resources it needs and thereby interrupted. The step
action release-resource is used to remove an existing
requirement prior to goal completion.

Apex can resolve goal competitions based
on a number of factors including, e.g., proximity of
goal-relevant deadlines, expected cost of interruption
and, for repeated tasks, time since last iteration (see
Freed, 1998a). However, for CPM-GOMS analyses,
the most important factor is precedence which is
specified (optionally) using a rank clause. Goal A

has precedence over goal B, and thus has priority
over B in competition for a resource if there exists
goals A’ and B’ where A’ is an ancestor of A, B’ is
an ancestor of B, A’ and B’ are siblings, both A and
B have been explicitly assigned ranks (within the
lexical scope of the procedure from which they
originated) and rank(A) < rank(B).

Specifying CPM-GOMS models in Apex
A CPM-GOMS analysis can be thought of as taking
place in 3 phases. First, a modeler represents the task
of interest in terms of methods, selection rules and a
high-level goal. Task-independent templates and
operators may also have to be represented, though in
many cases, this step will not be necessary. Instead,
required templates and operators may be available in
a library of reusable behavior representations defined
during previous modeling efforts (Matessa et al.,
2002)1. In the second phase, methods and selection
rules are used to generate a goal hierarchy, with the
leaf-level elements forming a sequence of template-
level goals. Third, templates are used to decompose
each goal in the sequence into a set of operators and
operator scheduling constraints. The output of the
analysis is a schedule that includes operators from all
goals in the sequence, meets all constraints and is
otherwise optimal (minimum duration). The schedule
can be represented in the form of PERT chart, which
graphically represents resource usage over time.

Apex automates the second and third phases
and automatically generates a PERT chart, allowing
the modeler to focus solely on representing task-
relevant behaviors. This section describes how an
Apex modeler represents methods, templates and
operators. Examples of these structures, illustrated in
Figure 2, are adapted from the Apex CPM-GOMS
model of an experimental task (John et al., 2002) in
which human subjects used a mouse to operate a
simulated automatic teller machine. Templates
developed for an entirely different task (Gray and
Boehm-Davis, 2000) were reused in this model.

Representing Methods
In GOMS and CPM-GOMS, a method is a sequence
of steps representing one way to achieve a specified
type of goal. However, step-ordering in a GOMS
method means something quite different from step-
ordering in a CPM-GOMS method. In the former
case, if step B follows step A, then all subgoals and
operators descending from step A must be completed
before B or any of its descendants can begin. This
kind of ordering can be accomplished by making the
completion of step A an enabling precondition for
step B using the waitfor construct (see example
Figure 1). For CPM-GOMS, this approach is too

1 This is one part of a broader effort to reduce the time and
expertise needed to create Apex models while increasing
the size and complexity of models that can realistically be
attempted (Freed and Remington, 2000).

restrictive. Operators descending hierarchically from
one step must be free to execute before those from a
prior step have completed, subject to the constraints
described earlier. The necessary effect is achieved
using the rank clause. Whereas waitfor is a control
construct in the programming language sense (like a
loop or conditional-branch) and specifies order of
execution, rank is a declaration (advisory construct)
that attributes a property – rank value – to a given
goal. If rank is specified for the steps of every
method, then any two primitive operators arising
from different templates can be compared to see
which has the superior rank value and, thus, which
has precedence in case of a resource conflict.

Apex can use precedence information to
infer control (operator sequencing) decisions that
comply with the unary resource and slack exclusion
constraints. For example, the method represented in
Figure 2a generates goals for moving the mouse to
and clicking on the “withdraw” and “checking”
buttons. These goals will be decomposed using the
template in 2b, creating numerous operator-level
goals including (initiate-move-cursor withdraw-
button) and (initiate-move-cursor checking button).

 (procedure
 (index (perform withdraw transaction ?amt))
 (step s1 (fast-move-click withdraw-button) (rank 1))
 (step s2 (fast-move-click checking-button) (rank 2))
 (step s3 (enter-number-sequence ?amt) (rank 3))
 (step s4 (slow-move-click money-slot) (rank 4))
 (step ctl1 (terminate) (waitfor ?s1 ?s2 ?s3 ?s4)))

(a)
 (procedure
 (index (fast-move-click ?target))
 (step c1 (initiate-move-cursor ?target))
 (step hvr1 (hold-resource r-hand-block) (waitfor ?c1))
 (step m1 (move-cursor ?target) (waitfor ?c1))
 (step c2 (attend-target ?target))
 (step hvr2 (hold-resource vision-block) (waitfor ?c2))
 (step c3 (initiate-eye-movement ?target) (waitfor ?c2))
 (step m2 (move-eye ?target) (waitfor ?c3))
 (step p1 (perceive-complex-obj ?target) (waitfor ?m2))
 (step rvr2 (release-resource vision-block) (waitfor ?p1))
 (step c4 (verify-target-pos ?target) (waitfor ?c3 ?p1))
 (step c5 (initiate-click ?target) (waitfor ?c4 ?m1))
 (step m3 (mouse-down ?target) (waitfor ?m1 ?c5))
 (step m4 (mouse-up ?target) (waitfor ?m3))
 (step rvr1 (release-resource r-hand-block) (waitfor ?m4))
 (step ctl1 (terminate) (waitfor ?m4 ?rvr1 ?rvr2)))

(b)
 (procedure
 (index (mouse-up))
 (profile right-hand)
 (step s1 (start-activity right-hand release-mouse-button
 :object mouse-device :duration 100 => ?a)
 (step ctl1 (terminate) (waitfor (completed ?a)))
 (step ctl2 (reset ?self) (waitfor (resumed ?self))))

(c)

Figure 2: (a) method (b) template and (c) operator

As these both require use of the “cognition” resource,
a unary resource constraint applies – the goals cannot
be executed at the same time. Neither the method or
template representation explicitly orders these steps.
Instead, Apex automatically detects the conflict and
determines that a precedence relationship exists
between the goals, with (init iate-move-cursor
withdraw-button) having precedence. On this basis,
the architecture executes this goal first and thereby
satisfies the constraint.

Representing Templates
A CPM-GOMS template specifies a set of operators,
each representing a discrete cognitive, perceptual or
motor activity, and a set of constraints on the
execution of operators. Constructing templates
involves consideration of the logical requirements of
the task (e.g. moving a mouse to a target location
must involve steps for finding the target), general
principles of human cognitive behavior (e.g. reading a
word requires visual attention (McCann, Folk, &
Johnston, 1992)), and, in some cases, template-
specific parameters (e.g. Fitt’s Law constants for
mouse movement). Template construction is also
guided by theory which places additional constraints.
For example, CPM-GOMS incorporates the Model
Human Processor constraint that motor actions are
preceded by cognitive initiate operator to prepare the
action (John 1996).

Figure 2b illustrates how templates are
represented in Apex. Every cognitive, perceptual and
motor activity (operator-level action) is represented in
a step clause. Logical constraints are represented
using the waitfor clause. For example, the cognitive
action to initiate motor behavior represented in step
c1 is considered a prerequisite for performing the
motor behavior (m 1). Thus, the latter step is
explicitly constrained to wait for the former to
complete. Unary resource constraints between
operators within a template – i.e. where two operators
from the template use the same resource – are also
represented using the waitfor clause. Note that the
rank-based mechanism described previously cannot
enforce resource constraints since all operators from a
template will have equal precedence.

Slack exclusion constraints are meant to
prevent operators with certain “excluded” properties
from executing during otherwise available slack
intervals. The cognitive initiation exclusion rule
described earlier requires that templates represent
constraints that prevent an operator from executing if
(a) the operator originates from a different template
with lower precedence, (b) the operator represents a
cognitive action to initiate behavior in some resource
R, and (c) there is at least one operator in the template
that uses R and is not yet complete (including any
that have not yet begun).

Representations in the template must test
whether these conditions hold. For property (a), it is
only necessary that an excludable operator produces a

resource conflict. Apex will then automatically defer
its execution and thereby enforce the exclusion
constraint. However, this will work only if operator-
level goals that use the contested resource, and thus
produce a conflict, also have property (b). This
requires extending the concept of a resource to
signify any arbitrary property of an operator. In our
model, cognitive operators that initiate action in
resource R are represented by procedures defined to
use a resource named <R>-block (e.g. “r-hand-
block”, “vision-block”) 2. Property (c) concerns when
the template will prescribe use of the <R>-block
resource, making a conflict possible. In particular,
the temporal scope of potential conflicts is an interval
running from the first cognitive initiation act for
resource R in the template to the last operator in the
template that uses R. Because this interval is less
than the lifetime of the template-level goal, it cannot
be specified by a profile clause in the template.
Instead, the hold-resource and release-resource
commands are used (see 2b) to precisely bound the
interval.

Representing Operators
Operators are the most primitive, fine-grained level of
behavior in a task representation. To represent a
CPM-GOMS operator in Apex, three issues must be
considered: resource requirements, duration and
interruption handling. Every operator in a CPM-
GOMS model represents a discrete cognitive,
perceptual or motor activity. Each is thus a user of a
single cognitive, perceptual or motor resource notated
in a profile clause in the operator’s definition. In
some cases, an operator will have a property making
it eligible for exclusion under an exclusion constraint.
If so, an additional resource (e.g. vision-block) will be
listed in the operator’s profile clause to represent the
property that makes it excludable.

An operator’s duration contributes to the
predicted total time required for a high-level goal and
also determines whether the operator can fit into a
given interval of slack time. In Apex, duration is
represented as a parameter of a start-activity step in
the operator representation (see Figure 2c).
Executing this step is what causes the operator to
occupy a specified resource for a block of (simulated)
time. When the prescribed interval has passed, an
event of the form (complete <activity>) is generated
to indicate that the operator is complete.

As described earlier, the unary resource
constraint requires that operators not be executed in a
given interval of slack time if the size of that interval
is less than the operator’s duration. Apex meets this
constraint, not by preventing the operator from

2 What “block” resources correspond to in psychological
terms is still undetermined. One possibility is that each
represents limited cognitive capacity to manage behavior in
some other resource. Another possibility is that each such
resource represents a learned inhibition against interleaving
similar behaviors from different goals.

executing in that interval, but by aborting its
execution when the window of slack time closes.
Specifically, an operator will begin execution as soon
as its waitfor preconditions (if any) are satisfied and it
becomes the highest priority competitor for the
resource(s) it needs. If an operator with conflicting
resource requirements and higher priority (i.e. from a
template-level goal with higher precedence) becomes
enabled while it is executing, Apex interrupts the
executing operator and reallocates resources to the
new one3. By default, Apex resumes an interrupted
goal where it left off once the goal again becomes the
highest priority competitor. However, the correct
behavior in this case is not to resume but to reset
(start over). To override the default, a reset step (see
Figure 2c) is included in the representation of each
operator.

Discussion
We have provided a detailed description of the
requirements for automating CPM-GOMS and shown
how Apex implements these requirements. The use
of Apex to automate CPM-GOMS analyses allows
user-interface designers and engineers to simulate
human performance on HCI tasks with little effort
and minimal expertise in cognitive modeling or
psychology. For example, in a recent class at
Carnegie Mellon University, all students, none of
whom were psychology students, were able to go
from simple keystroke-level models they had built in
Apex to correct CPM-GOMS models in less than half
an hour. In previous classes and CHI tutorials, the
process took six times as long and often resulted in
incorrect models. These experiences raise hopes that
Apex will allow UI designers and engineers to easily
evaluate human performance on any given interface
using a powerful modeling method previously
inaccessible to all but expert cognitive modelers

References
Agre, P. and Shrager, J. (1990) Routine evolution as

the microgenetic basis of skill acquisition.
Proceedings of the 12th Annual Conference of the
Cognitive Science Society.

Card, S. K., Moran, T.P. & Newell, A. (1983). The
Psychology of Human-Computer Interaction.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Firby, R.J. (1989) Adaptive Execution in Complex
Dynamic worlds. Ph.D. thesis, Yale University.

Freed, M. (1998a) Managing multiple tasks in
complex, dynamic environments. In Proceedings of
the 1998 National Conference on Artificial
Intelligence. Madison, Wisconsin.

3 Enforcing unary resource constraints by interrupting and
restarting operators is inefficient for “ballistic” tasks where
all operators needed for the high-level goal can be specified
at the outset. It is appropriate for “reactive” tasks where
new goals and operators may arise in response to unknown
or unexpected features of the environment.

Freed, M. (1998b) Simulating human performance in
complex, dynamic environments. Ph.D. thesis,
Northwestern University.

Freed, M. (2000) Reactive Prioritization.
Proceedings 2nd NASA International Workshop on
Planning and Scheduling for Space. San Francisco,
CA.

Freed, M. and Remington, R. (2000) Making Human-
Machine System Simulation a Practical
Engineering Tool: An APEX Overview. In
Proceedings of the 2000 International Conference
on Cognitive Modeling. Groningen, Holland.

Gray, W. D., & Boehm-Davis, D. A. (2000).
Milliseconds matter: An introduction to
microstrategies and to their use in describing and
predicting interactive behavior. Journal of
Experimental Psychology: Applied, 6(4), 322-335.

Gray, W. D., John, B. E. & Atwood, M. E. (1993)
Project Ernestine: Validating a GOMS Analysis for
Predicting and Explaining Real-World Task
Performance, Human-Computer Interaction, v.8
(3), pp.237-309.

John, B. E. (1996) TYPIST: A Theory of
Performance In Skilled Typing. Human-Computer
Interaction, 11 (4), pp.321-355.

John, B. E. & Gray, W. D. GOMS Analyses for
Parallel Activities. Tutorial materials, presented at
CHI, 1992 (Monterey, California, May 3- May 7,
1992), CHI, 1994 (Boston MA, April 24-28, 1994)
and CHI, 1995 (Denver CO, May 7-11, 1995)
ACM, New York.

John, B. E. & Kieras, D. E. (1996). The GOMS
family of user interface analysis techniques:
Comparison and Contrast, ACM Transactions on
Computer-Human Interaction, v.3(4), pp. 320-351.
New York: ACM Press.

John, B., Vera, A., Matessa, M., Freed, M. and
Remington, R. (2002) Automating CPM-GOMS.
In CHI 2002 Conference Proceedings.

Matessa, M., Vera, A., John, B., Remington, R. and
Freed, M. (2002) Reusable templates in human
performance modeling. In Proceedings of the 24th

Annual Meeting of the Cognitive Science Society.
McCann, R. S., Folk, C. L., & Johnston, J. C. (1992).

The role of attention in visual word processing.
Journal of Experimental Psychology: Human
Perception and Performance, 18, 1015-1029.

Pell, B. Gat, E., Keesing, R., Muscettola, N. and
Smith, B. (1997) Robust Periodic Planning and
Execution for Autonomous Spacecraft. In
Proceedings of the Fifteenth Joint Conference on
Artificial Intelligence, Nagoya, Japan.

Zweben, M. and Fox, M. (1994) In te l l igen t
Scheduling, Morgan Kaufman.

