

1

MatCASE Forward Simulation & Inverse Degisn

Zi-Kui Liu

Department of Materials Science and Engineering Pennsylvania State University

Outline

- Introduction of NSF ITR Project (MatCASE)
- Data for thermodynamic modeling
 - First-principles calculations
 - Experimental data
- High throughput of thermodynamic modeling
 - A new algorithm for automation of phase equilibrium calculations
 - Automation of thermodynamic modeling
- Summary

Top-Down, **Inverse Design**

Bottom-Up, Forward Simulation

PHASES

MATCASE Project

NSF ITR (Materials Computation and Simulation Environment)

PI: Zi-Kui Liu, Long-Qing Chen, Padma Raghavan, Qiang Du, (Penn State), Stephen Langer (NIST), Christopher Wolverton (Ford)

Postdoctoral Fellows

Edwin Garcia, , Keita Teranishi, Yi Wang, Peng Yu, Wenxiang Zhu

Graduate Students

Maria Emelianenko, Weiming Feng, Oiujiang Li, Manjeera Mantina, Dongwon Shin, Anusha Srirama, Tao Wang, Hui Zhang, Jingxian Zhang

Project Alumni

- PhD awarded: Shenyang Hu, Chao Jiang, Keita Teranishi
- MS awarded: William Stevenson, Jianwei Wang
- Postdoc: Shenyang Hu, Chinnappan Ravi, Shihuai Zhou, Jingzhi Zhu _
- Senior Personnel: Jorge Sofo

PENNSTATE PHASES 8 5 5 MatCASE Software Architecture

PSU

Pure elements→Binary→Ternary→Multicomponent

First-Principles Approach
Many-body Schrodinger's equation

$$\hat{H}\Psi(\vec{R}_{1},\vec{R}_{2},...\vec{R}_{N},\vec{r}_{1},\vec{r}_{2},...\vec{r}_{n}) = E\Psi(\vec{R}_{1},\vec{R}_{2},...\vec{R}_{N},\vec{r}_{1},\vec{r}_{2},...\vec{r}_{n})$$
Born-Oppenheimer
approximation
Many-electron Schrodinger's equation

$$\hat{H}\Psi(\vec{r}_{1},\vec{r}_{2},...\vec{r}_{n}) = E\Psi(\vec{r}_{1},\vec{r}_{2},...\vec{r}_{n})$$
Density Functional Theory

$$E = E[\rho(\vec{r})]$$
Set of one-electron Schrodinger's equation

$$\left[-\frac{\hbar^{2}}{2m_{e}}\nabla_{i}^{2} - \frac{e^{2}}{4\pi\varepsilon_{0}}\sum_{l=1}^{N}\frac{Z_{l}}{|\vec{r}-\vec{R}_{l}|} + \frac{e^{2}}{4\pi\varepsilon_{0}}\int \frac{\rho(\vec{r}')}{|\vec{r}-\vec{r}'|}d^{3}\vec{r}' + V_{XC}[\rho(\vec{r})]\right]\Psi_{i}(\vec{r}) = \varepsilon_{i}\Psi_{i}(\vec{r})$$

Pure Elements

- 78 pure elements in bcc, fcc and hcp structures
 - Y. Wang, S. Curtarolo, C. Jiang, R. Arroyave, T. Wang, G. Ceder, L.-Q. Chen and Z.-K. Liu, "Ab initio lattice stability in comparison with CALPHAD lattice stability," *CALPHAD, Vol.28, 2004, 79-90.*

Y. Wang et al., CALPHAD, Vol.28, 2004, 79-90.

PENNSTATE PHASES PSU **Binary: Energy of Formation**

$\Delta H(A_{1-x}B_{x}) = E(A_{1-x}B_{x}) - (1-x)E(A) - xE(B)$

- Stefano Curtarolo, Dane Morgan, and Gerd Ceder, "Accuracy of ۲ *ab-initio* methods in predicting the crystal structures of metals: review of 80 binary alloys", CALPHAD (2005), in press
 - **15000+ calculations with statistical analysis.**
 - Data mining to predict new structures.
- Phases Research Lab at Penn State ۲
 - Y. Zhong, C. Wolverton, Y. A. Chang and Z. K. Liu, Acta Mater., 52, (2004) 2739-2754.
 - **R.** Arroyave, D. Shin and Z.-K. Liu, Acta Mater., 53, (2005) 1809-1819.
 - K. Ozturk, Y. Zhong, L. Q. Chen, C. Wolverton, J. O. Sofo and Z. K. Liu, Metall. Mater. Trans. A, 36A, (2005) 5-13.
 - Y. Wang, C. Woodward, S. H. Zhou, Z. K. Liu and L. Q. Chen, Scr. Mater., 52, (2005) 17-20.

8 5 5

PENNSTATE

Solution Phases

- Special Quasirandom Structures (SQS)
 - Small supercells that mimic the local pair and multibody correlations of random alloys
 - Full advantage of first-principle calculations
 - Applicable to more complex structures
- Created SQS for BCC, HCP, B2, Laves phases, halite, and perovskite

SQS-16 for bcc A_{0.5}B_{0.5}

C. Jiang, C. Wolverton, J. Sofo, L. Q. Chen and Z. K. Liu, *Phys. Rev. B*, **69**, (2004) 214202.

SQS-16 for bcc A_{0.25}B_{0.75}

SQS for B2

SQS-16 for (A_{0.75} **B**_{0.25})**C**

Chao Jiang, Long-Qing Chen and Zi-Kui Liu: Acta Mater. in press

Vibrational Entropy

$$F(V,T) = E_{c}(V) + F_{ph}(V,T) + F_{el}(V,T)$$

- Linear response theory
 - Evaluate the force constants by calculating the second derivatives of the energy with respect to atomic displacements.
 - Y. Wang, Z. K. Liu and L. Q. Chen, "Thermodynamic properties of Al, Ni, NiAl, and Ni3Al from first-principles calculations," Acta Mater., Vol.52, 2004, 2665-2671.
- Frozen phonon method
 - Perturb the positions of the atoms from their equilibrium positions and calculating the resulting forces.
 - Use ATAT
 - R. Arroyave, D. Shin and Z. K. Liu, "Ab initio thermodynamic properties of stoichiometric phases in the Ni-Al system", Acta Mater., Vol.53, 2005, pp. 1809-1819.

Phonon: NiAl

e.

4 Microsoft PowerP...

🍘 PaulingFile -

New Algorithm

- Iterative software drawbacks
 - (user-dependent) Use of prior knowledge of the system to generate a suitable starting point
 - **X** (unstable) **Possible divergence or convergence to metastable equilibria**

Correct diagram Miscibility gap is specified

Miscibility gap is not specified

stopping

some

New algorithm: binary case

Schematic view of the adaptive refinement

Ca-Na and Li-Na Systems

PENNSTATE

8 5 5

New algorithm: ternary case

Sobol sampling vs. uniform sampling

Miscibility gap detection in the CaLiNa system

PENNSTATE

8 5 5

Numerical examples Ternary Ca-Li-Na system at T=900K

Gibbs energy profile with the miscibility gap and a corresponding common tangent plane

M.G. Emelianenko, Z.K. Liu, Q. Du, Computational Materials Science, 2005, in press

Modeling Automation

XML: Unary System

PENNSTATE

Screen Shot of Unary System

User Name: Password submit	The experimental variables are listed below along with their respective values. Edit the values if needed Melting Temperature T: 1358.0 Enthalpy Difference DHTR: 13138.0 Enthalpy H: 0.0 Entropy S: 33.164	Model for CU VA is GHSERCU: >298.15 V1+V2*T+V3*T*LN(T)+V4*T**2+V5*T**3+V6*T**(-1); >T1 V21+V22*T+V23*T*LN(T)+V24*T**2+V25*T**3+V26*T**(-1); >1358.000 V41+V42*T+V73*T*LN(T)+V44*T**(-9); >3200 Equations Employing the Model are: G(FCC_A1,CU;0) >298.15 GHSERCU; >3200 G(LIQUID,CU;0) >298.15 GHSERCU+V51+V52*T+V53*T**7; >1358.000 V71+V72*T+V73*T*LN(T); >3200 G(BCC_A2,CU;0) >298.15 GHSERCU+4017-1.255*T; >3200 G(HCP_A3,CU;0) >298.15
----------------------------------	---	---

PENNSTATE

Screen Shot of Unary System

User Name: Paisword submit	Choose a set of specific he T: 298.15 - 999.99 T: 298.1 T: 298.1 T: 11.0	at data for Table 199 <u>click here to view t</u> www.matcase.psu.edu:8	Model for CU VA is GHSERCU: >298.15 V1+V2*T+V3*T*LN(T)+V4*T**2+V5*T**3+V6*T**(-1); >T1 V21+V2*T+V23*T*LN(T)+V24*T**2+V25*T**3+V26*T**(-1);	
	O New Tal	T 298.15 24 300 24 350 24 400 25 450 25 500 25 600 26 700 26 800 27 900 28 999.9999 28	CP 442 462 975 318 .686 912 481 996 494 .049 .662 V	>1358.000 V41+V42*T+V73*T*LN(T)+V44*T**(-9); >3200 Equations Employing the Model are: G(FCC_A1,CU;0) >298.15 GHSERCU; >3200 G(LIQUID,CU;0) >298.15 GHSERCU+V51+V52*T+V53*T**7; >1358.000 V71+V72*T+V73*T*LN(T); >3200 G(BCC_A2,CU;0) >298.15 GHSERCU+4017-1.255*T; >3200 G(HCP_A3,CU;0) >298.15

PENNSTATE

Screen Shot of Unary System

User Name Password	* Running Thermocalc Dataset obtained after running Thermocalc	Model for CU VA is GHSERCU: >298.15 V1+V2*T+V3*T*LN(T)+V4*T**2+V5*T**3+V6*T**(-1);
submit	V1= -8.01673236E+03 V2= 1.37210087E+02 V3= -2.52682363E+01 V4= -5.76593721E-04 V5= -3.92350457E-07 V6= 6.12631053E+04 V21= -9.03474902E+04 V22= 9.59296956E+02 V23= -1.43602748E+02 V24= 7.55395057E-02 V25= -9.64361816E-06 V26= 1.08661654E+07 V41= -1.48609078E+04 V42= 1.95418581E+02 V44= -1.22186864E+29	>T1 V21+V22*T+V23*T*LN(T)+V24*T**2+V25*T**3+V26*T**(-1); >1358.000 V41+V42*T+V73*T*LN(T)+V44*T**(-9); >3200 Equations Employing the Model are: G(FCC_A1,CU;0) >298.15 GHSERCU; >3200 G(LIQUID,CU;0) >298.15 GHSERCU+V51+V52*T+V53*T**7; >1358.000 V71+V72*T+V73*T*LN(T); >3200 G(BCC_A2,CU;0) >298.15 GHSERCU+4017-1.255*T; >3200 G(HCP_A3_CU;0)
	V51= 1.32380163E+04	>298.15

PENNSTATE

1 8 5 5

- First-principles calculations efficiently provide enthalpy of formation of stable stoichiometric compounds.
- Entropy of formation and entropy of mixing can be calculated with various approximations.
- New algorithm for robust phase equilibrium calculations is developed.
- The automation of thermodynamic modeling is being constructed.
- The automation will be extended to modeling of mobility and other properties.

Mission

Educate the next generation of scientists and engineers with a broad, industrially relevant perspective on engineering research and practice.

Vision

Be Recognized as the Premier Collaborative Activity in Computational Materials Design among U.S. Universities, Industries and Government Laboratories

Information from the Workshop on January 20/21, 2005

Catalysts for Change (MPEG, 200MB): An Excellent NSF I/UCRC Promotional Movie

Revised Research Themes and Other Documents (March 2005)

http://www.ccmd.psu.edu

🛛 🛃 EndNote 6

🌍 Internet

Ø NSF I/UCRC C...

🥙 PaulingFile - Mi...

🙆 Done

🛃 start

C

🔯 Endnote

4 Microsoft P...