
ISI’I’95

Low-Rate ‘hrbo Codes for Deep-Space Communications ‘
D. Divsalrrr ad E Pollara

Jet Propulsion Laboratory, California Institute of Technology, Pasadcm, CA 91109

Turbo codes were recently proposed by 13errou, Glavieux and Thitimajshima [2] and claimed to achieve near
Shannon-1imit error correction performance with relatively simple component codes and large interleaves.
A required .E6/N,, of 0.7 dB was reportecl for BER of 10 ‘5, using a ra[c 1/2 turbo code [2]. However,
some important details that are necessary to reproduce these results were omitted. This article confirms
the accuracy of these claims, and presents a complete description of an cncoderjdecoder pair that could
bc suitable for deep-space applications, where lower rate codes can bc used. We describe a new simple
method for trellis termination, we analyze the effect of interleave choice on the weight distribution of the
code, and we introduce the use of unequal rate and multiple component codes.

The codes considered in this article consist of the parallel concatenation of two or more convolutional
codes with a random interleave between each encoder. Fig, l(a) illustrates a particular example that
will be used in this article to verify the performance of these codes. This encoder contains two recursive
binary convolutional encoders, with Ml and Mz memory CC1lS respectively. In general, the two component
encoders may not be identical. The first component encoder operates directly on the information bit
sequence u = (u 1, UN) of length N, producing the two output sequcnccs xli and XIP. The second
component encoder operates on a reordered sequence of information bits u’ produced by an interleaver of
length N, and outputs the two sequences x?i and X2.1,. The interleavcr is a I)seudo-random block scrambler
defined by a permutation of N elements with no repetitions: a complete block is read into the the interleave
and read out in a specified permuted order. Figure 1(a) shows an example where a rate r ,= 1/n = 1/4
code is generated by two component codes with Ml =: M2 = M = 4, producing the outputs xli = u,

~ x2i = U’ and X2P = uXlp = U“go, ‘. ~, where the generator ~]olynomials gt, and gb have octal representation
21 and 37, respectively. Note that various code rates can be obtained by puncturing the outputs.
Trellis Termination — We use the encoder in Fig, 1 (a) to generate a (n (N + M), N) block code, Since the
component encoders are recursive, it is not sufficient to set the last M information bits to zero in order to
drive the encoder to the all zero state, i.e. to terminate the trellis, The termination (tail) sequence depends on
the state of each component encoder after N bits, which makes it impossible to terminate both component
encoders with the same M bits. Fortunately, the simple stratagem illustrated in Fig. 1 (b) is sufficient to
terminate the trellis. Here the switch is in position “A” for the first N clock cycles and is in position “B” for
M additional cycles, which will flush the encoders with zeros. The decoder does not assume knowledge
of the M tail bits.
Weight Distribution — In order to estimate the performance of a cocic it is necessary to have information
about its minimum distance d, weight distribution, or actual code geometry, depending on the accuracy
required for the bounds or approximations. The example of turbo cocie shown in Fig. 1 (a) produces two sets
of codewords xl = (xli, XIP) and x2 = (x2i, X2,,), whose weights can be c[isily computed. The challenge
is in finding the pairing of codewc)rds from each set, induced by a particular interleave. Intuitively, wc
would like to avoid pairing low-weight codewords from one encoder witi] Iow-weigilt words from the other
encoder. Many such pairings can be avoided by proper design of the intcrlcavcr. However, if the encoders
are not recursive, the low-weight codeword generated by the input sequence u = (00. . . 0000100 . . . 000)
with a single “1” will always appear again in the second encoder, for :iny choice of interleave. This
motivates the use of recursive encoders, where the key ingredient is the recursiveness and not the fact
that the encoders are systematic. For our example, the input sequence u = (00. . .0010000100 . . . 000)

‘The research described in this summary was carried out at the Jet Fhopulsion I.aboratory, California Institu[c of Technology,
under contract with the Nationai Aeronautics and Space Administration,

.

generates the minimum weight codeword (weight=6). If the interleaver does not properly “break” this input
pattern, the resulting minimum distance will be 12.

However, the minimum distance is not the most important quantity of the code, except for its asymptotic
performance, at very high Eb/N,,. At moderate SNRS, the weight distribution at the first several possi-
ble weights is necessary to compute the code per formancc. Estimating the complete weight distribution
for large N is still an open problem for these codes. We have investiga[cd the effect of the interleaver
on the weight distribution on a small-scale example where N = 16. ‘1’his yields an (80,16) code whose
weight distribution can be found by exhaustive enumeration. A good choice of the interleave can increase
the minimum distance from 12 to 16, and, more importantly, can reduce the count of codewords at low
weights. We have computed the weight distribution obtained by using no interleavcr, a reverse permu-
tation, and a 4 x 4 block interleaver, all with d = 12. Hetter wc.igbt distributions are obtained by the
“random” permutation {2,13,0,3,1 1 ,15,6,14,8,9,10,4,12,1 ,7,5) with d = 12, and by the best found permu-
tation {12,13,14,9,1 1,1 5,7,6,10,3,8,4,0,1,2,5} with d = 16 (The best known (80,16) linear block code has
minimum distance 28). FcN’ intcrleaver length N == 1024 we were only able to enumerate all codewords
produced by input sequences with weights 1, 2, and 3. This again confirmed the importance of the inter-
leave choice for reducing the number of low-weight coclewords. Better weight distributions were obtained
by using “random” permutations than by structured permutations, its block or reverse permutations.

For the (80,1 6) code using the best found permutation we have compared the performance of a maximum
likelihood decoder (obtained by simulation) to that of a turbo decoder with 10 iterations described later,
and to the union bound computed from the weight distribution. The performance of the turbo decoder is
only slightly suboptimurn.
‘Ihrbo Decoding— Let uk be a binary random variable taking values in {-I-1, – 1 }, representing the sequence

P(u~=+ 1[) .of information bits. The MAP algorithm [1] provides the log likelihood ratio L(k) = log ~(U~=_ ~ ,~, given
the received symbols y. The sign of L(k) is an estimate fik of Uk and the magnitude IL(k) I is the reliability
of this estimate, as suggested in [3].

The channel model is shown in Fig. 2 where the n 1 jk’s and the 11 l,,L’s are i.i.d. zero mean Gaussian
random variables with unit variance, and p = ~2E$/N{) = @Eb/N,, is the signal-to-noise ratio. A

.—— —

similar model applies for encoder 2.
Given the turbo code structure in Fig. 1(a), the optirnunl decoding rule maximizes either P(UL I yI, YZ)

(Minimum bit error probability rule) or P(ulyl, yz) (Maximum likelihood sequence rule). Since this rule is
obviously too complex to compute., we resort to a suboptimum decoding rule [2,3] that uses separately the
two observations yl and y2, as shown in Fig, 3. Each decoder in Fig. 3 computes the a posteriori probabilities
P(u~lyi, iii), i = 1,2 (see Fig. 4a), or equivalently the log-likelihood ratio l.i(k) = log ~~~~~~~~~’~~]
where fil is provided by decoder 2 and ii2 is provided by decoder 1 (see Fig. 4b). The quantities’ iii
correspond to “new data estimates”, ““Innovations” or “extrinsic information” provided by decoders 1 and
2, that can be used to generate a priori probabilities on the information sequence u for branch metric
computation in each decoder.

The question is how to generate the probabilities P(fi,,~ l~k) that should be used for computation of
the branch transition probabilities in MAP clecoding. It call be shown that the probabilities P (uk \fii,k) or
equivalently log ~[~~~~.~ ~+’, i ==], 2, can be used instead of P(fij,k Iuk) for branch metric computations in

“=~@ for decoder 2, this quantity shouldthe decoders. When decoder 1 generates ~(ukluz,k) or log j,(Uk=_ lltiz,k)

not include the contribution due to ii I ,k which has been alrt:ady generated by decoder 2. Thus we should
have

P(uk = +1 Iiiz,k)
log -—

~(u~=~l lyl, fi],l, fi].l, fil, ~+1,1, til, ~)l,~)————— = l o g –-–—--—---n —
P(~k = ‘1 Itiz,k) P(~k=-] ly], ~],1, fij.l, fil, ~+~1,1, fil, ~)”, ~)”

(1)

2

. . .
.

To compute log ~~;~ we note that (See Fig. 4a)

P(u~ly], fil,],. ... fil,~-l, fil,~,-], ti]N)P(i l.~lu~, yl, fil,],. ... fil,~_.l, fi],~+l, fil. N)
I’(uklyl, iii) = ——-—

P(fil,~lyl, ti],l, ... ,i[,~. [,ti],~+],. ... ti],~)
(2)

Since ii 1,~ was generated by decoder 2 and de-interleaving is used, this quantity depends only weakly on
yi and Z 1, j, j # k. Thus we can have the following approximation

Using eq. 3 in eq. 2 we ob[ain

}'(u~lyl, ill) P(til,~lyl, fil,l, fil. ~_.l, fil,~+l, fil. ~)
l’(u~ly],fi],l, ...,il,k..},fil,k.~l, il.N) =“ –-—-—- —-—--–-

2P(u~lil,~)P(fi],~)
(4)

It is preferable to work with likelihood ratios to avoid computing probabilities not involving u~ (see
Fig.4b), and to define ii (k) == log ~~~-, i := 1, 2. From cqs. 1 and 4 we obtain ~~)(k) =

- ““- 1)(k) at the output of decoder ‘1, before illterleavin,g, for the mth iteration.L~)(k) – LI Similarly we
- “’’)(k) = 1 ~)(k) -- ~~) (k) at the output of decoder 2, after deinterleaving. Using the abovecan obtain L, .

definitions, the a priori probabilities can be computed as

Then the update equation for the mth iteration of the decoder in Fig. 3 bccomcs

- (l>i-l)(k) + ~,,,f,~)(k) = ~1
[

(6)L$’)(k) - L~)(A)] , a,,, = 1 .

This looks like the update equation of a steepest descent method, where [)$’)(k) – L~) (k)] represent the
rate of change of L(k) for a given u~, and CY,,, is the step size.

Figure 5 shows the probability density function of ~. I (k) at the output of [he second decoder in Fig. 1 (a),
after de-interleaving and given Uk = +1. As shown in Fig. 5, this density function shifts to the right as the
number m of iterations increases. The area under each density function to the left of the origin represents
the bit error rate, if decoding stops after m iteraticjns.

At this point certain observations can be macic. Note that ~2(k’) at the input of decoder 2 includes an
additive component 2Py]ik, which contributes to the branch metric computations in decoder 2 at observation
yzik. This improves by 3 d]] the$ignai-to-noise ratio of the noisy information symbols at the input of decoder
2, Similar arguments hold for L I (k). An apparently more ~Jowerful decoding structure can be considered,
as shown in Fig .6.

However, the performance of the decoding structures in Fig .6 and Fig .3 is equivalent for a large
number of iterations (the actual difference is one half iteration). If the structure in Fig .6 is used, then the
log-likelihood ratio ~2(k) fed to decoder 2 should not depend on fi]k and j’flk, and similarly LI (k) should
not depend on fiLk and yjik. Using analogous derivations based on eqs. 1 through 4, we obtain

~1 (k) := L2(k) – ~L(k) – 2&’y~lk,

where yji is the sum of yli with the deinterleaved version of ~2i and y~i is the sum of y2i with the interleaved
version of yli. Thus, the net effect of the decodinc structure in Fig. 6 is to explicitly pass to decoder 2 the

3

.

information contained in y] j (and vice-versa), but to remove the identical term from the input log-likelihood
ratio.
Performance. The performance obtained by turbo decoding the code in l;ig. 1(a) with random permutations
of lengths N = 4096 and N = 16384 is compared in Fig. 7 to the capocity of a binary-input Gaussian
channel for rate r = 1/4, and to the performance of a (15,1/4) convolutional code originally developed at
JPL for the Galileo mission. At 13ER=5 x 10-3, the turbo code is better than the (1 5,1 /4) code by 0.25 dB
for N = 4096, and by 0.4 dB for N = 16384.

So far we have considered only component codes with identical rates, as shown in Fig. 1 (a). Now we
propose to extend the results to encoders with unequal rates, as shown in Fig. 8. This structure improves
the performance of the overall, rale 1/4, code, as shown in Fig.7. The gains at BER=5 x 10–3 relative to
the (15,1/4) code are 0.55 dB for N = 4096, and 0.7 dB for N = 16384. For both cases, the performance
is within 1 dB of the Shannon limit at BER=5 x 10--q and the gap narrows to 0.7 dB for N = 16384 at low
B13R.
Conclusions. Wc have shown how turbo codes and decoclers can be used to improve the coding gain for
deep-space communications, while decreasing the decoding complexity with respect to the large constraint
length convolutional codes currently in use. Further analysis is needed to improve our understanding of
the influence of the interleaver choice on the cocle pcrforrnance, to explore the sensitivity of the decoder
performance to the precision with which we can estimate Eb/N,,, and to establish whether there might be
a flattening of the performance. curves at higher ~.’b/N~, as it appears in one of the curves in Fig. 7. An
interesting theoretical question is to determine “how random” these cocics can be so as to draw conclusions
on their performance based on comparison with random coding bounds.

Similar code constructions were used to build rnriltiple-encoder turbo codes. This generalizes the turbo
decoding concept to a truly distributed decoding system where e:ich sub-decoder works on a piece of the
total observation and tcntat ive estimates are shared among decoders until an acceptable degree of consensus
is reached.

Rcfcrcnccs
[1] L. Bahl, J. Cocke, F. Jclinek. and J. Raviv, “Opiimal decoding of linear codes for minimizing symbol error rate (Abstract),” in
t 972 lni. Symp. Information ‘rhcory, p. 90, May 1972.
[2] C. Bcrrou, A. Glavicux, and P. Thitimajshima, “Near Shannon Iin,it error-correcting coding and decoding: Turbo-codes,” in
Proc. ICC ’93, May 1993.
[3] J. Ilagcnaucr and P. Robcrlson, “l[crative (Turbo) decoding of systematic convolutional codes with the MAP and SOVA
algorithms”, Proc. of [hc IIG conference “Source and channel codin~”, Oct. 1994, I;rankfurl

L–————-——-— —+ X,j

(a)

..4IBJ;DgJ-;-U—~1 [..-.A -* Xp

— ———- xi

(b)

Figure 1: (a) Example of encoder. (b) Trellis Tc.rmination

4

,0

nlp

Figure 2: Channel model.

Feedback

y{:53:’s’fFfi:%

- — . —

Inputs
from
Matched
Filter

{

y~l—_. -—

Y2
Y?p ——. -—— —-—_— -

Figure3: Turbo Decoder

@) = log -:~:::!!!!!.
P(!Jk=+ lly, ,ti,,,, fi.. ~ ,! fi,,k+, fJ). /J)

=lo~Fiu;=- llY,,i,,l! . ..! fi.,k l,;P(uk:=–llli2,J ,,k+, !i.. hr)

“’:)IziIiy(k’
P(% IY1 ! q

(a)

Figure4: input/outputofMAPdecodcr

Eb/No=0.3 d13
r. 114 A
N= 4096

i
m. 1

_..-J~

m. 5

~=, o M-PO

m.4)
_—— — -—— .——— .-

) 0 30

ml RELIABLE R& ABILITVVAL:E, ~l(k) RELIA~LE

11(’)

(b)

*-———-.+— ———. .—. -.—
DECODING ERROR cORRECT DEIXI>lNG

.

Figure5: Reliability function

,., .

Inputs
from
Matched
Filter

10

10.

~
m

10%

104

, . . 5

Fe<.dback
~.—- _.. .—. -—. —

‘-fi,-+”picl..—.
‘-1 De%Lvw P

A.—._J

Figure 6: Equivalent turbo decoder

U—A —L -a— L u ___ ,7 ———.
RATE = 1/4

\

-1.5 -1.0 -0.5

f!

-. ..——-— ——r—.—. . . .

0.0
E@O, dB

0.5 1,0 1.5

Figure 7: Turbo codes perforlnance, r =. 1/4

–+ ,,[

- X,P

+ .,,

“I+q+q=i -2,

+*

Encode, 2

Figure 8: Two-rate ct~coder

6

Q-r
Decoded

Output B(IS

