

Coexistence of Ultra-Wideband
System and IEEE 802.11a WLAN

by

Amir Soltanian
Wireless Communication Technologies Group
National Institute of Standards and Technology

Gaithersburg, Maryland

April 2003

Revised October 2003
L. E. Miller

 1

1. Introduction

This report describes a software tool that can be used to evaluate the impact of ultra-
wideband (UWB) radio on the 802.11a WLAN. The simulator is written in C code and is
developed and debugged in Microsoft visual C++ (version 6.00), environment. We first
explain the simulation model for the 802.11a and UWB systems and then we describe the
parameters involved in the simulation. We use a number of examples to clarify the
details of the simulator. These examples can also be used as probing points for
debugging. An analytical approach is also presented as a baseline for comparison.
Finally, example simulation results are presented at the end of this report.

2. System model

Figure 1 shows the baseband model of the 802.11a system [1]. In general the model
consists of a transmitter, an AWGN channel, an UWB interference and a receiver. Each
part consists of different blocks that will be discussed in the following sections. The
lightly shaded blocks are not implemented in the simulator; however their realization is
fairly straightforward.

Table 1 presents the parameters of the physical layer of 802.11a. The OFDM symbol
duration is 4 µs with a guard interval equal to 0.8 µs. There are a 48 data and 4 pilot
subcarriers in one OFDM symbol. Hence, uncoded data rates from 12 to 72 Mbps can be
achieved by using variable modulation types from BPSK to 64-QAM. To correct
subcarriers in deep fades, forward-error correction across the subcarriers is used with
variable coding rates, giving coded data rates from 6 up to 54 Mbps.

Data rate 6, 9, 12, 18, 24, 36, 48, 54 Mbps
Modulation BPSK, QPSK, 16-QAM, 64-QAM
Coding Rate ½, 2/3, ¾

Number of subcarriers 52
OFDM Symbol Duration 4 µs

Guard Interval 800 ns
Subcarrier Spacing 312.5 kHz
-3 dB Bandwidth 15.56 MHz
Channel Spacing 20 MHz

Sampling Rate (FFT = 64) 50 ns
Sampling Rate (FFT = 8192) .39 ns

Table 1- OFDM parameters.

 2

3. The transmitter

The transmitter consists of a packet generator, a convolutional coder, a block interleaver,
a baseband modulator, a pilot insertion block, an inverse fast Fourier transform (IFFT)
block, guard interval extension, and windowing. We will describe these blocks in the
upcoming sections.

3.1. Packet generator

The input data is formatted to different packet lengths according to the modulation type
and coding rate. Table 2 describes different data rates and the corresponding packet
lengths that can be achieved with this system. As we can see there is a minimum number
of bits per packet for each data rate. In the simulation we select a packet length that is a
multiple (twice) of this minimum length requirement.
 Random binary data is generated for each packet using a pseudorandom noise
generator based on the maximal length sequence characterized by the polynomial 1 + x3
+ x20 [7].

3.2. Convolutional coder and interleaver

The binary data is encoded by a standard rate ½ convolutional coder. The rate may be
increased to 2/3 or ¾ by puncturing the coded output bits. The convolutional encoder is
shown in Figure 2. It uses the industry standard generator polynomials, g0 = 1338 and
g1= 1718, of rate R=1/2. The bit denoted as “A” is output from the encoder before the bit
denoted as “B.” Higher rates are derived from it by employing puncturing as depicted in
Figure 3. Puncturing is a procedure for omitting some of the encoded bits in the
transmitter and inserting dummy “zero” metric into the convolutional decoder on the
receive side in place of the omitted bits.

The output of the convolutional coder is interleaved by a block interleaver. In this
model we did NOT include the interleaver in the simulator, however for further
development an interleaver can easily be added to the model.

Data
Rate

Modulation Coding
Rate

Coded
bits per
OFDM
symbol

Min. data
bits per
OFDM
symbol

Packet
length in

the
simulation

OFDM
symbol

per
packet

6 Mbps BPSK ½ 48 24 48 bits 2
9 Mbps BPSK ¾ 48 36 72 bits 2
12 Mbps QPSK ½ 96 48 96 bits 2
18 Mbps QPSK ¾ 96 72 144 bits 2
24 Mbps 16-QAM ½ 192 96 192 bits 2
36 Mbps 16-QAM ¾ 192 144 288 bits 2
48 Mbps 64-QAM 2/3 288 192 384 bits 2
54 Mbps 64-QAM ¾ 288 216 432 bits 2

Table 2- Packet length in the simulator.

 3

3.3. Baseband modulator

The encoded binary serial data is divided into groups of (1, 2, 4, or 6) bits and converted
into complex numbers representing BPSK, QPSK, 16-QAM, or 64-QAM constellation
points as shown in Table 3 to 6. The output values are normalized by a normalization
factor, KNORM that depends on the modulation, listed in Table 7. This normalization is to
achieve the same average power (I2+Q2) for all mappings.

 Input bit (b0) Inphase Quadrature

0 -1 0
1 1 0

Table 3- BPSK modulation IQ mapping.

Input bit (b0) Inphase Input bit (b1) Quadrature

0 -1 0 -1
1 1 1 1
Table 4- QPSK modulation IQ mapping.

Input bits (b0 b1) Inphase Input bits (b2 b3) Quadrature

00 -3 00 -3
01 -1 01 -1
11 1 11 1
10 3 10 3

Table 5- 16-QAM modulation IQ mapping.

Input bits (b0 b1 b2) Inphase Input bits (b3 b4 b5) Quadrature
000 -7 000 -7
001 -5 001 -5
011 -3 011 -3
010 -1 010 1
110 1 110 1
111 3 111 3
101 5 101 5
100 7 100 7

Table 6- 64-QAM modulation IQ mapping.

 Modulation KNORM
BPSK 1
QPSK 1/√2

16-QAM 1/√10
64-QAM 1/√42

Table 7- Normalization factor.

 4

3.4. Pilot insertion

In each OFDM symbol, four of the subcarriers are dedicated to pilot signals in order to
make coherent detection robust against frequency offsets and phase noise. If we number
the 52 subcarriers (excluding zero subcarrier) from -26 to 26, these pilot signals shall be
put in subcarriers –21, -7, 7 and 21. The pilots shall be BPSK modulated by a pseudo
binary sequence to prevent the generation of spectral lines.

The stream of complex numbers representing IQ-mapped data is divided into groups of
NSD=48 complex numbers. We shall denote by writing complex number dk,n, which
corresponds to subcarrier k of OFDM symbol n, as follow:

1,0,1,0,, −=−== ×+ SYMSDnNknk NnNkdd
SD

……

where NSYM represents the number of OFDM symbols.

An OFDM symbol, rDATA,n(t), is defined as

+= ∑ ∑

−

= −=

−∆
+

−∆
1

0

2/

2/

)(2
1

)()(2
,,)()(

SD ST

ST

GIFGIF

N

k

N

Nk

Ttkj
kn

TtkMj
nkTSYMnDATA ePpedtwtr ππ

where NST = 52 is the total number of subcarriers, ∆F = 312.5 kHz is the subcarrier
frequency spacing, TGI =.8 µs is the guard interval duration, TSYM = 4 µs is the OFDM
symbol interval, wTSYM(t) is a window function that is not considered here, and M(k)
defines a mapping from the logical subcarrier number 0 to 47 into frequency offset index
–26 to 26, while skipping the pilot subcarrier locations and the 0th (dc) subcarrier.

≤≤−
≤≤−
≤≤−
≤≤−
≤≤−
≤≤−

=

474321
423022
292423
231824

17525
4026

)(

kk
kk
kk
kk
kk
kk

kM

The contribution of the pilot subcarriers for the nth OFDM symbol is produced by Fourier
transform sequence P, given by

{ }0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,026,26 −=−P

The polarity of the pilot subcarriers is controlled by the sequence, pn, which is a cyclic
extension of the 127-element sequence that can be found in [1], page 23.

 5

3.5. Inverse fast Fourier transform

The data and pilot values are modulated onto 52 subcarriers by applying the inverse fast
Fourier transform (IFFT). The Discrete Fourier Transform (DFT) of a signal can be
written as (ref. 2)

1,,1,0,][][
1

0
−== ∑

−

=

NknxWkX
N

n

nk …

where

)/2(Nj
N eW π−≡

It can be shown that a DFT of length N can be rewritten as the sum of two discrete
transforms, each of length N/2. One of the two is formed from the even-numbered points
of the original N, the other from the odd-numbered points. The proof is simply this:

∑∑ +=
oddn

kn
N

evenn

kn
N WnxWnxkX ,][][][

].[][

]12[]2[][

]12[]2[][

1)2/(

0
2/

1)2/(

0
2/

1)2/(

0

)12(
1)2/(

0

2

kHWkG

WrxWWrxkX

WrxWrxkX

k
N

N

r

rk
N

K
N

N

r

rk
N

N

r

kr
N

N

r

rk
N

+=

++=

++=

∑∑

∑∑
−

=

−

=

−

=

+
−

=

Each of the sums in the above equation is recognized as an (N/2)-point DFT. If N is even
we can consider computing each of the (N/2)-point DFTs by breaking each of the sum
into two (N/2)-point DFTs. When N is a power of two this process can go on further till
we have Fourier transforms of length 1. This last operation is an identity operation that
copies its one input number to its one output slot.

The next consideration for using FFT is to sort out the data in the bit-reverse order. If we
look at the process of successive subdivision of the data into even and odd segments, we
see that these are tests of successive low-order (least significant) bits of n. If we take the
original vector x[n] and rearrange it in bit-reverse order the bookkeeping of the algorithm
becomes very simple. This rearranging makes the output to appear in the normal order.

The algorithm itself is taken from ref.3 and it basically consists of two parts. The first
part rearranges the data in bit-reversed order and the next part takes the IFFT using the
above recursive method. This algorithm is called Radix-2 FFT with decimation in time,
since it successively decomposes the input time samples to even and odd segments.

 6

3.6. Guard interval extension

To make the OFDM system robust to multipath propagation, a cyclic prefix is added to
the OFDM symbol as illustrated in Figure 4. In this figure each subcarrier is depicted
separately, however, in reality we send the sum of all these signals. The original OFDM
signal consists of 64 complex samples (52 subcarriers and 12 zeros) for a 64-point FFT in
a 3.2 µs interval. This waveform is extended in the guard interval (0.8 µs) in the
beginning of the OFDM symbol. This is equal to appending 16 complex samples to the
already existing 64 OFDM samples. We also add an additional guard sample at the end
of the OFDM symbol. Thus, the total amount of samples per OFDM symbol is 81. The
OFDM symbols are windowed and overlapped by one sample, so in the 802.11a system
there are 80 samples per OFDM symbol interval. In our simulator we ignore windowing
but not the appending, so each OFDM symbol consists of 81 samples.

3.7. A sample output of the transmitter

Table 8 through 11 shows the output of the 802.11a transmitter at different stages. In
Table 8 a random packet of data is generated by the packet generator block. 48 bits are
produced as a result of this function. These bits are located in packet[] and ppacket[]
arrays. In ppacket[] the data values are bit-mapped where LSB is the first bit to be
transmitted. The content of this array is

ppacket[0]= 0B29 hex
ppacket[1]= C128 hex
ppacket[2]= 2924 hex

Bits # Bits # Bits # Bits # Bits # Bits
0 1 8 1 16 0 24 1 32 0 40 1
1 0 9 1 17 0 25 0 33 0 41 0
2 0 10 0 18 0 26 0 34 1 42 0
3 1 11 1 19 1 27 0 35 0 43 1
4 0 12 0 20 0 28 0 36 0 44 0
5 1 13 0 21 1 29 0 37 1 45 1
6 0 14 0 22 0 30 1 38 0 46 0
7 0 15 0 23 0 31 1 39 0 47 0

Table 8- Data bits.

We consider uncoded BPSK with a 64-point FFT in order to be able to present the
results. Table 9 shows the frequency domain representation of the signal. In this table
the data content in Table 8 is BPSK modulated to yield frequency domain representation
of the signal. These numbers are located in Inph[] and Quad[] arrays. Locations –21, -7,
7 and 21 are skipped and will be used for pilot insertion.

 7

Re Im # Re Im # Re Im # Re Im

-32 0.0 0.0 -16 1.0 0.0 0 0.0 0.0 16 -1.0 0.0
-31 0.0 0.0 -15 -1.0 0.0 1 1.0 0.0 17 -1.0 0.0
-30 0.0 0.0 -14 1.0 0.0 2 -1.0 0.0 18 1.0 0.0
-29 0.0 0.0 -13 -1.0 0.0 3 -1.0 0.0 19 -1.0 0.0
-28 0.0 0.0 -12 -1.0 0.0 4 -1.0 0.0 20 -1.0 0.0
-27 0.0 0.0 -11 -1.0 0.0 5 -1.0 0.0 21 X X
-26 1.0 0.0 -10 -1.0 0.0 6 -1.0 0.0 22 1.0 0.0
-25 -1.0 0.0 -9 -1.0 0.0 7 X X 23 -1.0 0.0
-24 -1.0 0.0 -8 -1.0 0.0 8 1.0 0.0 24 1.0 0.0
-23 1.0 0.0 -7 X X 9 1.0 0.0 25 -1.0 0.0
-22 -1.0 0.0 -6 -1.0 0.0 10 -1.0 0.0 26 -1.0 0.0
-21 X X -5 1.0 0.0 11 -1.0 0.0 27 0.0 0.0
-20 1.0 0.0 -4 -1.0 0.0 12 1.0 0.0 28 0.0 0.0
-19 -1.0 0.0 -3 1.0 0.0 13 -1.0 0.0 29 0.0 0.0
-18 -1.0 0.0 -2 -1.0 0.0 14 -1.0 0.0 30 0.0 0.0
-17 1.0 0.0 -1 -1.0 0.0 15 1.0 0.0 31 0.0 0.0

Table 9- Frequency domain representation.

Four pilot subcarriers are added by taking values {1.0, 1.0,1.0,-1.0}, multiplying them by
the first element of sequence p0..126 and inserting them into location {-21, -7, 7, 21},
respectively. The resulting frequency domain values are given in Table 10.

Re Im # Re Im # Re Im # Re Im
-32 0.0 0.0 -16 1.0 0.0 0 0.0 0.0 16 -1.0 0.0
-31 0.0 0.0 -15 -1.0 0.0 1 1.0 0.0 17 -1.0 0.0
-30 0.0 0.0 -14 1.0 0.0 2 -1.0 0.0 18 1.0 0.0
-29 0.0 0.0 -13 -1.0 0.0 3 -1.0 0.0 19 -1.0 0.0
-28 0.0 0.0 -12 -1.0 0.0 4 -1.0 0.0 20 -1.0 0.0
-27 0.0 0.0 -11 -1.0 0.0 5 -1.0 0.0 21 -1.0 0.0
-26 1.0 0.0 -10 -1.0 0.0 6 -1.0 0.0 22 1.0 0.0
-25 -1.0 0.0 -9 -1.0 0.0 7 1.0 0.0 23 -1.0 0.0
-24 -1.0 0.0 -8 -1.0 0.0 8 1.0 0.0 24 1.0 0.0
-23 1.0 0.0 -7 1.0 0.0 9 1.0 0.0 25 -1.0 0.0
-22 -1.0 0.0 -6 -1.0 0.0 10 -1.0 0.0 26 -1.0 0.0
-21 1.0 0.0 -5 1.0 0.0 11 -1.0 0.0 27 0.0 0.0
-20 1.0 0.0 -4 -1.0 0.0 12 1.0 0.0 28 0.0 0.0
-19 -1.0 0.0 -3 1.0 0.0 13 -1.0 0.0 29 0.0 0.0
-18 -1.0 0.0 -2 -1.0 0.0 14 -1.0 0.0 30 0.0 0.0
-17 1.0 0.0 -1 -1.0 0.0 15 1.0 0.0 31 0.0 0.0

Table 10-Frequency domain representation with pilots inserted.

 8

The time domain representation is derived by performing an IFFT on the content of Table
10 and periodically extending it in the guard interval. As mentioned before windowing is
not considered here. The resulting 81 sample vector which is in Inpho[] and Quado[] is
presented in Table 11. We see that for each 48 input bits there are 81 complex samples.

Re Im # Re Im # Re Im # Re Im

0 0.063 0.000 20 0.010 -0.097 40 -0.035 0.044 60 -0.051 0.202
1 0.033 -0.044 21 -0.060 -0.124 41 0.017 -0.059 61 0.035 -0.116
2 -0.002 -0.038 22 -0.033 -0.044 42 0.053 -0.017 62 0.016 -0.174
3 -0.081 0.084 23 0.011 0.002 43 0.099 0.100 63 0.057 -0.052
4 0.007 -0.100 24 0.098 0.044 44 0.034 -0.148 64 0.063 0.000
5 -0.001 -0.113 25 0.136 0.105 45 -0.003 -0.094 65 0.033 -0.044
6 -0.021 -0.005 26 -0.021 0.005 46 -0.120 0.042 66 -0.002 -0.038
7 0.136 -0.105 27 -0.001 0.113 47 -0.136 -0.070 67 -0.081 0.084
8 0.098 -0.044 28 0.007 0.100 48 -0.031 0.000 68 0.007 -0.100
9 0.011 -0.002 29 -0.081 -0.084 49 -0.136 0.070 69 -0.001 -0.113
10 -0.033 0.044 30 -0.002 0.038 50 -0.120 -0.042 70 -0.021 -0.005
11 -0.060 0.124 31 0.033 0.044 51 -0.003 0.094 71 0.136 -0.105
12 0.010 0.097 32 0.063 0.000 52 0.034 0.148 72 0.098 -0.044
13 0.000 -0.008 33 0.057 0.052 53 0.099 -0.100 73 0.011 -0.002
14 0.018 -0.083 34 0.016 0.174 54 0.053 0.017 74 -0.033 0.044
15 -0.069 0.027 35 0.035 0.116 55 0.017 0.059 75 -0.060 0.124
16 -0.219 0.000 36 -0.051 -0.202 56 -0.035 -0.044 76 0.010 0.097
17 -0.069 -0.027 37 0.011 0.036 57 -0.049 0.008 77 0.000 -0.008
18 0.018 0.083 38 0.089 0.209 58 0.089 -0.209 78 0.018 -0.083
19 0.000 0.008 39 -0.049 -0.008 59 0.011 -0.036 79 -0.069 0.027
 80 -0.219 0.000

Table 11-Time domain representation of the signal.

4. Channel model

The Channel consists of AWGN noise and an UWB interference. Since the UWB pulses
are very short the sampling rate of the system has to be increased in order to incorporate
the UWB signal.1 The symbol duration for the OFDM signal is 4 µs, which includes an
800 ns guard interval. Assuming a 64-point FFT, there are 64 OFDM samples in the 3.2
interval plus 16 samples in the guard interval. Adding one additional guard sample at the
end of the OFDM symbol, the total number of samples is 81 samples. These samples are
sent to the channel in a 4 µs interval. This translates to a sampling rate of 50 ns.

In order to use a FFT algorithm to speed up the simulation time, we need to increase the
sampling rate in a way that the FFT points remain a power of two. Therefore, the
sampling rate could not be increased linearly. With an 8192-point FFT, the total number
of samples NT, is

81921 8192 1 10241
4T FFT guardN N N= + + = + + =

1 This assumes a technique for inserting arbitrarily positioned pulses representing the effect of UWB
pulses at the receiver baseband, using a precomputed array of baseband filter impulse response samples. In
the version of the simulation that is released, a different technique for inserting the UWB interference is
used, as discussed in [8].

 9

where NFFT is the number of samples in the FFT period and Nguard is the number of
samples in the guard interval. This is equal to a sampling rate of 4 µs/10241= .390 ns
which seems sufficient for arbitrary positioning of the UWB pulses. Of course other FFT
length numbers like 16384 can achieve a finer sampling time equal to 0.195 ns. In the
following subsections we will explain the mathematical models for the noise and
interference signals.

4.1. The Gaussian noise generator

A complex Gaussian random variable can be generated from two uniformly distributed
random variables using the following equations [3]:

()
().2sinln2

,2cosln2

21
2

21
2

UUY

UUX

πσ

πσ

−=

−=

where X and Y are the real and imaginary components of the Gaussian random variable
and U1 and U2 are two random variables with uniform distribution over a [0, 1] interval
using the random number generator in [6]. The power (variance) of the noise σ2 has to be
normalized to number of samples per OFDM symbol (TtlLength constant in the
simulator). Moreover, since there are 48 data subcarriers out of 52 total subcarriers this
factor must be taken into consideration. Since we would prefer to present the results
versus Eb/N0 values for other modulations like QPSK, 16-QAM and 64-QAM the noise
power is also normalized by the number of bits per symbol: 2,4 and 6 respectively.2

4.2. The UWB interference model
Our representation of UWB pulse relies upon a work by Miller [4]. In his model the
UWB pulse is represented as an N-cycle sinusoidal burst. Based on this assumption the
approximate output of the target receiver’s bandpass filter is calculated. In general, the
output can be presented by these equations,

)()()()(
)()()()(

00

00

NTtdhthdctQ
NTtbhthbatI

−+−=
−+−=

where NT is the UWB pulse duration and is equal to the minimum sampling time of the
simulator, h0(t) is the impulse response of the filter and a, b, c, and d are the coefficients
that depend on the carrier frequency of the victim receiver (ωc), the initial phase of
detection (φ). The total output of the UWB interference generator can be written as

∑

∑
−=

−=

k
hwt

k
kwt

PRFktQdPQ

PRFktIdPI

)/(

)/(

2 The calibration of noise power is explained in detail in [8].

 10

where PRF is the pulse repetition frequency, Pw is the interference power and dk is the
random interference data. As you can see from the above equations the interference array
is a series of superimposed h0(t) impulse responses at delays equal to k/PRF. In order to
generate the interference we have to pump up the interference array with h0(t) at different
delays with the corresponding coefficients. Also we need to generate a random pattern of
data to represent dk.

In order to calibrate the carrier to interference ratio (CIR) in the simulator we introduce a
parameter called KCIRN in the simulator.3 The inphase and Quadrature components of the
UWB signal looks like this,

∑

∑
−=

−=

k
kCIRNadjt

k
kCIRNadjt

PRFktQdKbQ

PRFktIdKbI

)./(

),/(

In these equations badj is used to define different CIR values and KCIRN is for CIR
normalization. The calibration process starts with disconnecting the AWGN noise
source. This could be achieved by simply multiplying the noise power to zero. The next
step is to measure the power of the signal and interference components separately, when
CIR=0 dB. The power measurement is done with this equation,

∑
=

+=
TtlLength

K
kkIorC QIP

0

22

Where Ik and Qk are the inphase and quadrature samples of the desired signal or
interference at the input of the receiver. By this measurement we can find the required
normalization factor (KCIRN) in order to make the signal and interference powers equal.
Table 12 shows the values of KCIRN for different modulations.

KCIRN Modulation type
√(52/1.30e-23) BPSK
√ (52/1.30e-23) QPSK
√ (50.9/1.30e-23) 16-QAM
√ (50.9/1.30e-23) 64-QAM

Table 12. Normalization factor for CIR ratio.

This method considers the samples of the signal in the guard interval and also pilot
subcarriers as part of the desired signal power. In order to adjust the measurement we
have to compensate for this factor. The ratio of the effective signal power to the above
measurement is

48 64 .7385 1.32
52 80

eff

m

P
F d

P
= = × = = − B

3 A method for calibrating the UWB signal power based on theory is presented in [8].

 11

where Pm is the measured power and Peff is the effective power. So this value must be
considered for interference calculation. Finally, since the results are presented in terms
of Eb/NUWB the interference power must be normalized to the number of bits per symbol
as the AWGN noise.

5. Receiver

The OFDM receiver basically performs the reverse operation of the transmitter, together
with additional training tasks. In this simulator, the training tasks are ignored and the
receiver only performs basic functions to recover the signal. First, the guard time is
discarded and then by employing an FFT transform the signal returns to the frequency
domain. The phase shift keyed values are then demapped into binary valued for hard
decision decoding in the Viterbi decoder or they generate a series of number for soft
decision decoding. The output of the Viterbi decoder is bit mapped in the decoder[]
array.

5.1.The Convolutional Decoder

The convolutional encoder in Figure 2 has a single input data input and two outputs A
and B, which are interleaved to form coded output sequence {A1B1A2B2 ….}. The trellis
diagram generated by this encoder is presented in Figure 5. There are 64 states in this
trellis that can be decomposed into 32 butterflies. This trellis diagram could be
generalized to one single butterfly as depicted in Figure 6. In this figure, j represents the
butterfly number that varies from 0 to 31. For the jth butterfly, we can calculate the new
metrics at the state j and j+32 of trellis, using the branch metrics and old accumulated
metrics at node 2j and 2j+1.

The branch metrics at each butterfly can be calculated based on hard or soft decision
decoding. In hard decision the output of the demodulator is hard-limited to generate the
binary sequence needed for channel decoding. In soft decision the output of the
demodulator is used to produce a series of numbers. The magnitude of this number
represents the confidence that we have in the decoded bits. For the BPSK the received
inphase value can be considered as the soft decision metrics. For QPSK, the demapping
is simply taking the inphase and quadrature values as the two desired metrics. For the
case of 16-QAM, the inphase and quadrature values are treated as independent 4 level
PAM signals, which are demapped into 2 metrics as shown in Figure 7. The 64-QAM
modulation can be decomposed to two 8 level PAM and the associated metrics can be
calculated from Figure 8, [4].

6.Two examples

In order to have a better understanding of the array size in the simulation we will
calculate the variables’ lengths for two different scenarios. In both examples we start
with the minimum packet length required to generate adequate samples (in the first case
24 bits and in the second case 288 bits). It is obvious that the real packet length can be a

 12

multiple of these values. In fact in the simulation we define a basic block length
(PackBlock parameter) as 48 bits. According to different scenarios we can adjust the
packet length to multiples of this value. For the first case we have a packet length equal
to 48 bits (one PackBlock) that is twice the minimum packet length. For the second
example the packet length is 384 bits (8*PackBlock) that is again twice the minimum
length that is needed.

• 6 Mbps BPSK with ½ rate convolutional code.

The uncoded 12 Mbps BPSK symbols consist of 48 data bits. Therefore, for ½ rate the
symbol length is 24 bits. This symbol is encoded by the convolutional encoder that
generates 48 bits, or 96 bits for a two-symbol packet. After adding four pilot values and
12 zeros, the input data is BPSK modulated and sent to the IFFT Block. For an 8192-
point IFFT, the output consists of 8192 complex values. Adding a guard time increases
the length of the array to 8192+8192/4+1=10241 points.

The bandpass filter is a root-squared raised cosine filter with 20 MHz bandwidth. This
corresponds to a symbol interval equal to 50 ns, or 128 samples at a sampling rate of 0.39
ns. If we truncate the filter response to six symbol intervals the filter has 6*128=768
coefficients. Assuming a PRF= 10 MHz, the filter impulse response must be repeated
every 1/PRF = 256 samples in order to simulate a repetitive UWB signal. If we send one
24-bit packet, the interference array length is 10241. Since this is a casual system, the
interference begins to appear in the interference array after one full filter length (768
samples). So we lengthen the interference array to 10241+768=11009 and then we use
the values from 768 to 11009 to represent the interference array.

The input array to the receiver has a length of 10241 and it consists of signal, noise and
interference. In the receiver we process this signal on a packet by packet basis. The first
packet consists of 10241 samples. We discard the guard time that leaves us with 8192
samples. After taking a 8192-point FFT, the resulting 48 subcarriers are in the middle of
the array. These values are demodulated and sent to the convolutional decoder to
produce 24 bits of decoded data.

• 48 Mbps 64-QAM with 2/3 rate convolutional code.

The uncoded 72 Mbps 64-QAM symbol consists of 288 bits. For the rate 2/3 code the
symbol length is 192 bits. So, 192-bit symbols are sent to the convolutional coder, which
generates 288 bits for each symbol. This packet is 64-QAM modulated and the output of
the modulator consists of 48 QAM values per symbol. After adding the pilot channels
the input consists of 52 samples and by taking a 8192-point IFFT the output is the same
as the previous example.

The interference array has the same size as before (11009-point), since we used the
minimum length uncoded block. Again, we truncate this array from 768 to 11009
elements and use this truncated array as the interference signal.

 13

The input array to the receiver has 10241 complex values. The process at the receiver is
the same as before however, after FFT transform the 48 QAM values are used to generate
288 soft values for the Viterbi decoder. The Viterbi decoder uses this information to
generate 192 bits. Table 12 summarizes the array size for the above examples.

Array Name Function Length, Ex. 1 Length, Ex. 2
packet[] Output of the packet

generator
24 192

packet[] Output of the
convolutional coder

48 288

Inph[], Quad[] Output of the modulator 48 48
Inph[], Quad[] Input to the IFFT block 52 52

Inpho[], Quado[] Output of the IFFT block 8192 8192
Inpho[], Quado[] Output of the Add Guard

block
10241 10241

Inpho[], Quado[] Output of the AWGN
channel

10241 10241

InphI[], QuadI[] UWB Interference array 11009 11009
Inpho[], Quado[] Output of the UwbInt

block
10241 10241

Inph[], Quad[] Output of the FFT block 8192 8192
dataf[] Output of the demodulator 48 288
data[] Output of the

convolutional decoder
24 192

Table 12- Array size for different parts of the simulator.

8. Analytical approximation for the UWB interference

In this section we describe an analytical method in order to measure the BER
performance of 802.11a in the presence of UWB interference. The main assumption here
is that the UWB interference can be modeled as a Gaussian noise. Using this approach
we could employ the BER equations for uncoded modulations as follows.

For BPSK and QPSK we have

0

2. b
b

UWB

EP Q F
N N

= +

where Pb is the BER, Eb is energy per bit, and N0 and NUWB are the noise and interference
power spectral densities, respectively. F represents the loss due to use of pilot channels
and guard interval and is equal to .7385 or –1.32 dB.

For M-ary QAM (M=16, 64) the symbol error rate can be calculated as

 14

2

0

1 (1) ,

1 32 1
1

M M

b
M

UWB

P P

kEP Q F
M N NM

= − −

 = − ⋅ ⋅ − +

where PM is the symbol error rate and k is the number of bits per symbol. Assuming
Grey coding the BER is approximately

Mb P
k

P 1
=

The results will be presented in the next section.

9. Simulation results

Figures 9 to 14 present the simulation results for different bit rates and channel
conditions. In figure 9 to 11 the BER performance of the coded and uncoded OFDM
system is depicted in an AWGN channel. A 64-point FFT length is used for these
simulations, since the UWB interference does not exist in these scenarios.

In figures 12 to 14 the BER performance is measured in noise and interference condition.
An 8192-point FFT is used for this case and the UWB pulse only has one cycle (N = 1)
with (T = 0.39 ns). These results are also compared with an analytical calculation from
previous section in which the UWB is modeled as Gaussian interference. The blue
curves present the simulation results and the red curves are the analytical results for the
same value of Eb/N0 and Eb/NUWB.

 15

References

1. IEEE 802.11a standard, “Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications,” 1999.

2. Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time Signal Processing.
Prentice Hall, 1989.

3. William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P.
Flannery, Numerical Recipes in C. Cambridge University Press, 1992.

4. Richard Van Nee and Ramjee Prasad, OFDM for Wireless Multimedia Communi-
cations. Boston: Artech House, 2000.

5. L. E. Miller, “Why UWB? A Review of Ultra-wideband Technology,” NIST
WCTG report, April 2003.

6. M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication
Systems. New York: Kluwer, 2000.

7. J. S. Lee and L. E. Miller, CDMA Systems Engineering Handbook. Boston:
Artech House, 1998.

8. L. E. Miller, “Validation of 802.11a/UWB Coexistence Simulation,” NIST
WCTG report, October 2003.

 16

Figure1- System diagram.

 17

+

T T T T T T

+

Output data A

Output data B

Figure2- Convolutional encoder (R=1/2).

 18

Figure 3- Puncturing method for higher rates.

 19

Figure 4- OFDM symbol with cyclic extension.

 20

Figure 5- Trellis diagram for Viterbi decoder.

Figure 6- Generalized form of butterfly.

 21

Figure 7- Demapping of 4 level PAM into 2 metrics.

 22

Figure 8-Demapping of 8 level PAM into 3 metrics.

 23

Figure 9- BPSK performance.

 24

Figure 10- 16-QAM performance.

 25

Figure 11- 64-QAM performance

 26

Figure 12- Uncoded BPSK with UWB interference, (simulation and Gaussian

approximation).

 27

Figure 13- Uncoded 16-QAM with UWB interference (simulation and Gaussian

approximation).

 28

Figure 14- Uncoded 64-QAM with UWB interference, (simulation and Gaussian

approximation).

 29

	Introduction
	System model
	The transmitter
	3.1. Packet generator
	3.2. Convolutional coder and interleaver
	3.3. Baseband modulator
	3.4. Pilot insertion
	3.5. Inverse fast Fourier transform
	3.6. Guard interval extension
	3.7. A sample output of the transmitter
	4. Channel model
	4.1. The Gaussian noise generator
	4.2. The UWB interference model
	5. Receiver

	5.1.The Convolutional Decoder
	6.Two examples
	6 Mbps BPSK with ½ rate convolutional code.
	48 Mbps 64-QAM with 2/3 rate convolutional code.
	8. Analytical approximation for the UWB interference

	9. Simulation results
	References

