

Submitted to Electronics Letters
Draft of 20 Dec 1995 11:04 a.m.

The Effective Free Distance of Turbo Codes∗

Dariush Divsalar and Robert J. McEliece

Jet Propulsion Laboratory and Department of Electrical Engineering
California Institute of Technology
Pasadena, California 91125, USA

Indexing terms: Turbo codes, Convolutional codes

In this paper we will define and study the effective free distance of a turbo-code. If a turbo
code is constructed from a number of component codes, we will argue that the effective free
distance can be maximized by choosing the component codes to be IIR convolutional code
fragments with maximal input-weight 2 free distance. We then present some theoretical
bounds for, and some numerical tables of, IIR code fragments with maximal input-weight
2 free distance.

1. The Effective Free Distance of a Turbo-Code. Turbo codes were introduced in [1], and
have proved to have remarkably good performance in many applications ([2],[3],[4]). The
view we take here is that a turbo code is a long block code with the structure shown in
Figure 1. There are L input bits, and each of these bits is encoded q times. In the jth
encoding, the L bits are sent through a “permutation box” Pj (often called a “interleaver”
in the literature), and then encoded via an (Nj , L) block encoder Gj , which can be thought
of as an L×Nj matrix. Since in practice, Nj may be less than or equal to L for some or
all values of j, we call the encoders Gj “code fragment” encoders. The overall turbo code
generated by the encoder depicted in Figure 1 is then a (N1 + · · · + Nq, L) linear block
code.

In current practice ([2],[3]), each of the q code fragments is usually taken to be the Lth
truncation of either a systematic IIR (iunfinite impulse response) convolutional code, or an
IIR convolutional code fragment. For this class of turbo-codes, several previous authors
([2], [3], [4]) have argued that on an AWGN channel, at the low signal to noise ratios
where the codes are most effective, code performance is determined largely by the weight-
2 input minimum distance (d2) of the code, i.e., the minimum weight among codewords
corresponding to input words of weight 2. The argument for this is roughly that d1 is very
large because of the IIR structure of the code fragments, and so can be ignored, and for

* The research described in this paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under contract with the National Aeronautics and Space
Administration. McEliece’s contribution was also partially supported by NSF grant no.
NCR-9505975 and a grant from Pacific Bell.

1

i ≥ 3, the so-called “interleaver gain” makes the number of words of weight di negligibly
small. We thus define the effective free distance of the turbo code to be the value of d2.

It is easy to deduce from Figure 1 that the input weight-i minimum distance of the
turbo code satisfies the following inequality:

(1.1) di ≥ d(1)
i + · · ·+ d

(q)
i ,

where d
(j)
i is the input-weight i minimum distance of the jth code fragment. In particular,

if we want the turbo-code to have a large value of d2, in choosing the convolutional code
fragments in Figure 1, it is desirable to choose them to be IIR, and to have the largest
possible individual values of d2. In the next section, we will state (without proofs) some
theoretical results about the maximum possible value of d2 for IIR convolutional code
fragments, and then in Section 3 we will give some tables of IIR code fragments for which
d2 has been maximized. We hope that these tables will prove to be useful to engineers
responsible for designing turbo-coded telecommunication systems..

2. Bounds on d2 for convolutional code fragments. We define an encoder G(D) for an
(r, k,m) convolutional code fragment to be a k× r matrix whose entries are causal rational
functions in the indeterminate D. This definition differs from the usual definiton of a
convolutional encoder in that we allow r ≤ k.

2.1 Definition. For i = 1, 2, . . ., the input weight i free distance of the convolutional
encoder fragment G(D) is

(2.1) d
(G(D))
i = min{|uG| : |u| = i},

where in (2.1), |x| denotes the weight of x.

An (r, k,m) convolutional encoder fragment G(D) may be converted to a conventional
systematic (n, k,m) encoder G′(D), with n = r + k, by defining

(2.2) G′(D) = (Ik G(D)) ,

where Ik denotes the k × k identity matrix. A corollary to Definition 2.1 is that for the
systematic code with generator matrix defined in (2.2), we have

(2.3) d
(G′(D))
i = i+ d

(G(D))
i .

If a turbo code is designed using truncated convolutional code fragments, then pro-
vided di is finite, and that L is sufficiently large, the value of di for the Lth truncation will
be the same as the corresponding di for the untruncated fragment. Thus by (1.1), the value
of d2 for the turbo code built from truncated convolutional code fragments with weight-2

free distances d
(1)
2 , . . . , d

(q)
2 , will have effective free distance at least d

(1)
2 + · · ·+ d

(q)
2 , if L is

sufficiently large.

2

We say that the encoder fragment G(D) is IIR (infinite inpulse response), if every
weight-1 input sequence produces an infinite weight output sequence. Equivalently, no
row of G(D) consists entirely of polynomials. If G(D) is not IIR, then it is easy to see
that d1 ≤ r(m+ 1), and d2 ≤ r(m+ 2). However, for IIR fragments, we have d1 =∞, and
the following theorems.

2.2 Theorem. If G(D) is an IIR encoder for a (r, k,m) convolutional code fragment, then
its input weight-2 minimum distance d2 must satisfy

(2.4) d2 ≤ min

(⌈
2m

k

⌉
r, 2r +

⌊
2m−1r

k

⌋)
.

2.3 Theorem. If G(D) is an IIR encoder for an (r, 1,m) convolutional code fragment
with m ≥ 2∗, then

(2.5) d2 ≤ (2 + 2m−1)r.

Equality holds in (2.5) if and only if G(D) is of the form

(2.6) G(D) =

(
P1(D)

Q(D)
, . . . ,

Pr(D)

Q(D)

)
,

where Q(D) is a primitive polynomial of degree m, and P1(D), . . . , Pr(D) are each poly-
nomials of degree m with constant term 1, none of which are equal to Q(D).

3. Tables. In Tables 1–6, we give the generator matrices (in octal notation) for a number
of convolutional code fragments with the largest possible values of d2. In some cases, the
maximum value of d2 can be obtained only by code fragments with repeated columns in
G(D). Experiment shows that using such code fragments as components of a turbo code
yields poor results. Thus when the optimal code fragment has repeated columns, we list it
in italics, and immediately below we give the best code fragment with the same parameters,
but which does not have repeated columns. When we found two or more code fragments
tied for the largest value of d2, we chose one with the largest value of d3. If the code
fragment is used to build a systematic encoder as in (2.2), the free distance of the resulting
code is, by (2.3), dfree = mini{i+di}. In the tables, we denote the optimizing value of i by
i∗, and and corresponding di by d∗. Thus for example, the systematic code corresponding

to the m = 3 entry in Table 2 has G(D) =

(
1 0 (D + 1)/(D2 +D + 1)
0 1 (D2 + 1)/(D2 +D + 1)

)
, d1 = ∞,

and by (2.3), we have d2 = 2 + 3 = 5, d3 = 3 + 1 = 4, and dfree = d∗ + i∗ = 1 + 3 = 4.

Acknowledgement. The authors thank Professor Solomon W. Golomb for his help in the
derivation of Theorem 2.3.

* If m = 1, the bound in (2.5) can be improved to d2 ≤ r, with equality if and only if
G(D) = (P1(D)/(D + 1), . . . , Pr(D)/(D + 1)), where each Pi(D) equals either 1 or D.

3

G

G

G

1

2

q

P

P

P

1

2

q

N bits out

N bits out

N bits out

L bits in
1

2

q

References.

1. G. Berrou, A. Glavieux, P. Thitimajshima, “Near Shannon limit error-correcting
coding: Turbo codes,” Proc. 1993 International Conf. Comm., (Geneva, May 1993),
pp. 1064–1070.

2. S. Benedetto and G. Montorsi, “Design of parallel concatenated convolutional codes,”
IEEE Trans. Comm., in press.

3. D. Divsalar and F. Pollara, “On the design of turbo codes,” TDA Progress Report
vol. 42-123 (November 15, 1995), pp. 99–121.

4. S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using random
and non-random interleaving.” TDA Progress Report vol. 42-122 (August 15, 1995),
pp. 56–65.

Figure 1. A General Turbo Code.

4

Table 1. d2-optimal (1, 1,m) code fragments.

G = (h1/h0)

m h0 h1 d2 db2 d3 (d∗, i∗)

1 3 2 1 1 ∞ (1, 2)
2 7 5 4 4 2 (2, 3)
3 15 17 6 6 4 (2, 4)
4 31 37 10 10 5 (2, 4)
5 75 57 18 18 7 (4, 4)
6 147 115 34 34 10 (4, 5)

Table 2. d2-optimal (1, 2,m) code fragments.

G = (h1/h0 h2/h0)
T

m h0 h1 h2 d2 db2 d3 (d∗, i∗)

1 3 1 1 0 1 ∞ (0, 2)
2 7 3 5 2 2 0 (0, 3)
3 13 15 17 3 4 1 (1, 3)
4 23 35 27 6 6 2 (2, 3)
5 45 43 61 10 10 3 (3, 3)

Table 3. d2-optimal (2, 1,m) code fragments.

G = (h1/h0 h2/h0)

m h0 h1 h2 d2 db2 d3 (d∗, i∗)

1 3 2 1 2 2 ∞ (2, 2)
2 7 5 5 8 8 4 (4, 3)
2 7 5 3 6 8 4 (4, 3)
3 13 17 15 12 12 7 (7, 3)
4 23 33 37 20 20 9 (6, 4)
5 73 45 51 36 36 14 (6, 5)
6 147 115 101 68 68 20 (6, 5)

5

Table 4. d2-optimal (1, 3,m) code fragments.

G = (h1/h0 h2/h0 h3/h0)
T

m h0 h1 h2 h3 d2 db2 d3 (d∗, i∗)

2 7 5 3 1 1 2 0 (1, 2)
3 13 15 17 11 2 3 1 (2, 2)
4 23 35 33 25 3 4 1 (1, 3)
5 51 47 45 63 7 7 2 (2, 3)

Table 5. d2-optimal (2, 2,m) code fragments.

G =

(
h1/h0 h2/h0

h3/h0 h4/h0

)
m h0 h1 h2 h3 h4 d2 db2 d3 (d∗, i∗)

1 3 1 2 2 1 2 2 ∞ (2, 2)
2 7 3 3 5 5 4 4 0 (0, 3)
2 7 1 5 5 3 3 4 1 (1, 3)
3 15 3 11 11 13 7 8 3 (1, 4)
4 31 35 23 23 21 12 12 3 (3, 3)

Table 6. d2-optimal (3, 1,m) code fragments.

G = (h1/h0 h2/h0 h3/h0)

m h0 h1 h2 h3 d2 db2 d3 (d∗, i∗)

1 3 2 1 1 3 3 ∞ (3, 2)
2 7 5 5 5 12 12 6 (6, 3)
2 7 5 3 6 8 12 6 (6, 3)
3 13 17 15 11 18 18 9 (9, 3)
4 23 35 27 37 30 30 13 (10, 4)
5 73 45 51 47 54 54 20 (10, 5)
6 147 115 101 135 102 102 29 (11, 5)

6

