
0-7803-8870-4/05/$20.00© 2005 IEEE. 1

A Scalable Learning System for Video Recognition

R. Porter, C. Chakrabarti, N. Harvey, G. Kenyon
Los Alamos National Laboratory

Los Alamos, NM, 87545
505-665-7508

rporter@lanl.gov

Abstract— Learning has become an essential part of many
image and video processing systems, but it is not often used
as an end-to-end solution. Some of the most successful
demonstrations of end-to-end learning have been with
convolutional, or shared weight networks. We are interested
in how this approach can scale and have developed a
flexible framework for implementing and training large
scale convolutional networks called Harpo. We present an
overview of the Harpo framework and describe a multi-
level learning strategy used to optimize convolutional
networks for particular features of interest in video data
streams. Harpo is designed to exploit reconfigurable
hardware to accelerate massively parallel convolutional
network components and achieve real-time processing
speeds. In this paper we present initial software experiments
which use the system to segment exhaust plumes coming
from military vehicles in Unmanned Aerial Vehicle video
data.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. BACKGROUND..2
3. HARPO SYSTEM OVERVIEW..................................2
4. MULTI-LEVEL LEARNING.....................................4
5. PROCESSING LAYERS ..5
6. EXPERIMENT DATA...6
7. EXPERIMENTS..6
8. DISCUSSION ...7
9. CONCLUSION ...7
REFERENCES ...8
BIOGRAPHY ...8

1. INTRODUCTION

Computer vision has been a challenging research problem
for over 50 years and is commonly a target problem for a
large number of fields including information theory, graph
theory, set theory, probability and statistics. One of the
reasons why computer vision is so challenging is the
problem scale. From asking “which pixels are red?”, it is a
small leap for humans to ask “which picture is my
mother?”, but for computer vision, the problem difficulty
has increased exponentially.

Much research in computer vision has focused on
delineating, and then finding solutions, to useful sub-tasks
e.g. edge/texture detection, shape analysis, motion

estimation etc. Often these sub-tasks are combined to
produce systems that can solve more complex problems [1].
Sometimes, with the addition of knowledge-based
approaches, systems are produced which, in fact, can
answer “which picture is my mother?” and other high-level
questions for specific applications [2]. However, while
manual decomposition is generally a good approach to
solving complex problems, it can run into problems when
the decomposition is poorly matched to the problem
structure. This is particularly evident in computer vision
where there is a strong interdependence between sub-parts,
and robust performance of one part (e.g. shape
characterization) depends critically on robust performance
of other parts (e.g. segmentation).

An alternative to manual decomposition, which has gained
increased attention in recent years, is machine learning and
the promise of automatic problem decomposition. In this
case, real data is used to drive the design process and
learning algorithms attempt to extract the important sub-
structures. The appeal of this approach for computer vision
is simple: Solutions are represented as homogenous black-
boxes that are universal computing machines. The black-
boxes are programmed to solve problems through high-level
teaching, not low-level design, and the approach scales to
solve more complex problems by simply “adding more
stuff” to the black box.

One of the most successful demonstrations of this approach
comes from research in shared weight or convolutional
neural networks. Using gradient based learning Dr. LeCun
[3] was able to develop one of the most accurate systems
available for optical character recognition. Using a similar
approach several other researchers have reported robust
recognition systems in a large number of practical
applications [4], [5]. Researchers have also considered
convolutional networks in the time domain [6]. This can
potentially lead to more compact solutions and is naturally
suited to processing temporal data streams, such as video.

In our research we are developing techniques and
technologies that can help scale the convolutional network
approach to the ever-increasing complexity of computer
vision problems faced by the defense and intelligence
communities. In this paper we provide an overview of our
proposed contribution to this problem, which is novel in
two ways:

 2

(1) A multi-level learning architecture that can help
address the large-scale learning problem. This is based
on our previous success with multi-level learning
architectures for automating analysis of remotely
sensed satellite imagery [7].

(2) The ability to automatically map convolutional neural
network components to reconfigurable hardware
accelerators, so that large-scale solutions are made
computationally feasible. This is based on previous
success in accelerating satellite image processing
using reconfigurable hardware [8].

2. BACKGROUND

Convolutional Neural Networks

A convolutional neural network looks much like any other
multi-layered neural network, in which a collection of
tunable processing elements are connected in a feed-
forward graph. The only difference in convolutional neural
networks is that each processing element represents an
entire array of elements (processing layer), each associated
with a particular pixel location, and whose tunable
parameters are all equal (shared). The processing elements
also usually share a common connectivity. A processing
element is connected to other elements within a small local
neighborhood (or window). It can also be connected to
elements in other processing layers that are typically in the
same pixel location, or within a small local neighborhood of
that location. For linear processing elements each
connection has a multiplicative weight and all connections
are summed. In this case the processing layer implements a
convolution of the image with a kernel defined by the
shared weights. In simple terms, a convolutional neural
network is a collection of tunable convolution operators
connected in a feed-forward network.

Multi-scale Convolutional Neural Networks

Fukushima [9] was amongst the first to experiment with
convolutional neural networks and obtained good results for
character recognition by applying convolutional neural
networks within an image pyramid architecture: processing
layers alternate between convolution and sub-sampling.
This multi-scale architecture has been now widely adopted
and appears to provide a robust representation in many
object recognition problems.

Cellular Nonlinear Networks

In recurrent convolutional networks a processing element
can also receive input from its output. This feedback means
processing elements can implement state variables and
hence a wide variety of dynamic behavior. The state
variable formulation of recurrent convolutional networks
was independently introduced as cellular neural / nonlinear
networks and is currently promoted by some researchers as

a new paradigm for spatio-temporal processing [10].
Research in this field has centered on the design and
analysis of network dynamics. Several works also combine
the multi-scale nature of convolutional networks with the
temporal nature of cellular nonlinear networks [11]. For the
rest of the paper we will use the term convolutional network
(or network for short) in the most general sense and mean it
to include all multi-scale, feed-forward and/or recurrent
variations.

Hardware Implementation

Convolutional networks benefit greatly from specialized
implementation compared to implementation with a general
purpose processor. This is mainly due to the local
neighborhood communication required by each processing
element in spatial, spectral and temporal dimensions. In
reconfigurable hardware systems the memory architecture is
tailored to the application and can therefore implement
neighborhood processing very efficiently. In previous work
we obtained over two-orders of magnitude speed-up for a 9
layer convolutional network [8]. Reconfigurable hardware
is based on digital devices and we therefore restrict our
attention to those convolutional networks that are discrete in
time.

3. HARPO SYSTEM OVERVIEW

We are developing a flexible software / hardware system for
designing and executing large-scale convolutional networks
for image and video processing. We refer to the system as
Harpo and an overview of the system is shown in Figure 1.

There are two modes of operation: a run-time mode and a
training mode. In the run-time mode (left of dashed line in
Figure 1) Harpo is applied as an online system suitable for
real-time implementation. At each time step, it receives a

Figure 1 – Harpo system overview

 3

frame from a video sequence, executes some network and
after some latency, produces an output frame.

In the training mode (right of dashed line in Figure 1)
Harpo receives an additional training overlay. There is a
frame to frame correspondence between the training overlay
and the video input stream. Using supervised learning
methods, the Harpo system attempts to optimize the
network to produce output overlays that are in some sense
close to the training overlay. The specific techniques will be
discussed in Section 4.

The network that is executed by the Harpo run-time system
is defined by two inputs: the network specification file and a
network parameter file. The specification file contains
information about the network that is constant from one
training run to the next. The parameter file contains
information about the network that has been learnt during
training. Training mode takes the specification file as input
and produces a parameter file. In run-time mode both
specification and parameter files are inputs.

Network Specification File

The key to making the Harpo system flexible and scalable is
a user defined input that we call the network specification
file. This is a text file that defines a number of processing
layers, and their connectivity, in an abstract and modular
way. Figure 2 (top) provides an example specification file
as well as the network architecture that Harpo will construct
(below). To simplify Figure 2 the Scale processing layers
are not shown but are implied by the changing size of the
processing layers. Processing layers can be defined by the
user and essentially receive an arbitrary dimension image
cube as input and produce an arbitrary dimension image
cube as output. The connectivity between layers define data
paths that pass image cubes from one layer to the next. In
Figure 2, two examples of user defined processing elements
are Linear and Scale.

The specification file has a hierarchical lisp-like syntax.
This serves two purposes. First, the specification file itself
can be instantiated as a processing layer in a secondary
specification file and hence large-scale solutions can be
constructed with a typical building-block approach. Second,
different learning strategies can be applied to different
levels of the hierarchy (e.g. Evolve in Figure 2) enabling
what we call multi-level learning. This is described more in
Section 4.

The specification file defines the connectivity between
processing layers, and the learning strategy, but it is also
used to tailor fixed (or hard coded) functionality at run-time.
An example of this in Figure 2 is the maximum windowSize
of spatial filters, which due to hardware considerations, is
fixed at run-time and cannot be learnt or adapted. Another
example is the initType keyword seen in the first Linear
processing layer. Setting the keyword to Gabor will force

(ThreeLayerPyramid
 (inputMem.. 0)
 (outputMem.. 30)
 (iterationsPerFrame .. 1)

 (Linear
 (inputMem ... 0)
 (outputMem..1: 4)
 (numFeatures .. 4)
 (windowSize... 5)
 (initType ... Gabor)
)

 (Scale
 (inputMem...1: 4)
 (outputMem...5 : 8)
 (scaleFactor ... 0.5)
)

 (Evolve
 (popSize.. 100)
 (genSize .. 20)
 (outputMem.. 30)
 (trainFlag .. 1)

 (SubNet
 (Linear
 (inputMem ...5 : 8)
 (outputMem......................................9 : 16)
 (numFeatures ... 8)
 (windowSize.. 5)
 (initTypeRandom)
)
 (Scale
 (inputMem9 : 16)
 (outputMem....................................19 : 26)
 (scaleFactor ... 2)
)
 (Linear
 (inputMem19 : 26)
 (outputMem... 30)
 (initType .. Fisher)
 (trainFlag .. 1)
)
)
)
)

Figure 2. An example specification file and network.

 4

the run-time system to use a fixed set of pre-defined
kernels.

Network Parameter File

For other types of processing layers there is variable (or
learnable) functionality. For example setting the initType
keyword in the second Linear layer to Random will cause
the run-time system to generate a random set of kernel
weights. In the third Linear layer the same keyword is set
to Fisher and implies the weights are found by using
Fisher’s linear discriminant. Processing layers with variable
functionality are often accompanied by the trainFlag
keyword. In this case adjustable parameters are found in the
training mode and saved in the network parameter file.
These parameters are then loaded and applied in the run-
time mode.

Temporal Network Design

To exploit the temporal domain and/or introduce state
variables the user must explicitly instantiate delay buffers
(or FIFOs) in the network specification file. Sliding
temporal windows are implemented by feeding the tapped
FIFO outputs to subsequent processing layers. State
variables are implemented by making recurrent processing
layers which receive input from a delayed version of their
output. The delay buffer is a processing layer like any other.
It receives an image cube and produces an output cube at
each time step. There is a fixed parameter delayLength that
dictates how many time steps it will take for an input cube
to appear at the output. The time step is an abstract quantity
that is usually equal to or less than the frame rate of the
input stream. It must be specified at run-time and is constant
for all frames. The network level keyword,
interationsPerFrame, specifies the time step relative to the
frame rate. Temporal processing is entirely in the hands of
the user and can be customized for various modalities and
data types without adding complexity to the Harpo run-time
system. Since we are generally interested in solutions that
are local in time, the complexity of the specification file
should not increase by too much.

Targeting Reconfigurable Hardware

A longer term goal of the Harpo system is to semi-automate
the process of mapping networks to reconfigurable
hardware. The specification file, and particularly our
approach to the time domain, helps make this possible by
forcing the user to model the data flow used in a real-time
implementation. For example, memory bandwidth is
explicitly allocated in the specification file via the delay
buffer processing layer.

Providing Training Data with a Video Mark-up Tool

To help testing of the Harpo system we have implemented a
graphical user interface that enables users to mark-up

training data in video sequences. A screen-shot of the
system is shown in Figure 3. Most native digital video
formats like mpeg and avi are supported. The GUI allows
the user to navigate the sequence and mark-up a training

overlay by using typical drawing tools like paint brush,
polygon and fill. For the two class classification problem
features of interest are indicated with green markup and
examples of the non-feature (or background) are indicated
by red markup. These two types of mark-up are translated
into +1 and -1 class labels to be presented to the Harpo
system as a standard classification problem. Pixels that are
not marked-up are assumed ‘don’t care’ and do not
contribute to error in the training procedure.

 4. MULTI-LEVEL LEARNING

In training mode, the Harpo framework supports multiple
types and levels of learning. Different learning methods can
be combined sequentially and hierarchically.

By default, processing layers with the trainFlag will learn
sequentially in the order defined by the specification file
e.g. the first layer is trained, it is executed with its newly
found parameters, propagating data to the second layer,
which is then trained etc. This type of training operates at
the layer level, is specific to a particular processing-layer
and therefore usually user defined e.g. the Fisher Linear
Discriminant is specific to linear processing layers.

Learning methods can also be combined hierarchically by
using more general learning methods that wrap sub-
networks. This enables the framework to obtain the benefit
of both local and global search. Figure 4 provides an
example of the multi-level learning system for the example
in Figure 2. For each fitness evaluation of the evolutionary
algorithm, the SubNet sub-network is trained via sequential

Figure 3– Screenshot of the video markup tool

 5

(or feed-forward) local learning. The first Linear layer has
no learnable parameters and for each evaluation will simply
execute. The second Linear layer is wrapped by Evolve and
therefore a population of candidate parameters is generated
(randomly). For each candidate, this layer is executed,
producing inputs for the third Linear layer which is then
locally optimized (the trainFlag is true) using Fisher’s
linear discriminant.

Evolve

The Evolve layer interfaces to the GALib Genetic
Algorithms written by Matthew Wall, at the Massachusetts
Institute of Technology, and therefore has a wide selection
of evolutionary algorithms available to it. Without further
code specialization Harpo dynamically generates a linear
chromosome at runtime based on the sub-network
processing layers. Crossover points are constrained to fall at
the boundary between layers and the mutation operator is
layer specific and therefore user defined.

Boost

Harpo also implements several constructive learning
techniques. These sub-networks are typically generalized
additive models and have the form:

 () ()
1

D

i i
i

h x w g x
=

= ∑ (1)

where ()()sign h x predicts the class label for two-class

classification and ()ig x is a sub-network. We use a

technique called Boosting to incrementally build the model
(1), in which case ()ig x is also called a weak learner [12].

The linear combination in (1) starts with zero terms. For
each of D iterations we add one new weak learner ()ig x

and weight iw to the model. The procedure is greedy, but
due to adaptive reweighting of training samples between

iterations, boosting is able to build models that exhibit good
generalization. A detailed discussion of the boosting
procedure can be found in [13] and in most modern machine
learning textbooks.

At each iteration of the boosting procedure we either use
sample and test (e.g. stumps) or a learning algorithm to find
()g x that will reduce error the most. A wide variety of

weak learners ()g x have been suggested, varying in

complexity from simple thresholds to support vector
machines. In the Harpo system a weak learner is
implemented just like any other processing layer and the
Boosting procedure can therefore be used at any point in the
network hierarchy e.g. the Boost learning layer could wrap
an Evolve learning layer and hence use an Evolutionary
Algorithm as the weak learner.

Harpo implements two boosting algorithms. The first
boosting algorithm is discrete AdaBoost [12]. In this case
the algorithm combines discrete weak learners where
() { }-1,1g x ∈ . The discrete adaBoost procedure provides

a closed form solution for each w in (1). The second
boosting algorithm is called Gentle AdaBoost and
implements a type of real valued AdaBoost [13]. In this
case, the algorithm also builds generalized additive models
(1) but it combines weak learners with real valued
outputs: ()ig x ∈ . For each weak learner we use

weighted least squares to estimate scale parameters
,a b∈ to adjust the weak learner: ()()a g x b− before

combination. In this case the value of w in equation (2) is
fixed at 1 (since it is replaced by a above).

5. PROCESSING LAYERS

In this section we describe the processing layers that we
implemented for the experiments in this paper. They are
motivated primarily by our initial experiments into local
learning algorithms and hence do not represent the complete
set of processing layers that are currently available in the
Harpo system.

Buffer

This processing layer is used to implement temporal
processing and was outlined in Section 3. It has no learnable
parameters.

Scale

This processing layer was used in Figure 2. The
scaleFactor keyword is used to determine the output image
size based on the input image. When reducing scale the

Figure 4– Example of multi-level feed-forward learning

 6

default behavior is to apply Gaussian spatial smoothing and
then subsample. When increasing scale we use linear
interpolation. There are no learnable parameters.

Linear

This is also used in the Figure 2 example. It implements a
spatial convolution of the input image with a set of weights
known as a kernel. The keyword windowSize defines the
width (and height) of the kernel. When the input is an image
cube with depth D, the default kernel will include spatial
neighborhoods from each image plane. In this case the
kernel contains N = windowSize * windowSize * D
weights. For the special case, windowSize = 1, the kernel
has N = D weights and the convolution implements a simple
linear combination of image planes. The default second-
level training method is Fisher’s linear discriminant.

Threshold

This layer can implement a hard, linear or tanh threshold.
In training this layer finds optimal offset b and orientation

{ }-1,1a∈ so that ()()()sign a g x b− has minimal

error. In our experiments a threshold layer is placed after a
linear layer to produce the discrete weak-learner required by
the AdaBoost training layer.

6. EXPERIMENT DATA

To test the functionality of our system we developed an
experiment where the target of interest is the exhaust plume
produced by a military vehicle when it first moves off from
a stationary position. This problem is a pixel classification
or segmentation problem and therefore appropriate for our
first experiments, which are based on simple, and relatively
few building blocks. More complex tasks such as military

vehicle recognition and identification will be investigated in
future work.

The data consists of sequences of frames, each being 325
pixels wide by 256 pixels high with 3 colors and was
recorded at 30 frames / second from a small (unstable)
aircraft. We identified 10 separate exhaust plume sequences
over a 20 minute recording period. Each sequence began
with a stationary vehicle. As the vehicle moved off, a plume
becomes visible (to our untrained eyes) and we used the
video mark-up tool to manually segment 4 adjacent frames
from each sequence. The sequences cover a wide variety of
different scales, orientations and plume visibilities. In
Figure 5 we show an example plume, and corresponding
mark-up, from four of the ten sequences. Each image is a
small tile (approximately 150 pixels by 100 pixels) cut from
the original frame to make reproduction clearer. In our
experiments, the Harpo system used the entire frame.

7. EXPERIMENTS

Our initial experiments investigate learning performance
with respect to variation in network architecture and scale.
There are 3 types of network investigated which we call
Temporal, Multi-scale and Multi-stage. Temporal (Figure 6
– left) implements a single convolution in both temporal and
spatial dimensions. Multi-scale (Figure 6 – middle)
processes reduced scale versions of the input independently
and the Multi-stage (Figure 6 – right) architecture
implements the traditional hierarchical convolution
network. We investigate the affect of adding processing
layers using the Boosting procedure. This means each
convolution layer in Figure 6 is actually by a linear
combination of convolution layers. We used the discrete
adaboost algorithm and Fisher’s linear discriminant
becomes the weak learner. For the Multi-scale and Multi-
stage architectures we do not apply boosting to the final
combination layer.

Figure 5 – Example training frames from 4 of the 10 sequences

 7

To compare each configuration (architecture and number of
weak learners) we randomly chose 5 of the 10 plume
sequences. Each configuration is trained on the 5 sequences
and then applied to the remaining 5 sequences.

8. DISCUSSION

For the Temporal architecture we noticed very little
improvement with additional convolution layers. In
addition, the best performance for the 5 by 5 spatial window
and 3 frame temporal window convolution was little
improved over the Fisher discriminant applied to a single
frame with no spatial information (a linear combination of
red, green and blue channels). The multi-scale architecture
appeared to benefit greatly from additional processing
layers. But for the Multi-stage architecture, the feed-
forward, greedy learning strategy seems particularly sub-
optimal. We hypothesize this may be a common problem in
deep pipeline architectures due to strong dependencies
between layers.

Harpo was able to obtain reasonable results for the plume
finding problem, particularly with the Multi-scale
architecture. However, the poor performance of the Multi-
stage architecture, which has traditionally performed
extremely well for object recognition problems is a concern.
Most reported successes with a Multi-stage architecture
have used a back-propagation learning strategy and
therefore our immediate goal is to incorporate back-
propagation within the multi-level learning framework.

Another way to help the boosting feed forward approach
find more cooperative behavior within a Multi-stage system
is to run an Evolutionary Algorithm at the network level.
This approach is already available within the Harpo
framework and future experiments will determine if this is a
viable alternative to back propagation.

Table 1. Milli% Error rates for 1 sampling of the plume
problem (will average over 5 in the final paper)

Architecture Number of Layers used in Boosting

 1 3 5 10 20

Temporal All errors are 310 %−×

Train 1.29 1.24 1.26 1.3 1.3

Test 1.88 1.89 1.99 2.1 2.1

Multi-scale

Train 1.27 1.32 0.48 0.38 0.31

Test 1.55 1.41 1.18 1.26 1.24

Multi-stage

Train 1.46 1.42 1.51 1.51 1.52

Test 1.91 1.90 1.81 1.74 2.03

9. CONCLUSION

The modular, regular architecture of convolutional neural
networks is very attractive for learning, scalability and real-
time implementation using massively parallel hardware. We
have presented a flexible implementation and design
environment for large scale convolutional networks called
Harpo. This system enabled us to rapidly prototype and
compare variations in network architecture for a plume
segmentation problem. In future work we plan to extend the
framework to include mechanisms for spatial, spectral and
temporal invariances, as well as unsupervised learning

Figure 6 – The three architectures investigated: Temporal (left), Multi-scale (middle) and Multi-stage (right).

 8

techniques that are applied at run-time. With these
extensions, it is hoped our system will produce robust
solutions to complex object detection, recognition and
tracking problems.

REFERENCES

1. Bennamoun, M. and B. Boashash, A structural-
description-based vision system for automatic object
recognition. IEEE Transactions on Systems, Man and
Cybernetics, Part B (Cybernetics), 1997. 27(6): p. 893-906.

2. Haralick, R.M. and L.G. Shapiro, Computer and
Robot Vision. Vol. II. 1993: Addison-Wesley Publishing
Company Inc.

3. LeCun, Y., et al., Gradient-Based Learning
Applied to Document Recognition. Intelligent Signal
Processing, 2001: p. 306-351.

4. Nowlan, S. and J. Platt. A Convolutional Neural
Network Hand TrackerProc. in Neural Information
Processing Systems (NIPS94). 1995. Cambridge, MA.

5. Lawrence, S., et al., Face Recognition:
Convolutional Neural Network Approach. IEEE
Transactions on Neural Networks, 1997. 8(1): p. 98-113.

6. Chua, L.O., CNN: A Paradigm for Complexity.
1998: World Scientific Publishing Company.

7. Harvey, N.R., et al., Comparison of GENIE and
conventional supervised classifiers for multispectral image
feature extraction. IEEE Transactions on Geoscience and
Remote Sensing, 2002. 40: p. 393-404.

8. R. Porter, N.H., S. Perkins, J.Theiler, S. Brumby, J.
Bloch, M. Gokhale, J. Szymanski, Optimizing Digital
Hardware Perceptrons for Multi-Spectral Image
Classification. Journal of Mathematical Imaging and Vision,
2003. 19: p. 133-150.

9. Fukushima, K., Neocognitron: A Hierarchical
Neural Network Capable of Visual Pattern Recognition.
Neural Networks, 1988. 1: p. 119-130.

10. Fortuna, L., et al., Cellular neural networks: a
paradigm for nonlinear spatio-temporal processing, in IEEE
Circuits and Systems Magazine. 2001. p. 6-21.

11. Behnke, S., Hierarchical Neural Networks for
Image Interpretation, in Department of Mathematics and
Computer Science. 2003, Freie Universitat Berlin: Berlin. p.
224.

12. Freund, Y. and R.E. Schapire. Experiments with a
New Boosting Algorithm. in International Conference on
Machine Learning. 1996.

13. Friedman, J., T. Hastie, and R. Tibshirani, Additive
logistic regression: a statistical view of boosting. 1998,
Dept. of Statistics, Stanford University.

BIOGRAPHY

 Reid Porter received the B.S. degrees in
electronic engineering and

information technology and the
Ph.D. degree in electronic engineering
from the Queensland University of
Technology, Australia, in 1996 and 2002
respectively. He is currently a staff
member with the Space Data Systems

group at Los Alamos National Laboratory. His research
interests include massively parallel architectures, adaptive
filters, machine learning and image and signal processing.

Neal Harvey received the B.S. degree in
mechanical engineering from the
University of Hertfordshire, U.K., in
1989, and the M.Sc. in information
technology systems and the Ph.D. in
nonlinear digital image processing from
the University of Strathclyde, U.K. in
1992 and 1997, respectively. He is now a

staff member at Los Alamos National Laboratory and his
research interests include nonlinear digital filters, machine
leaning, image processing and remote sensing.

Garrett T. Kenyon received his B.A
degree in Physics from the University of
California at Santa Cruz in 1984 and his
M.S and Ph.D degrees in Physics from
the University of Washington in Seattle
in 1986 and 1990, respectively. He
received further postdoctoral training at

the Baylor College of Medicine, Division of Neuroscience,
and at the University of Texas Medical School, Houston,
Department of Neurobiology and Anatomy, the later under
the supervision of Prof. Marshak. He has been a staff
member in the Biological and Quantum Physics group at the
Los Alamos National Laboratory since 2001. His research
interests involve the application of computer simulations
and theoretical techniques to the analysis of computation in
biological neural networks.

