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Abstract—NASA has undertaken a study to recommend and
justify Coding, Modulation, and Link Protocol (CMLP) de-
signs for the Space Communications and Networking (SCaN)
office (see companion paper [1]). This paper reports on the
coding part of the CMLP study, which is chartered with iden-
tifying the forward error correction (FEC) codes suitable for
NASA space exploration and science missions through 2030.

TABLE OF CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 CODES CONSIDERED BY THE STUDY . . . . . . . . . . . . . 2
3 INITIAL CODE SELECTIONS . . . . . . . . . . . . . . . . . . . . . . 6
4 FIGURES OF M ERIT ANALYSIS . . . . . . . . . . . . . . . . . . . 8
5 FINAL CODE SELECTIONS . . . . . . . . . . . . . . . . . . . . . . . . 9
6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
A CATALOG OF CODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
B I NITIAL CODE SELECTIONS . . . . . . . . . . . . . . . . . . . . . . 9

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

1. INTRODUCTION

The purpose of forward error correction (FEC) coding, or
channel coding, is to reduce the power needed in order to
achieve a given error rate on a communications channel. The
CMLP study included a coding subteam to analyze and select
channel codes appropriate for the short, medium, and long
term needs of NASA.

We began the study by compiling a comprehensive cata-
log of over 150 candidate FEC codes. Any code with po-
tential application to a link in NASA’s Space Communica-
tion and Navigation Architecure recommendations for 2005-
2030 [2] was included. For each code, we recorded the
code length, code rate, decoding latency, codeword error
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rate and bit error rate performance, standardization status,
flight heritage, maturity, and encoder/decoder complexity.
Coding standards such those of the Consultative Committee
for Space Data Systems (CCSDS), Digital Video Broadast
Satellite 2 (DVB-S2), and Institute of Electrical and Elec-
tronics Engineers (IEEE) 802.11 and 802.16 were included
in the catalog. Additionally, an attempt was made to in-
clude any other code that reasonably has application in one
or more of the reference links. The code catalog includes
uncoded, convolutional, Reed-Solomon (RS), concatenated
RS/convolutional, turbo, serially concatenated convolutional,
Bose-Chaudhuri-Hocquenghem (BCH), low-density parity-
check (LDPC), turbo product, concatenated BCH/LDPC, and
cyclic redundancy check (CRC) codes.

The code selection approach involved the following steps,
for each reference link under consideration: (1) Compute the
bandwidth used by the recommended modulation at the de-
sired data rate, using uncoded transmission, (2) Compute the
minimum code rater available, using step 1 and the total
bandwidth available on the link, (3) Compute the maximum
input block sizek, using the latency requirement, (4) Sort the
code catalog based on the rater, (5) Sort the code catalog
by input block sizek, among codes with eligible rates, (6)
Identify top performing codes within the(k, r) constraints.
Finally, the top selections were further narrowed to a small
set of recommended codes that meet the requirements of all
links, based on an analysis of the remaining figures-of-merit.

The coding study concluded by selecting various uncoded,
convolutional, turbo, and LDPC codes for a set of reference
links. Turbo codes of rates 1/6, 1/4, and 1/3 are recom-
mended for low code rate applications, accumulate-repeat-
jagged-accumulate (AR4JA) LDPC codes of rate 1/2, 2/3,
and 4/5 are recommended for higher rate applications, and
theC2 LDPC code of rate 7/8 is recommended for bandwidth
constrained links. The constraint length 7, rate 1/2 convolu-
tional code is recommended for low data-rate real-time links
and complexity-limited applications, while uncoded trans-
mission is recommended wherever the link signal-to-noise ra-
tio (SNR) supports it. Legacy applications of convolutional
and concatenated Reed-Solomon/convolutional are also rec-
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ommended.

As it turned out, the selection approach above resulted in
codes that are all existing standards or experimental specifi-
cations of the Consultative Committee for Space Data System
(CCSDS).

2. CODES CONSIDERED BY THE STUDY

Table 5 in Appendix A lists all candidate coding schemes con-
sidered in the CMLP study. Later sections describe the main
classes of coding techniques.

The CMLP forward error correction coding catalog contains
167 specific codes from nine code groups. Represented code
groups are of two broad types: classic (legacy) codes, includ-
ing convolutional codes (CC), Reed-Solomon (RS) codes,
RS+CC concatenated codes, Bose-Chaudhuri-Hocquengham
(BCH) codes, and cyclic redundancy check (CRC) codes;
and modern iteratively decoded codes, including parallel con-
catenated convolutional codes (turbo codes), serially con-
catenated convolutional codes (SCCC), turbo product codes
(TPC), and low-density parity-check (LDPC) codes. A gen-
eral description is provided here for each of these code groups
as well as pros, cons and typical applications.

Classic Codes

Convolutional Codes—Convolutional codes are codes which
perform a convolution of the input data stream with the en-
coder’s impulse responses. Standard texts (e.g., [3]) describe
this and the other classic codes discussed here. Convolutional
codes mapk bits into n symbols based not only upon the
currentk information bits but also all previous information
bits (or as practical). Convolutional codes can be recursive or
non-recursive and systematic or non-systematic.

A convolutional code’s effectiveness is fundamentally limited
by the constraint lengthK of its convolution. Convolutional
codes with arbitrarily long constraint lengths can approach
the Shannon limit with maximum-likelihood (Viterbi) decod-
ing. Practical convolutional codes are limited to reasonably
small constraint lengths (e.g.,K = 7), because the decoding
complexity increases exponentially withK.

Convolutional codes have been used extensively by NASA
and by all of the communications industry. This successful
legacy of use and the equipment and infrastructure base it
has created is probably the single most important attribute in
favor of convolutional codes. Other favorable attributes in-
clude: 1) Code synchronization is simple and quick as com-
pared to most block codes, and it can be performed automat-
ically by the decoder without the need to devote additional
overhead to a synchronization marker. 2.) These codes have
very low latency, on the order of one constraint length for en-
coding and a handful or two of constraint lengths for decod-
ing. 3) Error rates with Viterbi decoding diminish exponen-
tially with increasing signal-to-noise ratio, and these codes

show no signs of an error floor.

Attributes of convolutional codes that are not favorable in-
clude: 1.) Convolutional codes dramatically underperform
modern high-performance iteratively decoded codes such as
LDPC codes and turbo codes; 2.) Convolutional decoders are
not naturally implemented with a parallel architecture, a fac-
tor that limits their speed particularly when these codes are
used as constituents of iteratively decoded codes (turbo codes
and SCCCs).

Convolutional codes are common in all areas of communi-
cations including space communications and terrestrial mo-
bile communications. Convolutional codes have been used
extensively and very successfully on many NASA missions
including the Hubble Space Telescope and Voyager. Two
more recent NASA deep space missions, Mars Pathfinder and
Cassini, opted for an exceedingly complex-to-decode convo-
lutional code with constraint lengthK = 15, in order to gain
increased performance at relatively low data rates from deep
space.

As better performing modern iteratively decoded codes con-
tinue to emerge and become commonplace, fewer communi-
cation industry areas are choosing convolutional codes over
the newer codes. While NASA will continue to support ex-
isting convolutional codes for some time, it is expected that
there will be some future transition to more efficient codes.

Reed-Solomon (RS) Codes—Reed-Solomon (RS) codes are
nonbinary systematic codes which introduce(NK) parity
symbols for everyK symbols of information. Each RS sym-
bol is formed from multiple bits. RS codes can detect up
to (NK) error symbols, or can correct up to(NKe)/2 er-
ror symbols in combination withe erased symbols, for any
0 < e < NK.

Reed-Solomon codes are maximum-distance-separable (MDS),
and therefore are capable of correcting the maximum pos-
sible number of errors (or combination of errors and era-
sures) among all codes of givenK and N . Furthermore,
RS encoders and traditional RS decoders1 are relatively low-
complexity and can be implemented in hardware at very high
data rates. While this seems to be an ideal combination of
code attributes for any application, it is well known that RS
codes perform very poorly on many useful channels such as
the additive white Gaussian noise (AWGN) channel. There
are two primary reasons for this disappointing performance.
First, a traditional RS decoder bases its decisions only on
hard-limited output from the channel, ignoring useful relia-
bility information (worth about 2 decibels (dB) in AWGN).
Second, there is a channel error magnification effect because

1Recently, enhanced RS decoding algorithms have been developed to uti-
lize soft channel information, but these are high-complexity, low-maturity
algorithms that would disqualify RS codes from being considered as “legacy
codes.” In fact, these algorithms are of sufficiently low maturity (compared to
other newer codes and decoders) that RS codes with enhanced soft decoding
were not evaluated for this study in the “modern codes” category either.
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each isolated channel symbol error (e.g., a bit error with bi-
nary phase-shift keying (BPSK) modulation) corrupts a larger
nonbinary RS symbol. Together these two effects account for
several dB of performance loss when RS codes are applied to
soft-output channels such as AWGN.

RS codes can be efficient when applied to channels that are
inherently bursty and produce hard-limited output. An RS
code can also be useful for a soft-output channel afflicted with
white noise if it is concatenated (as an outer code) with an
inner code (such as a convolutional code) that is more suitable
for exploiting the characteristics of the channel corruptions
(see next subsection).

RS codes with a symbol size of 8 bits and(N,K) =
(255, 223) and (255, 239), as well as shortened versions of
these codes, are currently supported by GN, SN and DSN.

RS+CC Concatenated Codes—A concatenation of a Reed-
Solomon outer code with a convolutional inner code (RS+CC
concatenated code) is a classic code that exploits the MDS
properties and the large block size advantages of the RS outer
code, together with the ability of the convolutional inner de-
coder to efficiently extract soft information from the channel
with low complexity. The performance of RS+CC concate-
nated codes is characterized by a steeply falling error rate
curve. The slope of this curve is ideally determined by the
block size of the RS outer code, which is nearly two thou-
sand information bits for classic RS codes using 8-bit sym-
bols, and for useful shortened versions of these codes. The
burstiness of errors output from the inner Viterbi decoder
greatly reduces the error magnification effect that ordinarily
would diminish the effectiveness of an RS code with 8-bit
symbols if it were connected directly to a white noise chan-
nel. However, because the Viterbi decoder error bursts are
unpredictable in length, and occasionally longer than several
RS symbols, classic RS+CC concatenations generally include
a block interleaver between the inner and outer code in order
to break up long Viterbi decoder bursts into smaller pieces
distributed among multiple RS codewords. This interleav-
ing improves the RS+CC concatenated code’s performance,
but at the expense of increasing its block size and therefore
its latency. The overall information block size is nearly nine
thousand bits for the classic RS+CC concatenated code built
from an 8-bit RS outer code, aK = 7 convolutional inner
code, and a depth-5 interleaver.

The deteriorated performance of an RS+CC convolutional
code without interleaving, as compared to the same code with
sufficient interleaving to break up the Viterbi decoder error
bursts, is similar in principle to the error floor phenomenon
that plagues turbo codes at very low error rates. The longer
the constraint length (and hence longer error bursts) of the
convolutional code, and the smaller the size of the RS code,
the more the performance of the RS+CC concatenated code
will be determined by that of its inner convolutional code and
not by the complementary strengths of the overall concatena-

tion. However, this degradation of performance shows up as
a fairly uniform diminishment of slope of the concatenated
code’s error rate curve, unlike the sharp transition in slope
in the performance curve of a turbo code at the beginning of
its error floor region. Furthermore, because the typical error
bursts for aK = 7 convolutional code are still small com-
pared to the size of an 8-bit RS code, the performance curve
of this particular RS+CC concatenation without interleaving
is still much steeper than that of a turbo code past the start of
its error floor.

Even with ideal (infinitely long) interleaving, RS+CC con-
catenated codes are not capable of approaching the Shan-
non capacity limit of performance more closely than about
2 dB, unless the inner convolutional code’s constraint length
is impractically long or the combined decoding of the inner
and outer code is impractically complex. A highly complex
RS+CC concatenated code was designed to support NASA’s
Galileo mission to Jupiter after Galileo was forced to trans-
mit exclusively through its low-gain antenna at extremely
low data rates (around 100 bps). This code featured a very
long constraint-length convolutional inner code(K = 14),
a variable-rate RS outer code, a long interleaver (depth-8),
and four stages of alternating decoding between the inner
and outer codes (a form of iterative decoding passing hard
rather than soft information during the iterations). With these
enhancements (generally impractical except at Galileo’s low
data rates), the gap to capacity was shaved to about 1 dB. But
this performance still falls about 1/2 dB short of that of mod-
ern turbo or LDPC codes of similar sizes and rates and much
lower complexity.

As with all long block codes, RS+CC concatenated codes re-
quire accurate synchronization to determine the starting posi-
tion of a codeword from among thousands of possible loca-
tions. As compared to similar synchronization requirements
for other long block codes (including turbo codes, TPCs, SC-
CCs, and LDPC codes), synchronization for RS+CC concate-
nated codes can be somewhat less burdensome due to the
inner convolutional decoder’s self-synchronizing capability
and the decoupling of the inner and outer decoders. This
allows codeword synchronization for RS+CC concatenated
codes to be accomplished using Viterbi decoded bits rather
than a larger number of lower-reliability raw channel sym-
bols. In this case, synchronization performance is not nec-
essarily improved, but the required processing is simplified.
RS+CC concatenated codes are currently widely used for GN,
SN and DSN.

BCH Codes—Bose-Chaudhuri-Hocquengham (BCH) codes
are classic binary codes that can be designed to correct small
to moderate numbers of bit errors without excessive encoding
or decoding complexity. As with many other classic codes,
reasonable-complexity decoding algorithms for BCH codes
use hard inputs. For this reason, BCH codes are generally
a poor choice to apply directly to a soft-output channel such
as a Gaussian noise channel. Additionally, BCH codes have
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generally taken a back seat to RS codes as an outer code in a
concatenated system, due to an RS code’s capability to cor-
rect more bit errors when both types of codes are constrained
to similar complexities.

In modern times, BCH codes are used in the DVB-S2 stan-
dard as an outer code to an inner LDPC code. The purpose
of the BCH code in this setting is to lower an otherwise unac-
ceptably high error floor due to frequent errors of very low
weight produced by the LDPC decoder. For the purposes
of the CMLP study, BCH codes were evaluated only in the
context of this specialized application, in conjunction with
the particular LDPC codes designed for the DVB-S2 stan-
dard. More recent designs of LDPC codes, such asC2 and
the AR4JA family, are not susceptible to the low-weight error
events that would be correctable by a BCH code. In this case,
concatenation of the LDPC code with a BCH code would be
superfluous and would only serve to reduce the power effi-
ciency of the overall code without any appreciable lowering
of its error rate.

CRC Codes—Cyclic redundancy check (CRC) codes are
codes that append a fixed number of parity bits to large infor-
mation blocks of varying lengths for the purposes of error de-
tection only. Typical CRC codes use 16-bit, 32-bit, or some-
what longer parity sequences. A CRC code is usually used
as an outer code concatenated with an inner error-correcting
code (which may itself be a concatenation of two or more
constituent codes).

To first order, the probability that an erroneous codeword es-
capes detection by an outer CRC code is roughly the same as
the probability that its parity bits agree with an equal number
of random bits. The conditional undetected error probability
of anm-bit CRC code is roughly2m if the inner codeword’s
typical error patterns are long and varied. Good CRC codes
are generally designed to offer guaranteed detection of small
numbers (e.g., up to 3) of bit errors, on the assumption that
higher-weight error patterns occur with much lower probabil-
ity. This design feature greatly enhances a CRC code’s detec-
tion performance with uncoded data, but it is nearly worth-
less when used with a powerful inner error-correcting code
that is likely to make either no bit errors or many bit errors in
bunches.

Because CRC codes are not used to correct any errors, they
cannot improve the ability of the overall coding system to ap-
proach the Shannon limit of performance. In fact, the power
efficiency of the overall code is reduced by the rate of the
CRC code, with no improvement in error-correcting capabil-
ity. When the CRC code is attached to large inner codewords
or data frames thousands of bits long, the CRC code’s over-
head penalty is very small and is tolerated in return for its
ability to reliably detect errors. However, the performance
penalty for using a CRC code becomes non-negligible if it is
used to protect smaller codewords or frames on the order of a
few hundred bits or less.

Encoding and decoding of CRC codes is accomplished us-
ing simple linear feedback shift registers, and this encoding
and decoding architecture does not change with the size of
the frame being protected. This invariance of coding and
decoding architecture to code block size is a primary reason
why CRC codes are generally preferred over other codes with
equal or better error detection capabilities. Often, however,
the inner error-correcting code has error detection capabili-
ties of its own, and in such cases the CRC code becomes a
useless appendage that reduces power efficiency without of-
fering improved error detection. A CRC code is not needed to
improve the inherent error detection capabilities of the clas-
sic (255, 223) RS code (or the corresponding RS+CC con-
catenated code), and CRC codes up to at least 32-bits do not
appear to improve the native error detection capabilities of
well-designed LDPC codes, such asC2 or the AR4JA family.

Modern Codes

Turbo Product Codes (TPC)—A product code is obtained
from constituent(N1,K1) and(N2,K2) codes by filling an
N1 by N2 rectangular array of coded bits with: 1) aK1 by
K2 rectangular array of information bits; 2) aK1 by (N2K2)
rectangular array of parity bits computed by applying the
(N2,K2) code’s encoding rule to each of theK1 rows of in-
formation bits; and 3) an(N1K1) by N2 rectangular array
of parity bits computed by applying the(N1,K1) code’s en-
coding rule to each of theK2 columns of information bits
and(N2K2) columns of parity bits computed in the previous
step. This product code mapsK1K2 information bits into a
total ofN1N2 coded bits. An identical product code results if
the column encoding is done first and the row encoding sec-
ond. If one of the constituent codes is itself a product code,
the resulting code is a product code in three or more dimen-
sions.

Product codes are classic codes that have not found many
useful applications until recently, due to poor minimum dis-
tance for relatively large block size and the unavailability of
soft maximum-likelihood decoding algorithms. However, the
iterative decoding revolution launched by turbo codes also
sparked a revival of product codes. Product codes can be
decoded iteratively by alternating the decoding of rows and
columns, and passing soft extrinsic information between the
row and column decodings in the manner of turbo decoding.
A classic product code decoded in this manner is called a
turbo product code (TPC), and is now regarded as a modern
code.

Encoders and decoders for turbo product codes can be im-
plemented at high speed, because the individual row and col-
umn encodings and decodings can be performed in parallel.
Typical constituent codes of a TPC are single-parity-check
codes, Hamming codes, and extended Hamming codes, with
small minimum distances of 2, 3 and 4, respectively. Such
constituents are selected because they are fairly easy to de-
code individually, and their relatively high rates keep the
rate of the product code (equal to the product of its con-
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stituents’ rates) from being unreasonably low. However, since
the minimum distance of the product code is the product of
its constituents’ minimum distances, two-dimensional prod-
uct codes built from such constituents will include many in-
correct codewords within distance 16 of the true codeword,
and the decoder’s error rate will reach a low-slope error floor
region where further improvements are limited by the diffi-
culty of distinguishing among these relatively close neigh-
bors. TPCs in three dimensions built from extended Ham-
ming constituent codes can achieve a minimum distance of
64, and their error rate curves fall off much more steeply even
when the minimum-distance neighbors dominate the perfor-
mance. As a result, their error floors may be imperceptible
in many applications. However, TPCs of three (or more) di-
mensions are more complex, their iterations require an extra
round (or more) of decoding, their overall rates are fairly low,
and their overall block sizes are quite large.

TPCs share many of the same features as other modern codes
including turbo codes, SCCCs, and LDPC codes. As long
block codes, they have long latency relative to classic con-
volutional codes, and they require accurate synchronization
among thousands of possibilities to determine the starting
location of a codeword. As long codes that can achieve
near-maximum-likelihood performance via iterative decod-
ing, some TPCs can approach the Shannon performance limit
as closely as turbo and LDPC codes, particularly for very
large block sizes on the order of tens of thousands of bits.
Generally speaking, turbo, SCCC and LDPC codes offer
much more flexibility for designing near-optimal codes at a
wide range of rates and sizes down to a thousand bits or lower,
while only a few scattered point designs of TPCs are equally
near-optimal unless the size of the code is extremely large.

Turbo Codes—Turbo codes[4] are parallel concatenations
of two or more simple recursive convolutional codes, used
to encode differently permuted versions of the same infor-
mation sequence. The different permutations of the input
information bits are accomplished by one or more inter-
leavers. Turbo codes are decoded iteratively by passing soft
extrinsic information between two relatively simple convolu-
tional decoders tasked to decode the constituent codes sepa-
rately. If the information block is reasonably large and the
interleaver(s) sufficiently random, the iterative turbo decoder
achieves nearly the same performance as an impossibly com-
plex maximum-likelihood decoder for the same code. Fur-
thermore, turbo codes can approach the Shannon capacity
limit of performance with well-designed constituent codes
and interleaver(s).

Unlike turbo product codes, which are a classic code struc-
ture to which iterative decoding principles are applied, turbo
codes (as well as serially concatenated convolutional codes
and LDPC codes) are modern codes that were designed from
the start to be decoded iteratively. For example, the recursive
property of the turbo code’s constituent convolutional codes
is critically important for its near-optimal performance, but

this property has only a minor impact on the performance of
these same convolutional codes decoded classically.

Practical turbo codes are generally limited to two constituent
codes, because of the need for multiple interleavers, the in-
creased length of an iteration cycle, and the lower rate of the
overall turbo code, when more than two constituents are used.
However, parallel concatenations of two constituent codes are
susceptible to an error floor, where the near-optimal perfor-
mance of the overall turbo code breaks down and further re-
ductions in error rate are limited by the properties of the weak
constituent codes. With good choices of constituent codes
and interleaver, this error floor can be driven low enough for
many applications, e.g., CWER in the range of106 to 108 and
BER an order of magnitude lower, but not sufficiently low for
applications that require error rates a few orders of magnitude
lower than this.

Even when limited to two constituents, the natural rates of
parallel concatenations without puncturing are 1/3 and lower.
Higher turbo code rates can be produced by puncturing some
of the constituent decoders’ outputs, but excessive puncturing
can be detrimental to performance. Most useful turbo codes
have been developed for code rates 1/2 and lower.

Good constituent codes for turbo codes have very short con-
straint lengths (e.g.,K = 3 to 5), which makes them even
simpler to decode than a classic medium-constraint-length
convolutional code withK = 7 (even allowing for the turbo
decoder’s requirement that its constituent decoders produce
soft rather than hard outputs). However, the turbo decoder’s
overall complexity is much higher than that of theK = 7
convolutional code, due to its needs for two such constituent
decoders, for performing multiple iterations, for processing a
large block of data at once, and for interleaving and deinter-
leaving the soft outputs from each constituent decoder during
the course of each iteration. On the other hand, the complex-
ity of turbo decoding is significantly lower than that of Viterbi
decoding of the long-constraint-length (K = 15) classic con-
volutional code used by Mars Pathfinder and Cassini.

Turbo codes need to encode reasonably large blocks of infor-
mation (e.g., a thousand or more bits) in order to achieve near-
optimal performance commensurate with their block sizes.
This contributes to high latency, and a need for accurate code
block synchronization as discussed previously for TPCs.

Turbo codes are currently in use on NASA’s Mars Reconnais-
sance Orbiter (MRO) and are supported by the DSN.

Serially Concatenated Convolutional Codes (SCCC)—A se-
rially concatenated convolutional code (SCCC) [5] is a serial
concatenation of two codes similar in concept to the clas-
sic RS+CC concatenation. The inner and outer codes of an
SCCC are both short-constraint-length convolutional codes,
typically K = 3 for the outer code andK = 3 to 5 for the
inner code. The SCCC’s inner convolutional code is recur-
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sive (as are the parallel constituents of turbo codes). Between
the inner and outer codes is an interleaver that resembles the
random-like interleaver of turbo codes rather than the regular
rectangular interleaver of RS+CC concatenated codes.

As with turbo codes, an SCCC is a modern code structure that
was never considered useful or practical until iterative decod-
ing algorithms were developed to decode it effectively and
with reasonable complexity. A turbo code can be regarded as
a special type of SCCC with a simple repetition code replac-
ing the SCCC’s outer convolutional code and its interleaver
obeying some additional constraints.

The outer code of an SCCC generally has minimum distance
at least 3, and this property eliminates the appearance of er-
ror floors at error rate levels typical of the error floors of turbo
codes constructed from only two constituents. Furthermore,
the outer convolutional code achieves this higher minimum
distance without lowering the overall code rate as much as a
turbo code’s rate is lowered when it has more than two par-
allel constituents. Also, the serial combination of two non-
trivial codes offers greater flexibility for puncturing either or
both constituents to achieve higher rates while not sabotaging
the near-optimality of the code’s performance.

On the other side of the ledger, it is difficult to design SCCCs
with decoding thresholds as low as those of turbo codes, and
their decoding complexity is somewhat higher.

Low-Density Parity-Check (LDPC) Codes—LDPC codes [6]
are old codes but not classic. Having been invented by Gal-
lager nearly a half-century ago, they lay dormant for many
decades until similarities were noted between Gallager’s code
constructions and iterative decoding methods, and those of
Berrou et al. in their more recent invention of turbo codes.
Modern LDPC codes have been re-engineered and optimized
in many directions over the past decade since their rediscov-
ery.

An LDPC code is defined by a sparse parity-check matrix
containing only a few 1s in each row and column. This
parity-check matrix can be represented by a sparsely con-
nected graph introduced by Tanner. The Tanner graph also
describes the paths along which messages are passed when
the LDPC code is decoded iteratively. There are individual
nodes in the Tanner graph for all of the coded bits and code
constraints, and this feature enables extreme parallelization
of the decoder’s operations within each iteration. This con-
trasts with the time-sequential forward and backward mes-
sage passing that takes place within each iteration on the trel-
lis graph that represents the constituents of a turbo code or
SCCC. This massive inherent parallelizability is a major ad-
vantage of the LDPC decoding algorithm, allowing LDPC
decoding speeds to be limited mainly by the amount of hard-
ware that can be practically assembled to perform primitive
message passing operations in parallel.

In addition to providing the best potential for achieving high
decoding speeds among iteratively decoded codes, LDPC
codes also offer more degrees of design freedom compared
to turbo codes and SCCCs and especially TPCs. This has en-
abled LDPC code designers to trade off decoding threshold,
error floor performance and other attributes more effectively
than for these other modern codes. Specific LDPC codes have
been designed to approach microscopically close to the Shan-
non limit of performance, and there is no theoretical limita-
tion on how low their error floors can be pushed. A decade of
improving LDPC code design methods has resulted in codes
of a wide range of practical sizes and rates that perform rea-
sonably close to the Shannon limit down to error floor levels
that are virtually undetectable.

Early LDPC code designs were highly unstructured, because
random-like connections in the Tanner graph provide a sta-
tistically sound method to generate ensembles of good LDPC
codes. However, unstructured designs lead to impractical de-
coding, due to the difficulty of properly routing messages
in a large randomly connected (albeit sparsely connected)
graph, notwithstanding the fact that the number of compu-
tations needed to generate each message does not increase if
the connections are unstructured. More recently, quasicyclic
LDPC codes have been designed from a small template graph
(protograph) and a selection of circulant permutations. The
Tanner graphs of quasicyclic LDPC codes have more regu-
larly structured connections that simplify the LDPC decoder’s
architecture.

Despite their many intrinsic advantages, LDPC codes have
not totally displaced turbo codes. The realm of rates less than
1/2 where turbo codes work best is also where good LDPC
code designs become more difficult. At low rates, an LDPC
code’s Tanner graph acquires more connections as additional
parity-check constraints are added. Furthermore, iterations
take a very long time to converge, since each input symbol
from the channel has very low reliability due to its highly
diluted signal-to-noise ratio. In contrast, iterations proceed
more quickly for low-rate turbo codes or SCCCs, since their
constituent convolutional decoders use aggregated messages
from several weak channel symbols to label the branches of
their decoding trellises before starting their iterations.

Finally, turbo codes and SCCCs have an advantage over
LDPC codes in their inherent ease of encoding. An LDPC
code is defined via its sparse parity-check matrix, but the
corresponding generator matrix for encoding the code is not
sparse. This is in contrast to turbo codes and SCCCs, with
their constituent short-constraint-length (low-density) convo-
lutional encoders. However, recent structured LDPC code de-
signs, especially quasicyclic LDPC codes, have made high-
speed encoders feasible for LDPC codes as well.

3. INITIAL CODE SELECTIONS

The purpose of coding is to reduce the power needed in or-
der to achieve a given error rate. As such, power efficiency is
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generally the dominant Figure of Merit (FOM) in the compar-
ison of the various codes. However, any of the other FOMs
(spectral efficiency, latency, user burden, etc.) could prevent
the use of the most power efficient codes. For example, a link
with strict latency requirements can disallow the use of any
code with a very large blocklength, because the time to re-
ceive and decode a long block exceeds the allowable latency.
Or, the available bandwidth of a link may restrict the code
rates that may be used, because for a constant data rate lower
rate codes use inversely proportionally more spectrum.

The initial code selection procedure is performed after the
final modulation selection process has completed. In partic-
ular, for each link under consideration, we assume the use
of the CMLP-recommended modulation (see companion ar-
ticle [7]). The spectral efficiency of this modulation allows
us, then, to compute the eligible code rates, as we describe
below.

Constraints Relevent to Code Selection

The bandwidth assignments (allocations) for various near
Earth and deep space bands are given in Table 1.

Table 1. Bandwidth Assignments.

Band Application Bandwidth*
Assignment
(allocation)

S-band Forward or return 6 MHz
S-band Launch 10 MHz
X-Band Near Earth forward 150 Mhz
X-band Deep space, non-

efficient modulations
4 MHz

X-band Deep space, with effi-
cient modulation

50 MHz

Ka-band Near Earth return 650 MHz
Ka-band Deep Space 500 MHz

∗The bandwidth is measured by SFCG conventions as the
99% bandwidth metric for near Earth, and the 25 dB down

metric for deep space.

The latency requirements are given in Table 2.

Table 2. Latency requirements.

Link Type Application Decoder Latency
Requirement

Voice Near Earth 100 ms
Voice Lunar 250 ms

Non-voice Any N/A

Selection Procedure

These blocklength and bandwidth restrictions suggest an ini-
tial selection process that eliminates codes from consideration

that would violate those restrictions:

1. Compute bandwidth used by recommended modulation at
specified data rate, uncoded.
For a link using a given data rateR b/s and modulation
with spectral efficiencyη b/s/Hz, uncoded transmission uses
a bandwidth ofB = R/eta Hz.
2. Compute minimum code rate available, using step 1, and
total bandwidth available.
The transmission will meet a given bandwidth assignment (al-
location)Ba Hz only if the code rate satisfiesr ≥ B/Ba. The
values ofBa used by the study are given in Table 1.
3. Compute maximum input block sizek, using latency re-
quirement.
The decoding latency is the difference between the time a bit
is decoded and the time its encoded version first begins arriv-
ing at the receiver. For a block code, this includes the time
for a whole codeblock to arrive at the receiver plus the time it
takes to decode it. For a convolutional code, it is the time for
a number of bits to arrive that is equal to the traceback depth
of the Viterbi decoder plus the time to perform a traceback
operation. Given the high-speed decoders that exist today,
the study assumed that the latency is dominated by the time it
takes to receive the relevant bits to decode.
In order for a block code to meet a latency constraint on a link
using a given data rateR b/s and having a latency requirement
Tl s, the input block sizek of the block code must satisfy
k ≤ Tl ×R. The values ofTl are given in Table 2.
4. Sort code catalog shown in Table 5 based on rater. Elim-
inate those with disallowable values ofr.
5. Sort code catalog by input block sizek, among codes with
eligible rates. Eliminate those with disallowable values ofk.
6. Identify top performing code(s) within(k, r) constraints
based on performance, complexity, and maturity.
7. Narrow selections using, FOM analysis, to a small set of
candidate codes that work for all links.

This procedure may be carried out on each of the links identi-
fied in the SCaN architecture [1], as clustered together in [2].
Although these links are already quite numerous, we found it
necessary to further partition the links, by data rate, in order
to assure the capture of all latency and bandwidth constraints.
For example, in [2], one link listed is an operational forward
S-band link with a data rate of “≤ 60 kbps.” If it were exactly
60 kbps, then the latency requirement in step 3 above would
require that the blocklength satisfyk ≤ Tl×R = 6000. How-
ever, an 18 kbps link would also fall into the “≤ 60 kbps” cat-
egory, but in that case the blocklength constraint is the more
stringentk ≤ Tl × R = 1800. The two cases are suffi-
ciently different that different coding solutions would be rec-
ommended. To ensure that different data-rate-dependent link
drivers were captured, we partitioned the S-band data rates
into ranges: 18 – 100 kbps, 100 – 300 kbps, 300 – 4800 kbps,
and 4.8 – 6 Mbps.
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Initial Code Selections

Following the first six steps above resulted in the first-stage
select of codes shown in Appendix B, in Table 6, Table 7, Ta-
ble 8, and Table 9. These are the codes among those that meet
the bandwidth and latency requirements that have the highest
power efficiency and acceptable complexity and maturity.

As can be seen, a relatively small set of code candidates cov-
ered all links:

• Legacy codes: uncoded, (7,1/2) convolutional, and BCH
(63,56)
• AR4JA & C2 — nearly the entire family of CCSDS orange
book codes: (1024,1/2), (4096, 1/2, 2/3, 4/5), (16384, 1/2,
2/3, 4/5),C2

• Turbo — CCSDS blue book codes of longest and shortest
lengths: (1784, 1/4, 1/6), (8920, 1/2, 1/3, 1/4)
• Turbo Product codes — 2D and 3D versions: TPC(128,120)2,
TPC(16,11)3, TPC(H64×H32×S32)
• F-LDPC: (16k, 2/3), (16k, 8/9)

4. FIGURES OF M ERIT ANALYSIS

For each link, we ranked the codes surviving the first stage
selection process by each of the ten FOMs. For each link,
the FOMs are weighted to arrive at a final FOM score. A
couple of observations are in order regarding these weights.
First, because the initial selection procedure weeded out those
codes that did not meet the bandwidth constraint, the remain-
ing codes all meet the bandwidth constraint, and so there may
be limited value in preferring one code over another with
respect to this FOM. This is true even when the bandwidth
constraint is very important or stringent. For example, if the
bandwidth constraint forces the code rate to be 7/8 or higher,
then the vast majority of codes from the catalog are elimi-
nated from consideration in the initial selection process, but
those that are remaining are not preferred over one another on
the bases of spectral efficiency because all remaining codes
meet the constraint. Therefore, the weighting of spectral ef-
ficiency (and latency) are quite low in the final FOM ranking
and analysis.

A second FOM consideration is that the links do not use the
same FOM weightings. This is a consequence of different
mission screnarios giving rise to different priorities. For ex-
ample, an uplink for an outer planets mission would weight
the power efficiency FOM higher than a LEO mission, be-
cause the outer planet mission may have a much harder strug-
gle to meet its data rate requirements without building signif-
icantly enhanced ground infrastructure, compared to a LEO
mission.

We now describe how the ranking was done for each of the
ten FOMs.

1. Supports legacy missions
The highest rank was assigned to codes that are currently fly-

ing on missions. The next highest rank was given to codes
that plan to use the code, and the lowest rank was given to all
other codes.
2. Spectral utilization
The ranking of spectral utilization was based on the entry in
the table corresponding to “bandwidth used,” which itself is
a function of the given data rate and modulation spectral ef-
ficiency, and the rate of the code under consideration. There-
fore, the ranking of the codes is a ranking of the code rates
from highest to lowest. Since the first stage select process has
already yielded a set of candidate codes of approximately the
same code rate, there is no need to give additional weighting
to spectral utilization in the final FOM analysis.
3. Power efficiency
The ranking of power efficiency was based on the required
Eb/N0 needed in order to achieve BER =10−8. This is the
error rate requirement of the Constellation missions, but is
otherwise arbitrary. Except for codes with known error floors,
most notably the turbo codes, the particular choice of error
rate requirement does not substantially affect the power ef-
ficiency ranking of the codes. This is because the codes sur-
viving the first stage selection process are of roughly the same
rate and length and are top-performing– thus, they have ap-
proximately the same slope in the waterfall region.
4. User burden
This is a measure of the cost to a mission of using a particular
code. Codes of equivalent flight heritage whether extensive
or nonexistent were assigned the same ranking.
5. Infrastructure burden
Codes already supported by the infrastructure (SN, GN, and
DSN) were assigned higher ranking than those not supported
by the infrastructure. Among those not already supported,
the relative ranking of codes reflects the anticipated cost to
implement their support.
6. Alignment with international standards
Codes in the CCSDS Blue Book were assigned the highest
ranking. CCSDS Orange Book codes were assigned the next
highest ranking. Codes that are IEEE, ITU, DVB or other
standards for non-space applications were assigned the next
highest ranking. The last ranking was used for codes that are
not known to be part of any standard.
7. Robustness
With respect to coding, “robustness” captures (a) the ability
of the code to operate in the presence of carrier synchroniza-
tion error, symbol timing error, and non-AWGN noise, (b) the
ability to detect when a decoder is unable to decode correctly
(as opposed to putting out a decoded stream without know-
ing whether it is in error), and (c) the lack of an error floor at
BER < 10−8. As a general guide, codes surviving the first
stage selection and having similar code rate and length have
been observed to have similar performance with respect to
(a). Therefore, the ranking was based primarily on (b) and
(c).
8. Latency
As mentioned above, the first stage selection process has re-
sulted in codes that are approximately the same length, and
therefore, latency is given little additional weight in the fi-
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nal FOM analysis. For block codes, the ranking of latency is
based on the length of the block code. For the convolutional
code, the ranking is based on the length of the traceback.
9. TRL
Codes with flight heritage are ranked the highest. Those with
space technology demonstrations are assigned the next high-
est rank. Those with planned technology demonstrations are
next, followed by those without any plans for space flight,
and last, those without any known hardware implementation
in the laboratory.
10. Capacity
For the purposes of comparison, the study assumes use of
an AWGN channel, which is a good approximation for com-
munications from space. The ranking of aggregate capacity,
then, is a function of theEb/N0 required of the number of
simultaneous links that are supported. Since the first stage
selection procedure has resulted in codes of roughly the same
code rate, the number of simultaneous links is the same for
each candidate code, and the ranking reduces to a duplication
of the power efficiency measure. As such, this FOM is given
a low weight in the scoring system.

5. FINAL CODE SELECTIONS

The initial code selections (first stage selection) identified the
top codes for each link. In each case, we identified up to
three candidate codes. For each link, we ranked the candidate
codes using the FOM analysis of the previous section, and
computed a weighted-average FOM rank.

Following step 7 of Section 3, we next identified the small-
est set of recommended codes that would work well for all
links scenarios. The FOM analysis indicates that for all links,
CCSDS turbo and AR4JA LDPC codes uniformly outranked
the turbo product codes and Flarion LDPC codes, and so they
were eliminated. Among the remaining codes there was no
smaller subset of codes that uniformly outperformed another
code. This left uncoded, convolutional, turbo, AR4JA LDPC,
andC2 LDPC codes. Each of these codes had the best FOM
score for at least one reference link, and so it would not be
possible to reduce the set of recommended codes further with-
out sacrificing link performance.

Tables 3 and 4 provide the recommended codes for Cate-
gory A near-Earth SN/GN and Category B links, respec-
tively. Although “International Standardization” is only one
FOM, the final recommended links are in happy accordance
with the CCSDS standards and ongoing working group ac-
tivities. All the recommended codes are either contained in
the CCSDS Blue Book (convolutional, turbo) or in an exper-
imental CCSDS Orange Book (AR4JA LDPC,C2 LDPC), as
indicated in the color-coding of the tables.

6. CONCLUSIONS

The CMLP coding recommendations are the result of a long
and detailed inter-center NASA study, and provides guidance
and a schedule to the SCaN office for investing in the infras-

tructure needed to support the most powerful, cost-effective,
means to meet NASA’s communications needs in the coming
decades. The final report of the study is also being reviewed
by an international team, with the hope that we may have a
unified approach to channel coding which will make future
collaborative missions cost efficient and interoperable.

APPENDICES

A. CATALOG OF CODES

The catalog of codes considered by the CMLP study is shown
in Table 5. In addition to the columns shown, the study
recorded the encoding latency, requiredEb/N0 with BPSK to
achieve a given codeword error rate and undetected codeword
error rate, standardization status, typical application, mission
heritage, encoder/decoder hardware status, space qualifica-
tion, speed, and commercial or military use.

B. I NITIAL CODE SELECTIONS

The initial code selection process detailed in section 3 re-
sulted in selection of codes shown in Tables 6, 7, 8, and 9.

ACKNOWLEDGMENTS

The research described in this publication was carried out at
the Jet Propulsion Laboratory, California Institute of Technol-
ogy, the Goddard Space Flight Center, and by associated con-
tracting companies, under a contract with the National Aero-
nautics and Space Administration.

REFERENCES

[1] L. Deutsch, G. Noreen, J. Hamkins, J. Wesdock, F. Stock-
lin, and D. Zillig, “Selecting codes, modulations, multi-
ple access schemes and link protocols for future nasa mis-
sions,” in IEEE Aerospace Conference, Big Sky, Mon-
tana, Mar. 2008.

[2] “Space communication architecture working group
(SCAWG) NASA space communication and navigation
architecture recommendations for 2005-2030, final re-
port,” May 2006.

[3] S. Lin and D. J. Costello Jr.,Error Control Coding: Fun-
damentals and Applications. New Jersey: Prentice-Hall,
1983.

[4] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near
Shannon limit error-correcting coding and decoding:
turbo-codes,” inProc., IEEE Int. Conf. on Communica-
tions, May 1993, pp. 1064–1070.

[5] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara,
“Soft-input soft-output modules for the construction and
distributed iterative decoding of code networks,”Euro-
pean Transactions on Telecommunications, Mar. 1998.

[6] R. G. Gallager, “Low density parity check codes,”IRE
Trans. Info. Theory, vol. IT-8, pp. 21–28, 1962.

[7] F. Stocklin, L. Deutsch, G. Noreen, J. Hamkins, D. Lee,

9



Table 3. Final code selections, near Earth.
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Table 4. Final code selections, deep space.
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Table 5. Catalog of codes

Code ID r k n Required Eb/N0 (dB) with BPSK for BER =
10−2 10−4 10−6 10−8 10−9 10−10

1 Uncoded 1.000 1 1 4.32 8.40 10.53 11.97 12.55 13.06
2 CC(3,1/2) 0.499 1022 2048 2.22 4.89 6.84 8.04 8.56 9.10
3 CC(5,1/2) 0.498 1020 2048 2.03 4.18 5.68 6.95 7.46 7.92
4 CC(7,1/2), delay=5 bits, Q=inf 0.500 Inf Inf 3.40
5 CC(7,1/2), delay=10 bits, Q=inf 0.500 Inf Inf 2.77
6 CC(7,1/2), delay=15 bits, Q=inf 0.500 Inf Inf 2.39
7 CC(7,1/2), delay=30 bits, Q=inf 0.500 Inf Inf 1.88 3.51
8 CC(7,1/2), delay=60 bits, Q=inf 0.499 1784 3574 1.70 3.40 4.78
9 CC(7,1/2), delay=60 bits, Q=inf 0.500 3568 7142 1.70 3.40 4.78

10 CC(7,1/2), delay=60 bits, Q=inf 0.500 8920 17846 1.70 3.40 4.78
11 CC(7,1/2), delay=60 bits, Q=inf 0.500 16384 32774 1.70 3.40 4.78
12 CC(7,1/2), delay=60 bits, Q=inf 0.500 Inf Inf 1.70 3.40 4.78
13 CC(7,1/2), delay=inf, hard dec. 0.500 Inf Inf 3.67
14 CC(7,1/2), delay=inf, Q=3 0.500 Inf Inf 2.13 3.80 5.04 6.02 6.43 6.81
15 CC(7,1/2), delay=inf, Q=8 0.500 Inf Inf 1.91 3.56
16 CC(7,1/2), delay=inf, Q=inf 0.500 Inf Inf 1.70 3.42
17 CC(7,2/3), delay=60 bits, Q=inf 0.667 8920 13380 2.41 3.90 5.24
18 CC(7,2/3), delay=120 bits, Q=inf 0.664 1024 1542 2.36 3.93 5.23 6.31 6.79 7.23
19 CC(7,3/4), delay=60 bits, Q=inf 0.750 8920 11894 2.93 4.47 5.77
20 CC(7,3/4), delay=120 bits, Q=inf 0.747 1024 1371 2.84 4.42 5.78 6.91 7.40 7.84
21 CC(7,5/6), delay=60 bits, Q=inf 0.833 8920 10704 3.65 5.17 6.44
22 CC(7,5/6), delay=120 bits, Q=inf 0.829 1024 1235 3.43 4.98 6.32 7.47 7.96 8.40
23 CC(7,7/8), delay=60 bits, Q=inf 0.875 8920 10195 4.20 5.83 7.25
24 CC(7,7/8), delay=120 bits, Q=inf 0.871 1024 1176 3.90 5.36 6.68 7.90 8.44 8.93
25 CC(9,1/2), delay=45?, Q=inf 0.500 63 126 1.56 2.91 4.12 5.12 5.57 5.99
26 CC(9,1/2) 0.496 1016 2048 1.56 2.91 4.12 5.12 5.57 5.99
27 CC(9,1/2) 0.499 4088 8192 1.56 2.91 4.12 5.12 5.57 5.99
28 CC(15,1/4) 0.247 1010 4096 0.36 1.48 2.55 3.38 3.80 4.20
29 CC(15,1/6) 0.164 1010 6144 0.16 1.34 2.42 3.23 3.64 4.03
30 RS(255,223) 0.875 1784 2040 4.78 5.90 6.38 6.74 6.90 7.05
31 RS(255,239) 0.937 1912 2040 4.60 6.46 7.08 7.56 7.76 7.96
32 RS(252,220) 0.873 1760 2016 4.79 5.91 6.39 6.75 6.91 7.06
33 RS(255,223)+(7,1/2), I=1 0.437 1784 4080 1.97 2.56 2.94
34 RS(255,223)+(7,1/2), I=2 0.437 3568 8160 2.34
35 RS(255,223)+(7,1/2), I=3 0.437 5352 12240 1.89 2.27
36 RS(255,223)+(7,1/2), I=4 0.437 7136 16320 1.89 2.24
37 RS(255,223)+(7,1/2), I=5 0.437 8920 20400 1.88 2.23
38 RS(255,223)+(7,1/2), I=8 0.437 14272 32640 1.88 2.19 2.40
39 RS(255,223)+(7,1/2), I=16 0.437 28544 65280 1.89 2.20 2.39
40 RS(255,239)+(7,1/2), I=1 0.469 1912 4080 1.84 2.72
41 RS(255,239)+(7,1/2), I=2 0.469 3824 8160 1.82 2.47
42 RS(255,239)+(7,1/2), I=3 0.469 5736 12240 1.82 2.37
43 RS(255,239)+(7,1/2), I=4 0.469 7648 16320 1.83 2.33
44 RS(255,239)+(7,1/2), I=5 0.469 9560 20400 1.85 2.32
45 RS(255,239)+(7,1/2), I=8 0.469 15296 32640 1.83 2.30 2.58
46 RS(255,239)+(7,1/2), I=16 0.469 30592 65280 1.84 2.30 2.59
47 RS(255,223)+(7,1/2), I=5 0.469 4780 10200 1.88 2.23
48 RS(255,223)+(7,2/3), I=5 0.625 6373 10200 2.62 2.92
49 RS(255,223)+(7,3/4), I=5 0.703 7170 10200 3.15 3.47 3.68
50 RS(255,223)+(7,5/6), I=5 0.781 7966 10200 3.87 4.22
51 RS(255,223)+(7,7/8), I=5 0.820 8365 10200 4.39 4.77
52 RS(255,239)+(7,1/2), I=5 0.469 4780 10200 1.85 2.32
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Table 5. Catalog of codes (continued)

Code ID r k n Required Eb/N0 (dB) with BPSK for BER =
10−2 10−4 10−6 10−8 10−9 10−10

53 RS(255,239)+(7,2/3), I=5 0.625 6373 10200 2.54 2.97 3.25
54 RS(255,239)+(7,3/4), I=5 0.703 7170 10200 3.06 3.52 3.79
55 RS(255,239)+(7,5/6), I=5 0.781 7966 10200 3.79 4.27 4.56
56 RS(255,239)+(7,7/8), I=5 0.820 8365 10200 4.33 4.83 5.15
57 Turbo(1784,1/6) 0.166 1784 10728 -0.18 0.14 0.34 0.57
58 Turbo(1784,1/4) 0.249 1784 7152 0.42 0.67
59 Turbo(1784,1/3) 0.333 1784 5364 0.31 0.66 0.88
60 Turbo(1784,1/2) 0.499 1784 3576 0.92 1.29 1.54 1.92
61 Turbo(3568,1/6) 0.166 3568 21432 -0.04 0.14
62 Turbo(3568,1/4) 0.250 3568 14288 0.23
63 Turbo(3568,1/3) 0.333 3568 10716 0.22 0.47 0.62
64 Turbo(3568,1/2) 0.499 3568 7144 0.83 1.10 1.27
65 Turbo(7136,1/6) 0.167 7136 42840 -0.34 -0.17 -0.01
66 Turbo(7136,1/4) 0.250 7136 28560 -0.08 0.11 0.26
67 Turbo(7136,1/3) 0.333 7136 21420 0.16 0.33 0.45
68 Turbo(7136,1/2) 0.500 7136 14280 0.78 0.97 1.11
69 Turbo(8920,1/6) 0.167 8920 53544 -0.35 -0.20 -0.10 -0.02
70 Turbo(8920,1/4) 0.250 8920 35696 -0.07 0.09 0.19 0.27 0.42
71 Turbo(8920,1/3) 0.333 8920 26772 0.14 0.31 0.42 0.58
72 Turbo(8920,1/2) 0.500 8920 17848 0.77 0.94 1.06 1.30
73 Turbo(16384,1/6) 0.167 16384 98328
74 Turbo(16384,1/4) 0.250 16384 65552
75 Turbo(16384,1/3) 0.333 16384 49164
76 Turbo(16384,1/2) 0.500 16384 32776
77 BCH-SEC(63,56) 0.889 56 63 4.12 7.07 8.75 9.99 10.47 10.95
78 BCH-TED(63,56) 0.889 56 63 4.82 8.90 11.04 12.46 13.06 13.55
79 AR4JA(64,1/2) 0.500 64 128
80 AR4JA(1024,1/2) 0.500 1024 2048 1.14 1.57 1.89 2.17 2.29 2.41
81 AR4JA(1024,2/3) 0.667 1024 1536 1.89 2.39 2.75 3.04 3.15
82 AR4JA(1024,4/5) 0.800 1024 1280 2.77 3.36 3.76 4.14
83 AR4JA(4096,1/2) 0.500 4096 8192 0.93 1.12 1.26 1.39
84 AR4JA(4096,2/3) 0.667 4096 6144 1.67 1.90 2.07 2.20
85 AR4JA(4096,4/5) 0.800 4096 5120 2.55 2.84 3.04 3.21
86 AR4JA(16384,1/2) 0.500 16384 32768 0.75 0.87 0.96 1.03
87 AR4JA(16384,2/3) 0.667 16384 24576 1.54 1.68 1.78
88 AR4JA(16384,4/5) 0.800 16384 20480 2.47 2.64 2.74
89 C2, 50 iterations 0.875 7136 8160 4.19
90 TPC(128,120)2 0.879 14400 16384 3.30 3.59 3.72 3.90
91 TPC(64,57)2 0.793 3249 4096 2.50 2.92 3.17 3.62
92 TPC(53,46)×(51,44) 0.749 2024 2703 2.30 2.75 3.10 3.65
93 TPC(39,32)2 0.673 1024 1521 2.00 2.55 3.30 3.90
94 TPC(32,26)2 0.660 676 1024 1.80 2.50 3.15 3.85
95 TPC(19,13)2 0.468 169 361 1.65 2.85 4.10 5.00
96 TPC(32,26)×(32,26)×(4,3) 0.495 2028 4096 1.50 1.90 2.40 3.10
97 TPC(32,26)×(32,26)×(16,11) 0.454 7436 16384 1.30 1.46 1.58 1.72
98 TPC(16,11)×(16,11)×(16,11) 0.325 1331 4096 0.90 1.21 1.50 1.80
99 TPC(S16×H642) 0.744 48735 65536 2.30 2.50 2.55 2.60

100 TPC(H64×H32×S32) 0.701 45942 65536 2.05 2.20 2.33 2.50
101 TPC(H64×H322) 0.588 38532 65536 1.80 1.84 1.88 2.04
102 TPC(H16×H642) 0.545 35739 65536 1.78 1.82 1.86 2.02
103 TPC(S4×H16×H322)
104 TPC(H164)
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Table 5. Catalog of codes (continued)

Code ID r k n Required Eb/N0 (dB) with BPSK for BER =
10−2 10−4 10−6 10−8 10−9 10−10

105 TPC(S16×H322) 0.619 10140 16384 1.60 1.80 2.06 2.42
106 BCH-LDPC(16200,1/4) 0.190 3072 16200 < 1.00
107 BCH-LDPC(16200,1/3) 0.323 5232 16200 < 0.84
108 BCH-LDPC(16200,2/5) 0.390 6312 16200 < 0.98
109 BCH-LDPC(16200,1/2) 0.434 7032 16200 < 1.30
110 BCH-LDPC(16200,3/5) 0.590 9552 16200 < 2.14
111 BCH-LDPC(16200,2/3) 0.656 10632 16200 < 2.14
112 BCH-LDPC(16200,3/4) 0.723 11712 16200 < 2.56
113 BCH-LDPC(16200,4/5) 0.767 12432 16200 < 2.92
114 BCH-LDPC(16200,5/6) 0.812 13152 16200 < 3.24
115 BCH-LDPC(16200,8/9) 0.879 14232 16200 < 3.98
116 BCH-LDPC(64800,1/4) 0.247 16008 64800 < 0.75
117 BCH-LDPC(64800,1/3) 0.191 12408 64800 < 0.59
118 BCH-LDPC(64800,2/5) 0.397 25728 64800 < 0.73
119 BCH-LDPC(64800,1/2) 0.497 32208 64800 < 1.05
120 BCH-LDPC(64800,3/5) 0.597 38688 64800 < 1.48
121 BCH-LDPC(64800,2/3) 0.664 43040 64800 < 1.89
122 BCH-LDPC(64800,3/4) 0.732 47408 64800 < 2.31
123 BCH-LDPC(64800,4/5) 0.797 51648 64800 < 2.67
124 BCH-LDPC(64800,5/6) 0.831 53840 64800 < 2.99
125 BCH-LDPC(64800,8/9) 0.887 57472 64800 < 3.73
126 BCH-LDPC(64800,9/10) 0.898 58192 64800 < 3.89
127 Flarion- low threshold 0.500 4096 8192 0.72 0.95 1.11 >1.43
128 Flarion- low floor 0.500 4096 8192 0.90 1.13 1.29 1.44 1.51 1.59
129 0.750 432 576
130 0.750 1008 1344
131 0.750 1728 2304
132 0.500
133 0.667
134 0.833
135 (3,4,7)LPDC(64) 0.500 64 128
136 (3,4,7)LPDC(128) 0.500 128 256
137 (3,4,7)LPDC(256) 0.500 256 512
138
139 F-LDPC (4096, ) 0.500 4096 8192 1.25 1.58 1.78 1.95
140 F-LDPC (4096, 2/3) 0.667 4096 6144 1.90 2.28 2.48 2.62
141 F-LDPC (4096, 4/5) 0.800 4096 5120 2.75 3.13 3.36 3.52
142 F-LDPC (4096, 8/9) 0.889 4096 4608 3.50 4.03 4.30 4.68
143 F-LDPC (4096, 16/17) 0.941 4096 4352 4.10 4.98 5.32 5.90
144 F-LDPC (8192, ) 0.500 8192 16384 1.22 1.50 1.65 1.75
145 F-LDPC (8192, 2/3) 0.667 8192 12288 1.90 2.18 2.34 2.48
146 F-LDPC (8192, 4/5) 0.800 8192 10240 2.70 3.05 3.18 3.30
147 F-LDPC (8192, 8/9) 0.889 8192 9216 3.50 3.90 4.10 4.25
148 F-LDPC (8192, 16/17) 0.941 8192 8704 4.20 4.90 5.13 5.50
149 F-LDPC(16k, ) 0.500 16384 32768 1.10 1.25 1.32 1.40 1.44 1.48
150 F-LDPC(16k, 2/3) 0.667 16384 24576 1.80 1.94 2.02 2.11 2.15 2.18
151 F-LDPC(16k, 4/5) 0.800 16384 20480 2.65 2.83 2.93 3.03
152 F-LDPC(16k, 8/9) 0.889 16384 18432 3.50 3.73 3.83 3.97
153 F-LDPC(16k, 16/17) 0.941 16384 17408 4.20 4.68 4.82 5.00
154 (3,1/2)+acc.
155 CRC-32
156 CRC-96
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