

SAGA: A Fast and Flexible Graph **Matching Tool**

Yuanyuan Tian, Richard C. McEachin and Jignesh M. Patel* National Center for Integrative Biomedical Informatics, University of Michigan

1. Overview

Need for Graph Matching Methods:

• Biological networks (graphs) characterize how individual molecules interact in biological processes. Example networks: pathways and protein interaction networks.

• Graph matching and graph comparison are primary operations for understanding cellular functions encoded in biological networks.

2. Model/Approach

The SAGA Graph Similarity Module:

 Allows approximate matching of node/edge labels, and structural differences (e.g. allow node/edge deletion and addition).

• A powerful mechanism for dealing with noise/partial information.

Challenges:

- Large amount of biological graph data KEGG, GenMAPP, HPRD, BIND, ...
- Graph database sizes are large and increasing in size.
- Datasets are noisy/incomplete *Approximate* graph matching is required. Approximate graph matching is computationally more expensive than exact graph matching.

3. Anecdotal Examples

The Wnt pathway is well studied, and its similarity to the hedgehog pathway can be used to understand and predict additional entries in the hedgehog pathway. • Employs an index-based method to efficiently evaluate approximate graph matching.

The Database-Centric SAGA Approach:

- Build an index on small graph substructures in the database.
- Use the index to match fragments of the query with fragments in the database, allowing for various types of mismatches.
- Assemble larger matches using a graph clique detection algorithm.

Conclusion

 The SAGA model is flexible and powerful Produces biological meaningful results

• The indexing method is efficient and scalable A query with 8 nodes and 28 edges is evaluated in a few seconds when running against a database of 12,065 graphs (with an average of 172 nodes and 21,312 edges per graph).

Future Work

- Design efficient matching algorithms for very large graph queries. e.g. aligning a large protein interaction network against a set of other protein interaction networks.
- Design efficient algorithms for other important graph operations e.g. path queries, boolean graph queries (union, intersection, difference)

Mining frequent subgraphs

Acknowledgements

This research was supported by the National Institutes of Health under grant #1-U54-DA021519-01A1.