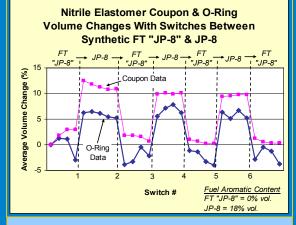


Heather McKee U.S. Army TARDEC NAC Fuel Cells & Alternative Fuels Poster #24

Using Synthetically-Derived (Fischer-Tropsch) Fuels in the U.S. Army Tactical Fleet


The Global Fischer-Tropsch (FT) Industry

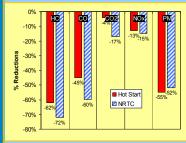
is emerging - Army TARDEC evaluations of these synthetically-derived liquid hydrocarbons pave the way for the Army to take an hantage of these non-petroleum fuel sources.

Early focus in evaluations of FT fuels:

- fuel interchangeability
- fuel lubricity
- exhaust emissions

Some elastomeric components in fuel distribution systems are affected by changes in fuel composition such as aromatic hydrocarbons

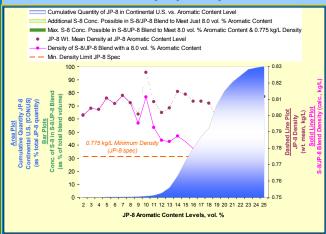
Nitrile components swell in JP-8 and then shrink when switched into FT "JP-8"; shrinking of nitrile o-rings inc reases risk of sealing failures. Use of unaffected o-ring elastomers, and use of FT hydrocarbons in blends with JP-8, are ways to reduce this risk. [TARDEC Report No. 16028]


Improved lubricity of treated synthetic fuel

			1	FT Fuel
		Duration	Change ¹	CI/LI
Test	Pump	(hours)	(mm)	(mg/L)
1	1	95.6	0.096	Untreated
	2	150.7	0.068	
2	3	500	0.007	12
	4	500	-0.006	(Min. ²)
3	5	500	0.005	22.5
	6	500	0.002	(Max. ²)
Change in roller-to-roller dimension pre-& post-te st.				
Min, and May, treat rates per ODL 25107				

Testing in rotary injection pump test rig establishes improvement in neat FT fuel treated with lubricity improver additive, CI/LI, indicative of acceptable field performance. [SAE 2004-01-2961]

Reduced tailpipe exhaust pollutants



Synthetic Fischer-Tropsch (FT) "JP-8" compared to low-sulfur cert. DF2 tested in 6.5L diesel engine. [SAE 2004-01-2961]

Recent study on blends – blending FT "JP-8" into U.S. supplies of JP-8:

Use of synthetically-derived (FT) hydrocarbons in blends with JP-8 is reasonable strategy to begin evolution towards reducing petroleum content of military's primary bulk fuel

Significant amounts of FT IPK* can be used in blends with JP-8 in Continental U.S. [CONUS] to produce fuel meeting established criteria for use of semi-synthetic jet fuel in aircraft.

(basis: JP-8 data CONUS-2004, DEF STAN 91-91) [SAE 2006-01-0702]

* FT Iso-Paraffinic Kerosene (IPK) contains no sulfur or aromatics; S-8 is FT IPK produced by Syntroleum Corp. with most properties meeting chemical/physical properties per MIL-PRF-83133 (JP-8 spec)

Current evaluations include:

- side-by-side operation of 10kW tactical gensets using diesel, JP-8, FT "JP-8", and JP-8/ FT "JP-8" blend
- Caterpillar C7 engine testing per 2× ARMY 210-hr wheeled vehicle test cycle (≅40,000 miles) to compare FT "JP-8" to JP-8