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The thrust of this project is the development of a
broader science foundation for identification of
the atomistic mechanisms of metal-assisted
hydrogen storage in nanostructured carbons.

== )

To help answer the question: “do carbon
materials or modified carbon materials have
potential for hydrogen storage?”
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Hydrogen Storage Capacities of Carbon Materials

ol Hydrogen Storage Data Literature Reference
Material H, Uptake Temperature Pressure 1st Author Publication
(wt%) (K) (MPa) of Paper Year
GNF (herringbone) 68 294 11.4 Chambers 1998
GNF (platelet) 54 294 11.4 Chambers 1998
Li-MWNT 20 ~473-673 0.1 Chen 1999
K-MWNT 14 <313 0.1 Chen 1999
GNF (tubular) 11 294 1.4 Chambers 1998
CNF ~10 294 10.1 Fan 1999
GNF ~10 294 8-12 Gupta 2000
SWNT (high purity) 8.3 80 7.2 Ye 1999
SWNT (low purity) 5-10 294 0.04 Dillon 1997
CNF =5 294 10.1 Cheng 2000
SWNT (50% purity) 4.2 294 10.1 Liu 1999
K-MWNT ~1.8 <313 0.1 Yang 2000
MWNT <1 294 e-chem Beguin 2000
SWNT ~0.1 300-520 0.1 Hirscher 2000
Various <01 294 3.5 Tibbets 2001
Activated Carbon ~1 294 12 Baker (1995)
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Carbon-only Systems: Low Storage Capacity at
Room Temperature but higher at cryogenic temp.

e Physisorption of H, in activated carbons
— Very low at room temperature
— Increases greatly at cryogenic temperatures

— Scales with surface area

e Physisorption on carbon nanotubes
— Capacity is not greater, both on as-produced

and purified NT

— Isotherms are of different type

Carbon nanotubes
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Hydrogen Storage Enhancement by Added Metals

Hydrogen Storage Data Literature Reference

a::rla::a:w :(t;:::rl]t Hz(‘l'Jvz;)a)ke Temperature Pressure 1st Author Publication
(K) (MPa) of Paper Year
Pt/ ACF <01 300 0.1 Ozaki 2000
~ 60 % Ti/SWNT 1.5 300 0.1 Hirscher 2001
20 % Ni (Co) / carbon 2.8 773 3-5 Zhong 2002
Fe, Ni, Co / GNF 6.5 300 12 Browning 2002
NiMgO / MWNT 3.6 300 6.9 Lueking 2003
Pd / ACF; Pd/ ACF 0.3 303 3 Takagi 2004
Pd /CNT 1.5 573 0.1 Yoo 2004
2.5% Pd/CNT 0.66 300 2 Zacharia 2005
1.5% V/CNT 0.69 300 2 Zacharia 2005
6 % Ni/ MWNT 2.8 300 4 Kim 2005
25 % Ni, 1.5 % Y /| SWNT 0.1 300 6 Costa 2005
15 % Ni, 2 % Y / SWNT 3 77 0.04 Callejas 2004
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Carbon as a catalyst support

* 1960s: GE pioneers PEM fuel cells using
Pt/carbon black electrocatalyst

* 1964: Robell, Ballou and Boudart attempted to
measure Pt dispersion by chemisorption of H.,.

* Much more H, was adsorbed than
expected, if all Pt atoms were surface

atoms.
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The Rationale of Our Approach

In catalytic systems, spillover works like a H-pump
« H, dissociates into H atoms on metal particles (Group VIII catalyst)
« H atoms are consumed in reactions with another reagent (hydrogenation etc)

In hydrogen storage systems, the H-pump needs a stable “well” for

storage of H atoms:
« H, dissociates into H atoms on Group VIII catalyst
« H atoms must find stable positions for storage on carbon nanostructures

—_—

———
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The optimal system for H storage must have the catalyst sites
(metal particles) and the “well” (defective carbon
nanostructure) in a close spatial relationship.
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Basic Assumptions

The enhancement of H, storage in metal-doped
nanostructured carbons results from synergetic
combination of two factors:

e Hydrogen spillover
— metal as a catalyst

e Availability of appropriate carbon nanostructures
— metal as a structure former
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Tasks

e Theory & Simulation
— First-principles calculations of H, and H interaction with graphene sheets

— Grand Canonical Monte Carlo (GCMC simulations) of hydrogen absorption/desorption
— (POSTER Presentation)

o Synthesis of Pd-Doped Activated Carbon Fiber (ACF) from an
Isotropic Pitch Precursor
— Role of pitch chemistry in stabilization and dispersion of metal nanoparticles
— Effect of metal precursors on stabilization and dispersion of metal nanoparticles in pitch
— Effect of heat treatment conditions on dispersion of metal particles
— Metal selection

e Materials Characterization
— Metal nanoparticles: formation and properties
— Nanostructure of carbon in the neighborhood of metal particles
— Surface and pore size distributions measurements
— Hydrogen storage measurements
— ldentification of hydrogen-containing entities
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Development of Metal-Containing
Activated Carbon Fibers
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STEM Characterization of Pd-containing
ACF
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High Resolution STEM of Carbon Nanostructure
Around a ~ 5 nm Size Pd Particle

Pd particle
Small domains of parallel (but disordered) graphene layers
Larger domains of turbostratic carbon
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Understanding the development of Pd
particles throughout the ACF production

process
Pitch selection and mixing
Heat treating
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Control dispersion and particle size of
metal particles in the ACF
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Oligomeric Pitches From Petroleum by-Products
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Control of Precursor Pitch by Dense Gas Extraction

Goal: Maximize the dispersion of metal-containing particles by
tailoring the molecular composition of the precursor pitch.
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Extraction of Commercial Pitches

e Commercially available A-240 and M-50 pitch are being evaluated
e Different operating conditions yield different bottom products
e Significant quantities of bottom product are attainable
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On-going work at Clemson includes:

e Fractionation of pitch in order to optimize spinnability
and chemical interactions with metals

e Characterization of molecular structure and
composition of optimum pitch fraction

e Study the effect of mixing parameters and metal
precursor on particle dispersion

e Optimize heat treatment conditions in order to
minimize metal particle sintering
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Transformation during Heat Treatment
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Transformation during carbonization (in-situ XRD)
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Transformation during carbonization (in-situ XRD)
Observations:

» PdO peak disappeared after ~ 275°C

= Above 675°C, a small shoulder which should be Pd
(111) peak appeared This peak grows with
Increasing temperature.

* The strongest Pd peaks was seen in the pattern of the
sample after cooling down to 25°C.
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Understanding Particle Growth During
Carbonization and Activation
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During Activation:
 Pd crystallite size increases
e Graphite 002 peak decreases

g
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Carbon Structures Revealed by HREM

Pd-containing fiber before
I activation (0% BO)

Pd-containing fiber after
CO, activation (20% BO)
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Observations

= Presence of Pd during carbonization affects the atomic
and electronic structure of carbon.

= After the stabilization step, Pd was well dispersed in
carbon by current preparation procedures.

= The conversion of PdO to Pd in inert gas occurred at
temperatures > 200°C.

= The sintering of Pd nanoparticles was observed during
both carbonization and activation steps.

OAK RIDGE NATIONAL LABORATORY

U. S. DEPARTMENT OF ENERGY UT-BATTELLE




On-going work

e Optimization of heat treating process in order to
control particle sintering and preserve high dispersion
— one-step carbonization/activation

e Understanding the effect of metal particles on local
carbon structure and electronic properties
— Continue work with in-situ x-ray analysis

— High resolution STEM and EELS analysis using aberration
corrected microscope (POSTER)
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Hydrogen Uptake on Metal-Containing
Activated Carbon Fibers
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Gravimetric Adsorption Instrument

IGA System (Hiden Analytical) e 200 & 1000 mg sample capacity

e Balance resolution of 1 ug

e Up to 20 bar pressure below 500°C
e 1 bar pressure at 1000°C

e On-line mass spectrometer

Procedure

« Sample size ~ 100 mg

Outgas to 10-°* mbar at 300°C
Measure He density (buoyancy)
Slow pressurizing rate

Long equilibrium time

In-line MS monitoring
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Hydrogen isotherm (at 30°C) of Pd sponge shows
hydride formation and hysteresis at low pressure
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Initial Hydrogen storage measurements
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In-situ High-Pressure X-ray Diffraction Studies

Hydride Formation at 1 bar H, Pressure

Pd peak after exposure to
H, (shows reversal of
hydride peak to Pd)

Pd peak under H, (1 bar)
(shows hydride formation)
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On-going Work

e Use Anton PAAR stage for high pressure (10 bar) in-situ XRD
measurements under H, loading at RT

e Monitor changes on carbon 002 peak caused by exposure to high
pressure H,

— Do expansions of carbon lattice occur ?
— Do irreversible changes in carbon structures occur on cycling ?

e |dentify changes in Pd phase and particle size with increasing H,
pressure

— Correlate with high pressure H, adsorption / desorption results
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Summary

e Conditions for mixing Pd salt in the pitch precursor were found, which
ensure good dispersion of PdO in spun and stabilized fibers

e Using TGA, STEM, and in-situ high temperature XRD, the effect of heat
treatment conditions on dispersion and phase composition of Pd was
understood

o A strategy was designed for limiting the sintering of Pd by combining
carbonization and activation in a single step

e Aberration-corrected HR-STEM and EELS spectra are being used to
characterize local atomic and electronic structures on carbon atoms in
Pd-ACF. It was found that presence of Pd during carbonization affects
local structures on carbon atoms.

e Using in-situ controlled atmosphere XRD it was shown that Pd hydride
is reversibly formed on contact with H,, and the degree of
transformation is pressure-dependent.

e H, sorption was monitored gravimetrically (RT, 20 bar) in well
controlled conditions. Presence of Pd (1.9 %) induces a 27%
enhancement of adsorption, corresponding to H/Pd = 1.7. This is an
indirect proof of H, spillover on Pd-ACF (even at 20 % b/o).
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Future Work

e Identify pitch fractions with uniform chemical composition and good spinnability
and use for controlled synthesis of Pd-doped fibers

e With Dan Edie — Clemson Univ.
e Confirm spillover mechanism

— Demonstrate enhanced adsorption in physical mixtures containing a H atom source
(Pd-ACF) and a H receptor (ACF)

e with Ralph Yang — Univ. Missouri
— Direct evidence from neutron scattering studies
e with Danny Neumann - NIST
— ldentify the role of “chemical bridges” at Pd-carbon interface
e HRTEM
e Confirm the role of Pd as a defect former in carbon structure

— Sub-Angstrom resolution STEM in combination with EELS and in-depth analysis of
XRD and neutron diffraction data

e Confirm dynamic effects of H, on carbon structures
— In-situ high pressure XRD
— Neutron scattering

e Use accurate H, adsorption measurements at cryogenic temperatures and < 1
bar to characterize micropores accessed by H, , and predict H, adsorption at
high pressures and temperatures based on DlgT models

e with Jacek Jagiello — Quantachrome
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