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The thrust of this project is the development of a 
broader science foundation for identification of 

the atomistic mechanisms of metal-assisted 
hydrogen storage in nanostructured carbons.

To help answer the question: “do carbon 
materials or modified carbon materials have 

potential for hydrogen storage?”
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Hydrogen Storage Capacities of Carbon Materials
Hydrogen Storage Data Literature Reference

H2 Uptake
(wt%)

Temperature
(K)

Pressure
(MPa)

1st Author
of Paper

Publication
Year

GNF (herringbone) 68 294 11.4 Chambers 1998

GNF (platelet) 54 294 11.4 Chambers 1998

K-MWNT ~ 1.8 < 313 0.1 Yang 2000

Li-MWNT 20 ~ 473-673 0.1 Chen 1999

K-MWNT 14 < 313 0.1 Chen 1999

GNF (tubular) 11 294 11.4 Chambers 1998

CNF ~ 10 294 10.1 Fan 1999

GNF ~ 10 294 8-12 Gupta 2000

SWNT (high purity) 8.3 80 7.2 Ye 1999

SWNT (low purity) 5-10 294 0.04 Dillon 1997

CNF ~ 5 294 10.1 Cheng 2000

SWNT (50% purity) 4.2 294 10.1 Liu 1999

MWNT < 1 294 e-chem Beguin 2000

SWNT ~ 0.1 300-520 0.1 Hirscher 2000

Various < 0.1 294 3.5 Tibbets 2001

Activated Carbon ~ 1 294 12 Baker (1995)

Carbon
Material
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Carbon-only Systems: Low Storage Capacity at 
Room Temperature 

• Physisorption of H2 in activated carbons
− Very low at room temperature
− Increases greatly at cryogenic temperatures
− Scales with surface area
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• Physisorption on carbon nanotubes
− Capacity is not greater, both on as-produced 

and purified NT
− Isotherms are of different type

Gallego (ORNL) unpublished 
results (2002-2003)

Wood based Carbon at 77 K

0
1
2
3
4
5
6

0 50 100 150 200
Pressure [bar]

M
as

s 
up

ta
ke

 [%
]

Adsorption
Desorption

but higher at cryogenic temp.



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Hydrogen Storage Enhancement by Added Metals

Hydrogen Storage Data Literature Reference

H2 Uptake
(wt%)

Temperature
(K)

Pressure
(MPa)

1st Author
of Paper

Publication
Year

Pt / ACF < 0.1 300 0.1 Ozaki 2000

~ 60 % Ti/SWNT 1.5 300 0.1 Hirscher 2001

20 % Ni (Co) / carbon 2.8 773 3-5 Zhong 2002

NiMgO / MWNT 3.6 300 6.9 Lueking 2003

Fe, Ni, Co / GNF 6.5 300 12 Browning 2002

Pd  / ACF; Pd / ACF 0.3 303 3 Takagi 2004

Pd / CNT 1.5 573 0.1 Yoo 2004

2.5 % Pd / CNT 0.66 300 2 Zacharia 2005

1.5 % V / CNT 0.69 300 2 Zacharia 2005

6 % Ni / MWNT 2.8 300 4 Kim 2005

25 % Ni, 1.5 % Y / SWNT 0.1 300 6 Costa 2005

15 % Ni, 2 % Y / SWNT 3 77 0.04 Callejas 2004

Carbon Material
and Metal Content
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Carbon as a catalyst support

Carbon 
alone

1 % Pt / carbon

Expected, if all Pt on surface

350 oC; 600 Torr H2

• 1960s: GE pioneers PEM fuel cells using 
Pt/carbon black electrocatalyst

• 1964: Robell, Ballou and Boudart attempted to 
measure Pt dispersion by chemisorption of H2.

• Much more H2 was adsorbed than 
expected, if all Pt atoms were surface 
atoms.

Fast adsorption, dissociative
Slow (activated) surface diffusion

Robell, Balou, Boudart, J. Phys. Chem. (1964)
Burstein, Lewin, Petrow, Physik Z. (1933)

• H2 spillover = dissociation + slow surface 
diffusion + remote storage
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The Rationale of Our Approach

In catalytic systems, spillover works like a H-pump
• H2 dissociates into H atoms on metal particles (Group VIII catalyst)
• H atoms are consumed in reactions with another reagent (hydrogenation etc)

In hydrogen storage systems, the H-pump needs a stable “well” for 
storage of H atoms:

• H2 dissociates into H atoms on Group VIII catalyst
• H atoms must find stable positions for storage on carbon nanostructures

The optimal system for H storage must have the catalyst sites 
(metal particles)  and the “well” (defective carbon 

nanostructure) in a close spatial relationship.
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Basic Assumptions

The enhancement of H2 storage in metal-doped 
nanostructured carbons results from synergetic 
combination of two factors:

• Hydrogen spillover 
− metal as a catalyst

• Availability of appropriate carbon nanostructures
− metal as a structure former
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Tasks
• Theory & Simulation

− First-principles calculations of H2 and H interaction with graphene sheets
− Grand Canonical Monte Carlo (GCMC simulations) of hydrogen absorption/desorption 
− (POSTER Presentation)

• Synthesis of Pd-Doped Activated Carbon Fiber (ACF) from an 
Isotropic Pitch Precursor
− Role of pitch chemistry in stabilization and dispersion of metal nanoparticles
− Effect of metal precursors on stabilization and dispersion of metal nanoparticles in pitch
− Effect of heat treatment conditions on dispersion of metal particles
− Metal selection

• Materials Characterization
− Metal nanoparticles: formation and properties
− Nanostructure of carbon in the neighborhood of metal particles
− Surface and pore size distributions measurements
− Hydrogen storage measurements
− Identification of hydrogen-containing entities
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Development of Metal-Containing 
Activated Carbon Fibers
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Characterization / Application

Activation

Activated carbon fibers

Oxidation / Stabilization

Carbonization

Mixing

Melt-spinning

Isotropic pitch

Metal salt
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STEM Characterization of Pd-containing 
ACF

30 nm

100 nm

100 nm

Z-contrast images

EDS
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High Resolution STEM of Carbon Nanostructure 
Around a ~ 5 nm Size Pd Particle 

5 nm

Pd

Pd particle
Small domains of parallel (but disordered) graphene layers 
Larger domains of turbostratic carbon 
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Understanding the development of Pd 
particles throughout the ACF production 

process
Pitch selection and mixing

Heat treating

Control dispersion and particle size of 
metal particles in the ACF
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Oligomeric Pitches From Petroleum by-Products

Dickinson, 1985
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Goal: Maximize the dispersion of metal-containing particles by 
tailoring the molecular composition of the precursor pitch.

ΔT
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Control of Precursor Pitch by Dense Gas Extraction
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Extraction of Commercial Pitches

• Commercially available A-240 and M-50 pitch are being evaluated
• Different operating conditions yield different bottom products 
• Significant quantities of bottom product are attainable 
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On-going work at Clemson includes:

• Fractionation of pitch in order to optimize spinnability
and chemical interactions with metals

• Characterization of molecular structure and 
composition of optimum pitch fraction

• Study the effect of mixing parameters and metal 
precursor on particle dispersion 

• Optimize heat treatment conditions in order to 
minimize metal particle sintering
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Transformation during Heat Treatment
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Transformation during carbonization (in-situ XRD)
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Transformation during carbonization (in-situ XRD) 
Observations:

PdO peak disappeared after ~ 275oC

Above 675oC, a small shoulder which should be Pd 
(111) peak appeared. This peak grows with 
increasing temperature. 

The strongest Pd peaks was seen in the pattern of the 
sample after cooling down to 25oC. 
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Understanding Particle Growth During 
Carbonization and Activation

Oxidized fiber
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0% BO

20% BO

47% BO

62% BO

73% BO

Crystallite size 
(nm) of Pd 

calculated from 
(111) peaks:

0% 47
20% 70
47% 62
62% 96
73% 69

During Activation:
• Pd crystallite size increases
• Graphite 002 peak decreases
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Pd-containing fiber before 
activation (0% BO)

Pd-containing fiber after 
CO2 activation (20% BO)

Carbon Structures Revealed by HREM
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Observations

Presence of Pd during carbonization affects the atomic 
and electronic structure of carbon.
After the stabilization step, Pd was well dispersed in 
carbon by current preparation procedures.
The conversion of PdO to Pd in inert gas occurred at 
temperatures > 200oC.
The sintering of Pd nanoparticles was observed during 
both carbonization and activation steps. 
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On-going work

• Optimization of heat treating process in order to 
control particle sintering and preserve high dispersion
− one-step carbonization/activation

• Understanding the effect of metal particles on local 
carbon structure and electronic properties 
− Continue work with in-situ x-ray analysis
− High resolution STEM and EELS analysis using aberration 

corrected microscope (POSTER)
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Hydrogen Uptake on Metal-Containing 
Activated Carbon Fibers



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Gravimetric Adsorption Instrument

• 200 & 1000 mg sample capacity
• Balance resolution of 1 μg 
• Up to 20 bar pressure below 500ºC
• 1 bar pressure at 1000ºC
• On-line mass spectrometer

IGA System (Hiden Analytical)

Procedure

• Sample size ~ 100 mg
• Outgas to 10-6 mbar at 300ºC
• Measure He density (buoyancy)
• Slow pressurizing rate
• Long equilibrium time
• In-line MS monitoring
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Hydrogen isotherm (at 30oC) of Pd sponge shows 
hydride formation and hysteresis at low pressure

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1

Pressure (MPa)

M
as

s 
up

ta
ke

  (
%

)  
  

Blue = adsorption
Red = desorption

0.66 % H → PdH0.706 

0

0.2

0.4

0.6

0.8

0 0.005 0.01



OAK RIDGE NATIONAL LABORATORY
U. S. DEPARTMENT OF ENERGY

Initial Hydrogen storage measurements

At 25oC and 2 MPa

K-230-20:         0.14%
K-230-Pd-20:    0.17%

which gives a increase 
of ~ 27%.
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This is over 2.5 times 
more than what is 
expected based on 
formation of PdH0.706

In fact, this corresponds 
to H/Pd = 1.7Sample K-230-Pd-20:

• 20% BO     SA: ~800 m2/g
• 1.9 wt % Pd
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Pd peak after exposure to 
H2 (shows reversal of 
hydride peak to Pd)

Pd peak under vacuum

Pd peak under H2 (1 bar) 
(shows hydride formation)

Hydride Formation at 1 bar H2 Pressure

In-situ High-Pressure X-ray Diffraction Studies
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• Use Anton PAAR stage for high pressure (10 bar) in-situ XRD 
measurements under H2 loading at RT

• Monitor changes on carbon 002 peak caused by exposure to high 
pressure H2
− Do expansions of carbon lattice occur ?
− Do irreversible changes in carbon structures occur on cycling ?

• Identify changes in Pd phase and particle size with increasing H2
pressure 
− Correlate with high pressure H2 adsorption / desorption results

On-going Work
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Summary
• Conditions for mixing Pd salt in the pitch precursor were found, which 

ensure good dispersion of PdO in spun and stabilized fibers

• Using TGA, STEM, and in-situ high temperature XRD, the effect of heat 
treatment conditions on dispersion and phase composition of Pd was 
understood

• A strategy was designed for limiting the sintering of Pd by combining 
carbonization and activation in a single step

• Aberration-corrected HR-STEM and EELS spectra are being used to 
characterize local atomic and electronic structures on carbon atoms in 
Pd-ACF. It was found that presence of Pd during carbonization affects 
local structures on carbon atoms.

• Using in-situ controlled atmosphere XRD it was shown that Pd hydride 
is reversibly formed on contact with H2, and the degree of 
transformation is pressure-dependent.

• H2 sorption was monitored gravimetrically (RT, 20 bar) in well 
controlled conditions. Presence of Pd (1.9 %) induces a 27% 
enhancement of adsorption, corresponding to H/Pd = 1.7. This is an 
indirect proof of H2 spillover on Pd-ACF (even at 20 % b/o).
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Future Work
• Identify pitch fractions with uniform chemical composition and good spinnability

and use for controlled synthesis of Pd-doped fibers
• With Dan Edie – Clemson Univ.

• Confirm spillover mechanism
− Demonstrate enhanced adsorption in physical mixtures containing a H atom source 

(Pd-ACF) and a H receptor (ACF) 
• with Ralph Yang – Univ. Missouri

− Direct evidence from neutron scattering studies 
• with Danny Neumann - NIST

− Identify the role of “chemical bridges” at Pd-carbon interface 
• HRTEM

• Confirm the role of Pd as a defect former in carbon structure
− Sub-Angstrom resolution STEM in combination with EELS and in-depth analysis of 

XRD and neutron diffraction data
• Confirm dynamic effects of H2 on carbon structures

− In-situ high pressure XRD 
− Neutron scattering

• Use accurate H2 adsorption measurements at cryogenic temperatures and < 1 
bar to characterize micropores accessed by H2 , and predict H2 adsorption at 
high pressures and temperatures based on DFT models

• with Jacek Jagiello – Quantachrome
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