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Abstract

We develop and analyze a numerical method for creating an adaptive moving grid in one,
two and three-dimensional regions. The method distributes grid nodes according to a given
analytic or discrete weight function of the spatial and time variables, which reflects the fine
structure of the solution. The weight function defines a vector field which is used to construct
a transformation of the computational domain into the physical domain. We prove that the
resulting grid has the prescribed cell sizes and that no “mesh tangling” occurs. Numerical
implementation of the method utilizes efficient and robust least-squares solver to compute the
vector field and a fourth order Runge-Kutta scheme to determine the transformation. Results
of several numerical experiments in one and two-dimensions are also presented. These results
indicate, among other things, that the method accurately redistributes the nodes and does not
tangle the mesh.

1 Introduction

In many practical applications one has to solve numerically differential equations whose solutions
exhibit boundary layers, singularities or shocks. An obvious disadvantage in using fixed grids for
such problems is that the grid points are distributed in the physical domain before any details on
the nature of the solution are known. As a result, the generated numerical data fails to reflect
the true nature of the solution. One approach which leads to improved accuracy and efficiency
is to consider adaptive methods. A characteristic trait of such methods is the use of grids which
are generated according to the salient features of the solution. In general one may distinguish two
common situations in which need for adaptivity arises. In the first case, which is typical for steady
state problems, location of the regions where more resolution is needed is fixed and adaptivity can be
efficiently implemented using local refinement techniques; see, e.g., [4], [11], and the comprehensive
collection [3]. The second case is typical for time dependent problems. Solutions of such problems
may not only involve large variations due to shock waves and contact surfaces, but the location
of these variations may also change in time. The additional resolution needed in corresponding
regions can again be provided by means of local refinement. However, since these regions change
with time, grids generated at a particular time step may not be suitable for the subsequent time
steps, and have to be replaced by new grids. As a result, the use of local refinement may become
computationally demanding, in particular for complex geometries in three dimensions where the
cost for grid generation becomes a significant factor in the overall performance of the method.
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In this paper we pursue an alternative, moving grid approach in which instead of adding new
nodes, the grid points are moved where and when the need arises. Methods based on moving grids
have several potentially valuable computational properties, in particular for complex geometries
in three-dimensions. Such methods do not require complicated data structures since the reference
domain is not changed. Moreover, cost of moving the grid is limited to computation of the new
physical coordinates of the grid points. As a result, overall efficiency of a moving grid adaptive
method can be significantly improved.

Among the moving grid methods that have been introduced are the Moving Finite Element method
(MFE) of Miller [20]-[21]. This method controls the movement of the grid by a process based on the
equidistribution of the residual of the original equations written in finite element form. Recently
Huang et. al. [14] developed an approach based on continuous moving meshes equations which
they call Moving Mesh Partial Differential Equations (MMPDE), This approach is based on the
equidistribution of some measure of error using finite difference schemes. More adaptive moving
grid methods can be found in Hawken et. al. [13], and in the recent monograph by Zegeling [26].

In general, moving grid methods are well received for one-dimensional problems; see, e.g., [14] and
[26]. At the same time, moving grid methods in two and three-dimensions may introduce “mesh
tangling” and have been subject to a just criticism. Thus, the main goal of this paper is to devise
efficient grid moving algorithms for one, two and three space dimensions which can be shown to
be “mesh tangling” free in a rigorous mathematical way. To accomplish this we introduce a new
approach based on the principle of equidistribution of a continuous moving grid method. Given a
weight function f(x, t),x ∈ RI n, t ∈ RI , the method simultaneously redistributes the grid points so
that the cell size is equal to value of the weight function for all x and t.

Our method generates the moving grid in two stages. On the first stage a given analytic or
discrete weight function is used to construct a vector field with vanishing normal component on the
boundary which satisfies a div-curl system. On the second stage, this vector field is used to generate
a transformation which updates the grid. Our numerical implementation of the grid moving method
incorporates several novel approaches. In particular, we use a least-squares finite element method
to construct the vector field. This offers significant advantages in the algorithmic design of the
moving grid method. For example, stable approximation of the vector field does not demand finite
element spaces which satisfy inf-sup condition. Computation of this field requires solution of linear
system of algebraic equations with symmetric and positive definite matrix which can be solved by
efficient iterative methods, such as conjugate gradients. As a result, assembly of the discretization
matrix can be avoided, even at the element level. Second, the essential boundary condition can be
enforced in a weak, variational sense, simplifying further the required finite element spaces. As a
result, the least-squares solver for the div-curl system is highly efficient in two and three-dimensions.

The paper is organized as follows. In Section 2 we introduce the equidistribution principle upon
which the moving grid method is based. In the same section we present theoretical analysis of our
algorithm. Then, in Section 3, we consider numerical implementation of this algorithm. Finally, in
Section 4 we present results of numerical experiments with the grid moving method involving grids
on one and two-dimensional regions and various analytic weight functions.

Let us now establish the notation used throughout this paper. We shall use bold face symbols to
denote vectors. Ω will denote bounded region in RI n, n = 2, 3 with Lipschitz continuous boundary
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Γ. With C we shall denote a generic, positive constant which may depend on the particular domain
Ω, but is independent from any grid parameters. As usual, L2(Ω) will denote the Hilbert space of
all square integrable functions on Ω with inner product (·, ·) and norm ‖ · ‖0. The Sobolev space
H1(Ω) is defined as the space of all L2(Ω) functions whose derivatives are also in L2(Ω), and H1

n(Ω)
will denote the space of all vector functions in RI n, n = 2, 3 with vanishing normal component on
the boundary Γ, i.e.,

H1
n(Ω) = {u ∈ [H1(Ω)]N , |u · n = 0 on Γ} (1)

We also agree to use ‖ · ‖1 for the norm on both H1(Ω) and H1
n(Ω). Finally, we recall that in

two-dimensions there are two curl operators. If v ∈ RI 2, then the operator curl maps v into the
scalar function curlv. If v is three-dimensional vector field, then curl v is again vector field in RI 3.
However, to avoid multiplicity of notation we agree to use curl for both curl operators.

2 Solution-adaptive moving grid method

The goal of this section is to formulate the grid moving method and to present its theoretical
analysis. Our main result is that constructed grids satisfy the equdistribution principle without
mesh tangling.

The equidistribution principle involves selecting spatial grid points in such a manner that some
measure of the solution error is equalized over each subinterval. Thus, in regions where solution error
is large, equidistribution allows greater concentration of grid points. Similarly, equidistribution
allows for a lower concentration of grid points in regions where solutions are smooth. In one-
dimension, this principle can be formulated in the following manner:

Consider the transformation x(ξ), from a uniform grid in ξ-space, where the coordinate
ξ identify the gridpoints. The equidistribution principle then is (see, e.g., [1], [24])

xξ f = constant,

where xξ represents the variation in x between gridpoints and f is the weight function.
In such a case we say that the weight function f is equidistributed over the grid.

In the general case let f(x, t) : Ω 7→ RI be a given weight function. Such function must satisfy several
conditions. First, f(x, t) must be strictly positive, and it must have nonzero lower bound. Second,
f(x, t) must be differentiable, and lastly, the weight function must have the following normalization
property ∫

Ω

( 1
f
− 1

)
dx = 0.

With the given weight function we associate a one-to-one mapping ϕ(x, t) from the computational
domain Ω into the physical domain Ω. In order for the gridpoints to be equidistributed we now
require that

det∇ϕ(x, t) = f(ϕ(x, t), t), all x ∈ Ω, and t > t0. (2)

Indeed, recall that the volume element in the physical variable is given by det∇ϕ(x, t)dx, i.e., it
is proportional to det∇ϕ(x, t). As a result, (2) guarantees that volume elements in the physical
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grid will satisfy the equidistribution principle. In what follows we shall focus our attention on the
construction of the mapping ϕ and its analytical properties. For this purpose f can be any function
with the properties described above. In realistic situations, however, the weight function is subject
to some additional constraints. For example, it should reflect the need for grid refinement of the
underlying problem, i.e., one has to choose the mechanism under which the changes in the exact (or
approximate) solution will be accounted for by the weight function. One possible relation between
solutions u and weight functions can be described as

f(x, t) =
C

1 + α1|∇u|2 + α2|u|2
,

where C is a normalizing factor which may depend on t; see, e.g., [26]. Another possibility discussed
in [14] is to consider relations of the form

f(x, t) =
C√

1 + α|∇u|2
,

or, the, even simpler, weight function, see [14],

f(x, t) =
C

1 + |u|
.

In addition, in realistic problems one has to consider discrete weight functions which are generated
by the solvers error estimator. For this purpose one can use, for example, local posteriori estimates
of errors based on local residuals; see, e.g., [3] and [4]. To treat discrete weight functions within
the framework of our grid moving method, we assume that such functions are replaced by suitably
defined interpolants, which we denote again by f .

Let us now describe the grid moving method. In the center of our approach is construction, for a
given weight function f , of a mapping ϕ which satisfies the equidistribution principle (2). For this
purpose we first define a vector field v, using the given weight function f , as follows:

div v(x, t) = − ∂

∂t

(
1

f(x, t)

)
in Ω (3)

curl v = 0 in Ω (4)
v · n = 0 on Γ . (5)

Then, in order to construct the diffeomorphism ϕ we consider the following system of ordinary
differential equations for a fixed node x in Ω:

∂

∂t
ϕ(x, t) = v(ϕ, t) · f(ϕ, t) t > t0 (6)

ϕ(x, t0) = ϕ0(x) t = t0 . (7)

Note that conditions (3) and (6) imply (2). Equation (4) is imposed for two reasons. First, together
with the boundary condition (5) it ensures the existence of a unique vector field v. Second, (4)
also means that v is irrotational, which helps to improve the shape of grid cells. Our goal now
will be to show that the mapping ϕ(x, t) obeys the principle of equidistribution (2), i.e., that the
new coordinates of the grid points computed by ϕ(x, t) are equidistributed according to the given
weight f(x, t). This result is established in the next theorem.
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Theorem 1 Let ϕ denote the solution of (6), (7) and let

H =
det∇ϕ(x, t)
f(ϕ(x, t), t)

.

Then
∂H

∂t
= 0, for all t ≥ t0.

Proof:

We have that
∂H

∂t
=

1
f(ϕ, t)

∂

∂t
det∇ϕ(x, t) + det∇ϕ(x, t)

d

dt

(
1

f(ϕ, t)

)
.

Recall that if
d

dt
ψ(t) = A(t)ψ(t)

then
d

dt
detψ(t) = TrA(t)detψ(t).

Applying the above with ψ(t) = ∇xϕ and (6), we have

∂

∂t
∇(ϕ) = ∇ ∂

∂t
(ϕ) = ∇(v(ϕ, t)f(ϕ, t)).

Let η = v(ϕ, t)f(ϕ, t). Then

∇(v(ϕ, t)f(ϕ, t)) = ∇ϕη∇xϕ = (∇ϕη)ψ,

and
d

dt
det ψ(t) = Tr(∇ϕη)(detψ) = Tr(∇ϕη)det∇xϕ.

As a result,
d

dt
J(t) = div ϕηJ(ϕ),

where J(ϕ) = det ψ(t). Consider

Ḣ

J
=

div η
f(ϕ, t)

+
d

dt

(
1

f(ϕ, t)

)
(8)

Since v = η/f, it follows that

div ϕv(ϕ, t) =
div ϕη

f
+ 〈η,∇ϕ

1
f
〉. (9)

Now

d

dt

(
1

f(ϕ, t)

)
=

〈
∇ϕ

1
f
, ϕ̇

〉
+
∂

∂t

1
f(ϕ, t)

=
〈
∇ϕ

1
f
, η

〉
− div ϕv(ϕ, t). (10)
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Then, by virtue of (9) and (10), the right hand side of (8) vanishes:

div ϕ v −
〈
η,∇ϕ

1
f

〉
+

〈
∇ϕ

1
f
, η

〉
− div ϕv(ϕ, t) = 0.

As a result, we have that ∂H
∂t ≡ 0.

Corollary 1 The mapping ϕ constructed above satisfies

det ∇ϕ(x, t) = f(ϕ(x, t), t) for all t ≥ t0, all x ∈ Ω.

Proof: At t = 0, H(0) = 1. Hence by Theorem 1

H(t) =
det ∇ϕ(x, t)
f(ϕ(x, t), t)

= 1

for all t ≥ t0, all x ∈ Ω.

The above deformation method was outlined in [16] and [17]. It has its origin in Riemannian
geometry through the work of J. Moser [22]. The method has been applied to the grid generation
problem in steady form in [15] and [19]. The moving grid method in 1+1 dimensions was proposed
in [18] and was implemented in [16].

Let us now discuss the issue of grid tangling under the mapping ϕ. It is well-known that a mapping
σ : D1 7→ D2 in RI n maps D̄1 one to one and onto D̄2, if

1. σ|∂D1
maps ∂D2 one to one and onto ∂D1;

2. J(σ) > 0 in the interior of D1.

The main idea is that J(σ) > 0 at x ∈ D1 implies the existence of an open set around x which
is mapped one to one onto an open set around σ(x) ∈ D2 by the inverse mapping theorem. By
an argument based on degree theory, the global one to one property of σ can be obtained if σ,
restricted to ∂D1, maps ∂D1 onto ∂D2 in one to one manner; see e.g., [10] and [23]. Recall that in
the present context the Jacobian J(ϕ) is equal to the weight function f , which is strictly positive
Therefore, if ϕ(x, t) holds each boundary node fixed, then ϕ is one to one and no grid tangling can
occur. When the grid points on the boundary are allowed to move along the boundary, then the
grid points in the interior will not tangle, provided the boundary nodes do not tangle.

3 Numerical implementation

Numerical implementation of the moving grid algorithm is essentially equivalent to approximate
computation of the action of the mapping ϕ on the grid point coordinates x. Thus, successful
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implementation of this algorithm hinges on efficient and fast solution of the div-curl system (3)-
(5) and the ordinary differential equation (6), (7). Solution of the system (6), (7) is essentially
independent from the dimension of the region Ω, and does not pose a serious problem. Here, for
this purpose we have chosen an explicit 4-th order Runge-Kutta method. We recall that given an
ODE of the form

y′ = η(t, y); y(t0) = y0 ,

the 4-th order Runge-Kutta scheme is given by

yi+1 = yi +
1
6

(k1 + 2k2 + 2k3 + k4) ,

k1 = ∆tη(xi, yi)

k2 = ∆tη
(
ti +

∆t
2
, yi +

k1

2

)
(11)

k3 = ∆tη
(
ti +

∆t
2
, yi +

k2

2

)
k4 = ∆tη(ti + ∆t, yi + k3) .,

where ∆t denotes the time step. More sophisticated methods, such as predictor-corrector schemes
can be used in the implementation as well; see, e.g., [19].

Within the context of the grid moving method an effective solver for (3)-(5) must satisfy several
stringent conditions. First, the solver should be easy to implement for regions in RI 2 and RI 3 with
complex geometries. This requirement stems from the fact that boundary conditions of the form
(5) are not easy to satisfy exactly, unless the domain Ω is polyhedron or polygon. Second, this
solver should not be computationally demanding. Last, but not least, the solver should not require
significant additional storage. To meet all these criteria here we shall use a finite element solver
based on application of least-squares variational principles. The use of such principles avoids the
inf-sup condition and permits discretization of the equations (3), (4) using standard finite element
spaces. Moreover, the resulting algebraic system is symmetric and positive definite, and can be
solved using robust and efficient iterative methods. For example, solution of this system can be
accomplished by means of preconditioned conjugate gradients method. As a result, solution method
for (3)-(5) can be devised without assembly of the discretization matrix, even at the element level.
Finally, the use of least-squares principles allows one to enforce boundary condition (5) in a weak,
variational sense, which is beneficial when (3)-(5) must be solved on regions with complicated
geometries.

3.1 Finite Element Method for div-curl System

In this section we introduce a least-squares variational principle for the div-curl system

div u = f in Ω (12)
curl u = g in Ω (13)

along with the boundary conditions (5). We first show that the least-squares principle leads to
a well-posed variational problem. Then we formulate a finite element method for approximate
numerical solution of (12)-(13), and (5), and present discretization error estimates.
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We consider the following least-squares quadratic functional

J (u, f,g) = ‖div u− f‖2
0 + ‖curl u− g‖2

0 (14)

The least-squares variational principle for (14) is given by

Seek u ∈ H1
n(Ω) such that J (u, f,g) ≤ J (v, f,g) for all v ∈ H1

n(Ω). (15)

It is not difficult to see that the Euler-Lagrange equation for (14) is equivalent to following varia-
tional problem

Seek u ∈ H1
n(Ω) such that B(u,v) = F(v) for all v ∈ H1

n(Ω). (16)

where
B(u,v) = (div u,div v) + (curl u, curl v) (17)

and
F(v) = (div v, f) + (curl v,g) . (18)

To prove existence and uniqueness of minimizers of (14) out of H1
n(Ω) we shall need the following

result which can be found in [12].

Lemma 1 Assume that Ω is simply connected domain in RI n, n = 2, 3. Assume that the boundary
Γ is Lipschitz-continuous or piecewise smooth with no reentrant corners. Then, for all functions in
H1

n(Ω) there exists a positive constant C such that

‖v‖1 ≤ C (‖div v‖0 + ‖curl v‖0) (19)

Lemma 1 essentially means that
√
B(u,u) is equivalent to the H1 norm on the space H1

n(Ω). Then,
using a standard application of Lax-Milgram Lemma one can prove the following theorem.

Theorem 1 Assume that f ∈ L2(Ω) and g ∈ L2(Ω) for N = 2 or g ∈ L2(Ω)3 for N = 3. Then
the variational problem (16) has unique solution u ∈ H1

n(Ω) and

‖u‖1 ≤ C (‖f‖0 + ‖g‖0) . (20)

In what follows we define the least-squares finite element method for (12)-(13) and (5), and present
the error estimates. For more detailed studies of methods of least-squares type we refer the reader
to [2], [5] and references therein. Our main goal is to prove that the finite element approximations
converge to all sufficiently smooth solutions of (12)-(13) and (5) at optimal rate. For simplicity
error analysis is presented under the assumption that the finite element spaces satisfy exactly the
boundary condition (5). To devise a method in which discrete spaces are not required to satisfy
(5) the functional (14) can be augmented with appropriately weighted boundary norm of u ·n, i.e.,
one has to consider functionals of the form

J (u, f,g) = ‖div u− f‖2
0 + ‖curl u− g‖2

0 + h−1‖u · n‖2
0,Γ . (21)
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For examples of such methods, and their analysis we refer the reader to [2] and [25], among others.

The finite element method for (12), (13) and (5) is defined by conforming discretization of variational
problem (16). This can be done in a completely standard manner; thus, here we only sketch the
details. Let T denote uniformly regular triangulation of the domain Ω into finite elements. We
consider finite element spaces Sh ⊂ H1(Ω) with the following approximation property: there exists
an integer d ≥ 0 such that for all u ∈ Hd+1(Ω)n one can find uh ∈ Sh with

‖u− uh‖r ≤ Chd+1−r‖u‖d+1 (22)

r = 0, 1. For details concerning construction of such spaces the reader may consult [6] and [7]. Let
us define the following finite element space

Sh = {uh ∈ Sh × Sh |uh · n = 0 on Γ} . (23)

Then the discrete counterpart of (16) is given by

Seek uh ∈ Sh such that B(uh,vh) = F(vh) for all vh ∈ Sh. (24)

It is not difficult to see that (24) is necessary condition for the discrete least-squares principle

Seek uh ∈ Sh such that J (uh, f,g) ≤ J (vh, f,g) for all vh ∈ Sh. (25)

As a result, one can show that (24) is a linear system of algebraic equations with symmetric and
positive definite matrix. The error estimates for the least-squares method are summarized in the
following theorem.

Theorem 2 The discrete problem (24) has unique solution uh ∈ Sh. This solution is the minimizer
of (14) out of Sh. Furthermore, assume that f and g are such that u ∈ H1

n(Ω) ∩ [Hm+1(Ω)]N and
let d̃ = min{d,m} where d is the integer from (22). Then, there exists a positive constant C,
independent of h, such that

‖u− uh‖0 ≤ Chd̃‖u‖d̃+1 (26)

The proof of this theorem follows by standard elliptic finite element theory, and is omitted.

3.2 Implementation

Let us assume that {xi}N
i=1 is an initial uniform grid defined in Ω, and let ∆t denote given time

step. We seek to approximate the mapping ϕ(x, t0 + ∆t) which transforms the initial uniform grid
into the grid {ϕ(xi, t0+∆t)}N

i=1. For this purpose we first compute finite element approximation for
the vector field v. Then, for each grid point xi we solve the system (6-(7) using the Runge-Kutta
scheme (11). As a result, we obtain an approximate grid of the form {ϕh(xi, t0 + ∆t)}N

i=1, where
ϕh denotes the approximation of the mapping ϕ resulting from the above process. Then, we repeat
the same process, taking the grid computed at t = t0 + ∆t as initial grid for the next time step.
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4 Numerical results

In this section we report results of several computational experiments with the grid moving method
in one and two-dimensions. Our main objectives are to illustrate the analytic properties of the
moving grid algorithm established in Section 2. In particular, we wish to demonstrate the adaptivity
of the resulting grids to the underlying solutions, and second, we wish to illustrate the lack of mesh
tangling in two-dimensional grids. For this purpose we begin with uniform grids of various sizes
in one and two-dimensions. Then we choose an analytic weight function and apply the moving
grid algorithm to the initial uniform grid. In two-dimensions experiments were carried on for
rectangular, and L-shaped regions. Although this setting is simplified, it allows us to demonstrate
the relevant analytic properties of our grid moving algorithm. In the experiments we have used
several well-known weight functions which serve as popular test cases for adaptive methods; see
e.g., [1], [11], and [14].

The least-squares method (24) has been implemented using uniformly regular triangulations T of
Ω into triangles K. The finite element space Sh has been chosen as follows

Sh = {uh ∈ C0(Ω) |uh
|K ∈ P2} ,

where P2 denotes the space of all second degree polynomials in RI n. For such spaces approximation
property (22) holds with d = 2, see e.g. [6]. To solve the system (6), (7) we use fourth order
Runge-Kutta scheme (11). All codes were written in FORTRAN and were ran on a VAX Station
4000/90 and a Power Macintosh 8100/100 in double precision. In what follows we present the
weight functions used in computations and briefly discuss the results.

Example 1

We consider a weight function of the form

f(x, t) =
C√

1 +
(

∂u
∂x

)2
,

where the function u(x, t) is given by

u(x, t) = e−π2t sin(πx), 0 ≤ x ≤ 1 .

This function has been used to study stability of grids for time-dependent PDE’s in [14]. Since
ux(x, t) = πe−π2t cos(πx) → 0, as t → +∞, we have that f(x, t) → 1 . We recall that since
the weight function f(x, t) is strictly positive, theoretically no grid crossing should occur. Our
computational results are summarized on Fig. 1. This figure illustrates the evolution paths of the
initial uniform grid under the mapping ϕ for t ∈ [0, 1]. In particular, we start with 20 uniformly
spaced grid points and compute each new grid point coordinate using ∆t = 0.1. Computations
with final times t > 1 were also carried on with very similar results. In all cases paths of the grid
points did not cross each other.

Example 2
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In this example we consider weight function similar to one in [14]. We set

f(x, t) =
C

u(x, t)
,

where for 0 ≤ x ≤ 1

u(x, t) =


ta(t)

cosh2(a(t)(x− t− 0.3)) + 1.0− 8t
0 ≤ t ≤ 0.1

0.1a(t)
cosh2(a(t)(x− t− 0.3)) + 0.2

t > 1
,

a(t) = 1 + 3[1 + tanh(20(t− 0.2))].

The function u(x, t) is initially smooth but develops a steep gradient at approximately t = 0.2.
Then, as t approaches infinity, u(x, t) again becomes smooth. For this example we have also
started with a grid consisting of 20 uniformly spaced points in the interval [0, 1]. Evolution paths
of these points computed for t ∈ [0, 1] using time step ∆t = 0.1, are presented on Fig.2. This
figure illustrates very well how the grid moving algorithm captures accurately the salient features
of u(x, t). Most importantly, we see that after u(x, t) smoothes, the grid returns to a uniform
configuration.

Example 3

The weight function for this example is motivated by an oil reservoir simulation problem; see [11].
We let

u(x, y, t) =

√
td

π
e−tdr + 1.0− 0.5t 0 ≤ x, y ≤ 1,

where a = 0.5, b = 0.5, d = 40.0 and r = (x− a)2 + (y− b)2. The weight function is then defined as
follows

f(x, y, t) =
C

u(x, y, t)
.

Note that f(x, y, 0) = 1 which is consistent with an initial uniform grid.

The function u represents a spike function, where location of the spike is determined by the constants
a and b. In this example, the spike is located in the center of the unit square in RI 2. We have applied
the grid moving algorithm for various uniform grids defined on the unit square [0, 1]× [0, 1] in RI 2,
and on an L-shaped region. Computations were carried out with ∆t = 0.1, and t ∈ [0, 1]. For
both regions we have obtained grids similar to the ones presented on Figures 3-4, respectively. In
particular, Fig.3 illustrates evolution of 25x25 uniform grid as the spike develops (see the contour
plots). We stress upon the fact that in addition to the good adaptivity of resulting grids, the
moving grid algorithm does not introduce mesh tangling.

Example 4

The weight function f(x, y, t) is as in the previous example, however, now we consider the following
function u(x, y, t):

u(x, y, t) =

√
td

π
e−tdr1 + ce−2tdr2 + 1.0− 0.5t 0 ≤ x, y ≤ 1,
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where

r1 = (x− a1)2 + (y − b1)2,
r2 = (x− a2)2 + (y − b2)2,

a1 = b1 = 0.25, a2 = b2 = 0.75, d = 40 and c = 1. The function u(x, y, t) represents a double-spike
function. Locations of the spikes are determined by the constants a1, b1, a2, b2. Again, at t = 0 we
have that f(x, y, 0) = 1, that is, the initial grid can be any uniform grid. Initially, both spikes start
to grow. One of the spikes, however, stops growing at t = 0.5, after which it gradually disappears.
Contour plots of the weight function and the corresponding grids, computed with ∆t = 0.1, are
presented on Figure 5. This figure illustrates capability of our grid moving algorithm to redistribute
the grid points in a way which reflects the behavior of the underlying solution. We also note that
no grid entanglements were encountered .

Example 5

Our final example illustrates an adaptive grid clustered around a sinusoidal curve. The weight
function f (up to a normalization constant) is given by:

f(x, y, t) =


1 0 ≤ y < r − 0.2

0.5− 2.5(y − r)t+ (1− t) r − 0.2 ≤ y ≤ r
0.5 + 2.5(y − r)t+ (1− t) r < y ≤ r + 0.2

1 r + 0.2 < y ≤ 1

,

where
r =

1
2

+
1
4

sin(2πx).

This example is similar to the one considered in [1]. On Figure 6 we present surface plots of the
weight function f along with the corresponding grids for t = 0, t = 0.5 and t = 1.0. At the initial
time t = 0 we have specified a 25 by 25 uniform grid. We see that as the sinusoidal shape of
the weight function becomes more pronounced, it is immediately reflected in a similar sinusoidal
clustering of the grid points. Computations for this example were carried on with ∆t = 0.1 and
t ∈ [0, 1]. We note that as in the previous examples, no grid crossing occurs.

5 Conclusion

We have formulated and analyzed a moving grid approach to adaptive grid generation in one,
two, and three-dimensions. Most importantly, we have established rigorously that our method
does not lead to tangled grids in two and three-dimensions. Computational experiments in one
and two-dimensions indicate that the moving grid method is robust and efficient, and that it can
accurately capture the regions where the need for higher resolution exists. Furthermore, efficiency
of the method in the context of a PDE solver for transient problems is enhanced by its ability to
redistribute the grid points according to the changes occurring in the underlying solution. Here we
have only considered the moving grid algorithm. An adaptive solver which combines the moving grid
method with a streamline upwind Petrov-Galerkin scheme in one-dimension has been proposed in
[16]. This method has been successfully used for numerical solution of convection-diffusion problem
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with a shock. Presently, coupling of the moving grid method with PDE solvers in two-dimensions,
as well as a design of an efficient solver for the div-curl system in three-dimensions are underway.
This work will be reported in a forthcoming paper.

Acknowledgments. Authors are grateful to the anonymous referees for the thoughtful and thor-
ough remarks which helped to improve significantly the style and contents of this paper.
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Figure 1: One dimensional grids for Example 1
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Figure 2: One dimensional grids for Example 2
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Weight Function and Grids for Example 3

t=0.4 t=0.9

t=0.3 t=0.8

t=0.2 t=0.7

t=0.1 t=0.6

t=0.0 t=0.5

Figure 3: Weight function contours and corresponding 25x25 grids for Example 3
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Grids for L-shaped domain

t=0.4 t=1.0

t=0.2 t=0.8

t=0.0 t=0.6

Figure 4: 20x20 grids for Example 3 on L-shaped domain
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Weight Function and Grids for Example 4

t=0.4 t=0.9

t=0.3 t=0.8

t=0.2 t=0.7

t=0.1 t=0.6

t=0.0 t=0.5

Figure 5: Weight function contours and corresponding 25x25 grids for Example 4
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Weight Function and Grids for Example 5

t=1.0

t=0.5

t=0.0

Figure 6: Weight function surface plots and corresponding 25x25 grids for Example 5
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