ENDFB VI Libraries with EGAF neutron capture data

B. Sleaford, Lawrence Livermore National Laboratory

R. Firestone, Lawrence Berkeley National LaboratoryD.P. McNabb, Lawrence Livermore NationalLaboratoryM. Krtička, Charles University, Prague

UCRL-PRES-216895-DRAFT

This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48

Summary

• EGAF thermal neutron capture evaluations

• Completed Libraries of Light Nuclei – Testing

• Libraries Medium & Heavy Nuclei- Modeling the Quasi-Continuum

Evaluated Gamma Ray Activation File (EGAF)

- Built Upon Previous literature compilations-ENSDF, Reedy& Frankle, Lone
- Measurements at the Budapest Reactor (G.L. Molnar, Zs. Revay, and T. Belgya)
- Evaluation with the IAEA CRP for a *Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis* (R.B. Firestone, H.D. Choi, R.M. Lindstrom, G.L. Molnar, S.F. Mughabghab, R. Paviotti-Corcuera, Zs. Revay, A. Trkov, V. Zerkin, and C.M. Zhou)-On web
- Results

Database of $35,000 \gamma$ -ray energies with absolute cross sections for Z=1-83,90,92 New total radiative neutron capture cross sections for many elements New tests of statistical model parameters-see below

Measurements: guided Neutron Beam

Reactor and neutron guide hall. The PGAA (capture gamma) station is located ≈ 30 m from the reactor wall.

Low BG environment

Measured beam profile at target position. Thermal neutron flux at the target position is 2×10^6 cm⁻²s⁻¹.

Well collimated-reduced BG

Cross Section Standardization

Partial γ-ray cross sections were measured with absolute internal standards including H, N, Cl, Au, Ti and S.

- **Standardization with compounds** high purity compounds with stable stoichiometry containing a standard element, e.g. NaCl.
- **Standardization using homogeneous mixtures** if no stoichiometric compounds were available, homogeneous mixtures, typically water solutions, were used.

Very Well characterized targets allows measurement of absolute cross sections

Low energy γ -ray data were corrected for attenuation in the sample.

Gamma energies and cross sections constrained by level scheme-complete data sets for light nuclei Transition probability & energy in=out, all levels, allowing complete evaluation

18 Libraries of Light Nuclei completed to date

•		Library				# Gammas
•	Z		A	%NA	b	
•	1	Н	1	99.9844	0.33	1
•	1	D	2	0.01557	0.00	1
•	3	Li	6	7.589	0.04	3
•	3	Li	7	92.411	0.05	3
•	4	Ве	9	100	0.01	12
•	5	В	10	19.82	0.50	9
•	5	В	11	80.18	0.01	9
•	б	C	12	98.892	0.00	б
•	7	Ν	14	99.6337	0.08	60
•	8	0	16	99.7628	0.00	4
•	11	Na	23	100	0.53	233
•	12	Mg	nat		0.06	283
•	13	Al	27	100	0.23	291
•	14	Si	28	92.2297	0.18	54
•	15	Р	31	100	0.17	202
•	16	S	nat		0.53	470
•	17	Cl	35	75.771	45.55	383
•	17	Cl	37	24.229	0.43	77

Library modifications

- Primarily File 12 (&14 if present) MT 102
- File 15 left unchanged, thermal continuum=0
- All measured lines and cross sections included for completeness, >thermal dependencies unchanged
- Yields were normalized to conserve total decay energy vs Q value, typically < 1%
- Prepro and NJOY used to process libraries for testing in transport codes
- Psyche, Physor, Checkr, -minor errors found

Library Comparison-Thermal Neutrons->Cl MCNP: ENDFB6 vs EGAF

Natural CI (n,g) thermal neutrons EGAF vs MCNP Library Spectra

Library Comparison-1 MeV->Cl

 $CI(n,\gamma)$ @ $E_n=1$ MeV EGAF vs Present Libraries

27Al(n,g) comparison MCNP ENDFB6 vs EGAF Libraries-thermal Neutrons

In Medium-Heavy Nuclei the Cascade is modeled with the DiceBox/Casino Statistical model

- Thermal neutron capture state energy and J^{π} value(s) are taken from experiment if known.

-Above E_{crit} a complete level scheme is generated as a discretization of an assumed level density formula $\rho(E,J^{\pi})$ and a corresponding photon strength function $S(E_{\gamma})$ model.

-Transitions have partial widths that also follow the Porter-Thomas distribution

-Below **E**_{crit}, all transition probabilities are taken from experiment (EGAF).

DiceBox parameter scans

 $<\Gamma_{ab}> = \Sigma_{XL} (E_a - E_b)^{2L+1} S_{\gamma}^{XL} (E_a - E_b) / \rho(E_a)$

XL= multipolarity that contributes

- Input parameters from many sources, RIPL, Von Egidy (Constant T level density), etc.
- Strength function used is from experience: Blend of KMF-BA below 10 MeV
- Scans in E_{crit} did not have a large effect
- Level Density model was chosen by predicted Γ_{tot} vs experimental Γ_{tot} . No strong affect on discrete spectrum, does affect continuum shape

Total Level width compared to RIPL values after known feedings modeled. Constant T model generally fit better than Bethe model with 2 outliers:

C. N.	Density Model	Γ_{γ} % Discrepancy	
¹⁰³ Pd	Const. T (Von Egidy)	3.02	
	BSFG	74.20	
¹⁰⁵ Pd	Const. T	39.75	
	BSFG	3.70	
¹⁰⁶ Pd	Const. T	10.11	
	BSFG	78.80	
¹⁰⁷ Pd	Const. T	14.81	
	BSFG	34.35	
¹⁰⁹ Pd	Const. T	39.50	
	BSFG	248.77	
¹¹¹ Pd	Const. T	16.93	
	BSFG	38.88	

 104 Pd(n_{th},γ) 105 Pd Γ_{γ} vs Nuclear Temperature using Constant Temp Level Density Model in DiceBox w/2 Backshifts & RIPL

 $^{104}Pd(n,g)$

% Cascade Feeding of 280.7 keV level vs Ecritical KMF, KMF-BA, and GDR E1 Strength functions

¹⁰⁴Pd(n, γ)¹⁰⁵Pd Dicebox Continuum Using Constant Temperature Level Density, E0=-1.88(green) & -2.16(red), T tuned to match Γ_{γ} RIPL

Conclusion

- Light Nuclei with EGAF data undergoing testing, can be built from 0° libraries
- Libraries of Medium to Heavy Nuclei (Pd) in process, using DiceBox/Casino for quasi-continuum up to KeV neutron energies
- Plan to use Empire-II for higher neutron energies