Cardiovascular Health and Cognition: Perspectives on Using the Primate as a Model for Human Research

Pathogenesis of Coronary Artery Atherosclerosis of North American Human Females

Stage of Reproductive Life

From Mikkola, Clarkson and Notelovitz, Ann Med, 2004

Premenopausal Considerations: Effects of Premenopausal Estrogen Deficiency (Cynomolgus Model)

Observation	No Stress (dominant)	Stress (subordinate)
Follicular phase plasma estradiol (pg/ml)	$ \begin{array}{c} 2 40 \\ 1 60 \\ 80 \\ 0 \\ -3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	240 160 80 0-3 0 3 DAYS
HDL cholesterol (mg/dl)	48	28
Coronary atherosclerosis plaque area in mm ²	0.030	0.225

Modified from Clarkson et al, Br J Obstet Gynaecol, 1996

Effect of Exogenous Estrogen on Atherosclerosis of Estrogen Deficient (Stressed) Cynomolgus Monkeys

Modified from Kaplan et al, Arterioscler Thromb Vasc Biol, 1995

Median Estradiol Concentrations of Premenopausal Women With/Without CAD (WISE Study)

Effect of Time Menopausal on Effect/Lack of Effect of ET/HT on Coronary Artery Atherosclerosis of Cynomolgus Monkeys

Effect of ET and HT on CHD in Postmenopausal Women

*The Women's Health Initiative Steering Committee, JAMA, 2004 **Manson et al, N Engl J Med, 2003

HYPOTHETICAL RATIONALE FOR KEEPS

When Should "Primary Prevention" Begin??

With OCs During Perimenopausal Transition Followed Directly with HT at Postmenopause.

What Is the Evidence to Support That Answer?? Psychosocially Stressed Cynomolgus Monkeys as Models of the Perimenopausal Transition

Perimenopausal Women Menstrual Irregularity

Annovulatory Cycles

Declining plasma estradiol concentrations

"Perimenopausal" Monkeys Menstrual Irregularity

Annovulatory Cycles (27%)

Relative estrogen deficiency (follicular phase peaks of ~ 80 pg/ml vs. normal of ~ 200 pg/ml)

OCs/ET and Coronary Artery Atherosclerosis

Monkey Models and Cognition Research

- Age-matched rhesus monkeys have cognitive decline associated with the peri and postmenopause (Roberts et al, Neuro Report, 1997).
- Neither OVX of cynomolgus monkeys for periods up to 6 years in women equivalents nor estrogen treatment of OVX monkeys for equivalent to 3 years had any effect on learning and memory (Voytko, Behav Neurosci, 2000).

The Evidence Seems Strong That ET/HT Is "Good" Early

and "Bad" Late

