
DRAFT: Ecce Computational Code Registration

Introduction

Code registration is designed to provide a mechanism for adding new computational chemistry codes to
the suite of codes already supported within Ecce. Mechanisms are provided so that developers can make
use of as much pre-existing functionality as possible, primarily through the use of parsing scripts written
in Perl. A toolkit based on the PyQt, a Python wrapper for the Qt GUI toolkit has also been provided to
allow developers to create customized input windows for their applications. Broadly speaking, the
registration process can be divided into two major components: input file generation and output parsing.
The input file generation process is illustrated schematically in Figure 1 below.

 Builder Basis Set
Tool

Template
File

Perl Parameters
 .edml File Calculation

Editor Geometry ai.input

ESP

Basis Set
Input Deck

Basis Set
Reformatting

Script

 Theory
Details

 Runtype
Details

Python Perl

Figure 1. Schematic representation of the input file generation process. Blue shaded boxes represent
existing Ecce modules, olive boxes are files and scripts that must be created as part of the code
registration process, and unshaded boxes are files that are produced either by Ecce modules or the
scripts.

The Ecce builder and basis set tool can be used to create the basic elements of an electronic structure
calculation, the geometry and basis set, and these are combined in the calculation editor. The
configuration of the calculation editor can also be controlled to some extent using a .edml (Ecce Data
Markup Language) file that allows the developer to specify what types of basis sets, theories, and
runtypes are supported by the code. The developer can also create customized details dialogs, written in

Python, which can be used to set the remaining code parameters. These typically include settings such as
convergence tolerances, maximum iteration counts, different algorithm choices etc. The geometry, basis
set, and parameter lists are then exported by the calculation editor as a set of standard formatted files that
are used to create the input deck (the calculation editor also export a file contain a list of electrostatic
charge fitting constraint setting, but this is only used by NWChem). The files containing the geometry,
basis set, and parameter settings are combined together using an ai.input script, written in Perl, to generate
an input deck for the calculation. It may also be necessary to write an additional script that reformats the
basis set into a form suitable for the new code, although Ecce already supports a large number of basis
sets formats. The codes currently registered in Ecce also make use of an auxiliary template file to generate
the input decks, but this is not required and other input file generation strategies could be used. The
template strategy works quite well for keyword driven input such as NWChem.

The data parsing side of code registration is relatively simple compared to input file generation. The data
parsing scheme for Ecce is illustrated schematically in Figure 2.

Output

Job Monitor

Parse
Descriptor

Text Block 1

Text Block 2

Text Block N

.

.

.

Parse Script 1

Parse Script 2

Perl

Calculation
Viewer

Ecce
DataBase

.

.

.
Parse Script N

Figure 2. Schematic diagram of output parsing. Color scheme is the same as Figure 1.

The output from the computational code is parsed by a job monitoring process, which employs a parse
descriptor file to select blocks of text from the output file for further processing. Each of these blocks of
text is then passed through a Perl script that extracts the useful data and reformats it. The reformatted data
is then stored in the Ecce data base, where users can access it via the calculation viewer. Each block of
text corresponding to a different type of data (energies, geometries, polarizabilities, etc.) needs its own
separate Perl script, but the individual scripts themselves are relatively simple in most cases.

The steps required to register a new code in Ecce consist of the following.

• Create GUIs for setting values of the setup parameters for the code. A simple set of widgets, based
on the PyQt package, has been developed that allows users to create input GUIs tailored to specific

codes in a straightforward way. The GUI then writes out the values that have been set by the user to a
.param file that can subsequently be used to create an input deck.

• Write scripts to take the information in the .param file, combine it with information from the basis set

tool (if appropriate) and the molecular builder and use it to create an input deck for the new code.
The current model for this is to write a template file (a .tpl file) that has “slots” for the appropriate
input variables, geometry, and basis set. A series of functions are then written to replace the slots
with actual values from the .param file, as well as information generated by the basis set tool and the
builder. Scripts also need to be developed for converting the information on geometry and basis set
(available in the .geom and .basis files) into the format appropriate for the code being registered.

• After the code has run the output must be parsed and information from it is stored in the Ecce

database where it can be accessed by the calculation viewer and calculation browser. This is done by
creating a parse descriptor file (a .desc file) that is used to scan the output while it is being generated
during the calculation. The output that is identified using the .desc file is then parsed by a series of
scripts to extract the values from the output that are written to the Ecce database. The .desc file
contains lists of strings that are searched for in the output. The strings can be used to identify the
beginning, and in some cases the end, of blocks of output that contain information that is to be further
parsed for useable information. The names of the database variables that the information contained in
the output block will be assigned to are also contained in the .desc file, along with the name of the
scripts that are used to parse the output block.

There are also some minor tasks, such as creating a .edml file for the code, not covered above. Each of
these steps will be described in greater detail below.

Creation of a Graphical User Interface for Input File Generation

The creation of a suitable GUI for input file generation can be accomplished using a set of widgets based
on the open source PyQt package. The GUI is responsible for generating key-value pairs, where the key
corresponds to some input parameter in the code being registered and the value is the value set by the
user. These pairs are stored in the calculation editor and are eventually exported as a .param file, which
can subsequently be used to create an input deck. The keys already in use by Ecce have the form

ES.Theory.SCF.InitialGuess

The ES tells the user that the key refers to an electronic structure calculation, the Theory means that this
parameter refers to the theory as opposed to the runtype, SCF indicates that parameter describes an
Hartree-Fock SCF calculation, and InitialGuess is the name for the actual parameter. There is no
requirement that keys have this form, however, we recommend it. The values of some of the keys are
also displayed in the calculation editor if they are set to non-default values. This behavior can be
controlled in the .edml file.

Creation of the Details Windows

All GUIs for electronic structure codes can be customized by creating two details windows, one for
theories and one for runtypes. These dialogs can be invoked from the main calculation editor window.
The details windows are built up from a set of widgets based on the open source PyQt package. The
widget set is fairly small and only requires basic Python programming skills. It should be possible for
developers to begin producing usable windows within a day or so. Developers can also make use of the
existing details dialogs for examples of code or to use as templates for new dialogs. A discussion of the
Ecce PyQt toolkit is provided below, additional details about the toolkit are included in Appendix A. This
includes a complete listing of all Ecce PyQt widgets and their attributes.

The creation of the details windows follows an object oriented programming model and some familiarity
with this type of programming is useful, although not essential, in understanding the following discussion.
The widget set will automatically handle details such as communications with the main Ecce calculation
editor, resetting values in the details window back to their defaults, enforcing limits on input values, error
notification, and restoring window settings to the values from previous sessions. The developer is
primarily responsible for determining which values are set in the details windows, what the constraints or
other relationships between input values are, and how the layout of the window is organized. To create a
details window, the developer first needs to create a Python script corresponding to the appropriate
window. The theory details window for NWChem will be used in the following discussion as an
example.

The minimal programming unit for creating a GUI is shown below.

file: nedtheory.py

#!/usr/bin/env python

import sys
from qt import *
import string
from templates import *
import globals
import templates

######################################
######## Initialization ##############

a = QApplication(sys.argv)

EcceInitialization(sys.argv)

######################################
######## Define GUI ##################

main = QWidget()
mainLayout = QVBoxLayout(main)

####### Main Loop ####################

EcceEventLoop(a, 0, main, mainLayout,\
 "ECCE NWChem Editor: Theory Details", "")

This code should be included in any Ecce details dialog and will bring up the following window

This dialog is fairly primitive and the only thing you can do with it is close itThe initial lines of code
invoke the Python interpreter and import several libraries, including the Ecce widget set (templates) and
a set of globally defined variables (globals). As discussed below, the globally defined variables are
particular useful for controlling the layout as the user changes the theory and runtype.

The two lines in the Initialization section do two things. The first line creates a Qt application. This is
required by any application using the Qt library, but developers are not required to use it in any way,
other than as an argument to the EcceEventLoop function. The second line initializes the Ecce widget set.
This includes setting the variables in the globals library.The next two lines, in the Define GUI section
create the parent widget and the parent layout. All other widgets in the window will use this widget
(main) as their parent. The parent layout is the top level layout and is at the top of a tree that contains all

layouts for the window. The layout manager from the PyQt toolkit is used without modification by the
Ecce widget set and will be described in more detail below. Finally, the last line, invoking the
EcceEventLoop function, starts the event loop so that the dialog appears on the screen, responds to user
input, and sends data back to the calculation editor. This line also sets the title of the dialog window.

The Qt Layout Manager

The Qt layout manager is used without modification to control the overall placement of widgets within
the details dialog. It also controls the behavior of the window when it resizes, and allows the individual
widgets within the window to adjust their shape and position accordingly. The layout manager works as a
hierarchy of layouts, with lower level layouts attached to upper level layouts. Everything attached to a
lower level layout will move as a block within the upper level layout. There are two layout managers that
are used by Ecce, QVBoxLayout and QHBoxLayout. The V and H in the layout names refer to vertical
and horizontal layouts. Widgets that are added consecutively to a QVBoxLayout appear above each other
in the window, the widgets added first are above the widgets added later. Similarly, widgets that are
added to a QHBoxLayout appear consecutively from right to left in the order in which they are added.

Layouts can be added to other layouts using the addLayout function. A new layout can be added to the
mainLayout defined in the example above by adding the lines

top_panel = QHBoxLayout()
mainLayout.addLayout(top_panel)

The first line creates another layout, top_panel, and the second line attaches it to the first layout. In
subsequent steps, another layout could be created and attached to top_panel, and additional layouts
could be attached to the new layout. The final window will be a hierarchy of nested layouts of the type
illustrated schematically below.

Top Level Layout (QVBoxLayout)
QHBoxLayout

Widget Widget

QHBoxLayout
QVBoxLayout QVBoxLayout

Widget Widget

Widget Widget

To actually get some input widgets to appear on the screen, these must first be created and then added to
their layout manager using the addWidget function. To illustrate how this works, the Python script is
extended to

file: nedtheory.py

#!/usr/bin/env python

import sys
from qt import *
import string
from templates import *
import globals
import templates

######## Initialization ##################

a = QApplication(sys.argv)

EcceInitialization(sys.argv)

######## Define GUI ######################

main = QWidget()
mainLayout = QVBoxLayout(main)

#---

top_panel = QHBoxLayout()

mainLayout.addLayout(top_panel)

top1_panel = QVBoxLayout()
top_panel.addLayout(top1_panel)

symmetryTog = ToggleInput(main)
symmetryTog.DEFAULT = 1
symmetryTog.NAME = "ES.Theory.UseSymmetry"
symmetryTog.LABEL = "Use Available Symmetry "
top1_panel.addWidget(symmetryTog, 0, Qt.AlignLeft)

SymmetryTol = FloatInput(main)
SymmetryTol.LABEL ="Sym. Tolerance:"
SymmetryTol.NAME = "ES.Theory.SymmetryTol"
SymmetryTol.DEFAULT = 1.0e-2
SymmetryTol.HARD_RANGE = "(0..)"
SymmetryTol.UNITS = "Angstroms"
top1_panel.addWidget(SymmetryTol, 0, Qt.AlignLeft)

####### Main Loop ########################

EcceEventLoop(a, 0, main, mainLayout,\
 "ECCE NWChem Editor: Theory Details", "")

The corresponding dialog window now looks like

The window now contains two widgets, a toggle and an field for inputting floating point numbers. The
two toggles are create using the lines

symmetryTog = ToggleInput(main)
SymmetryTol = FloatInput(main)

The ToggleInput function creates a new toggle input widget, and similarly FloatInput creates a
float input widget. These are the “Use Available Symmetry” toggle and “Sym. Tolerance” field appearing
in the dialog window. The routines that create widgets require that a parent widget be specified, hence,
main is passed as an argument to all widget creation routines. The widgets are attached to their layout
manager with the addWidget functions. These are invoked in the lines

top1_panel.addWidget(symmetryTog, 0, Qt.AlignLeft)
top1_panel.addWidget(SymmetryTol, 0, Qt.AlignLeft)

These two calls attach the symmetryTog and symmetryTol widgets to the top1_panel
QVBoxLayout. Because symmetryTog is added before symmetryTol, it comes out on top. The first
argument in addWidget is the widget, the second argument is the stretch factor, and the third argument is
Qt defined parameter that controls how the widget is placed in the layout manager. The Qt.AlignLeft
value forces the widget to be locate on the left hand side of the top1_panel layout. If the alignment
value is set to zero, the widget will approximately occupy the entire cell. A complete list of alignment
values is provided in an appendix.

The stretch factor controls the behavior of the widget when the window is resized. If the stretch is set to 0,
the widget size remains fixed if the window is resized, if the stretch factor is set to 1, the widget will
adjust whenever the window is resized. Intermediate values mean that the widget grows at a variable rate
compared to other widgets. For most purposes, a value of either 0 or 1 is sufficient. Note that the input
field on widgets requiring some kind of text input will generally expand or contract if the window size is
adjusted, even if the stretch factor is set to 0.

The Ecce Widget Set

The window above also contains two examples widgets from the Ecce widget set. Widgets have have
attributes and functions associated with them. Attributes can be set when the widget is created and control
the appearance and properties of the widget. Functions can be invoked to get the widget to do something
or change its state. For the most part, functions are used to constrain the behavior of one widget to the
values set by another widget. This will be discussed in greater detail in the section on PyQt slots and
signals. To illustrate the properties and behavior of widgets, we will examine the symmetryTol widget
in more detail. This widget is set up and added to the layout manager in the lines

SymmetryTol = FloatInput(main)
SymmetryTol.LABEL ="Sym. Tolerance:"
SymmetryTol.NAME = "ES.Theory.SymmetryTol"
SymmetryTol.DEFAULT = 1.0e-2
SymmetryTol.HARD_RANGE = "(0..)"
SymmetryTol.UNITS = "Angstroms"
top1_panel.addWidget(SymmetryTol, 0, Qt.AlignLeft)

The first line creates the widget, and the last line adds the widget to the layout manager, as already
discussed. The remaining lines assign widget attributes.

The Ecce convention is that widget attributes are always in upper case and they can be assigned using
conventional assignment statements. The LABEL attribute is assigned to “Sym. Tolerance” and causes
that label to appear in the dialog on the left hand side of the text input field. The NAME attribute assigns
a name to the widget. This name will be exported as the key when values from the widget are sent to the
calculation editor as key-value pairs. The DEFAULT attribute stores the default value of the widget. This

is the value the widget takes when the dialog is invoked for the first time on a calculation and it is also the
value that the widget gets reset to if the reset button on the dialog window is pressed. The input widgets
are all designed to only export values if the a non-default value is selected for the widget. This is designed
to support keyword driven input which typically does not require a value if the default selected. However,
this behavior is sometimes undesirable, so it can be overridden by setting the REQUIRED_ON_EXPORT
attribute equal to 1. The UNITS attribute is a label that is added to the upper right hand side of the text
input field.

The HARD_RANGE attribute supplies the range label that appears on the lower right hand side of the
text input field. This label also restricts the values that can be entered into the widget. The label used in
this example “(0..)” requires the value to be greater than 0. If a value less than or equal to zero is entered,
a warning is given in the dialog message area and the input field is reset to the previous value. There is
also a SOFT_RANGE attribute that gives a range of recommended values. Values outside this range will
be accepted, provided they do not violate any restrictions set using the HARD_RANGE attribute , but
they will result in a warning message. If both HARD_RANGE and SOFT_RANGE attributes have been
set, the SOFT_RANGE attribute will appear on the widget. This behavior can be overridden by setting the
RANGE_LABEL attribute, which will use this attribute to set the range label on the widget. Note that the
RANGE_LABEL attribute has no effect on what values are accepted by the widget. The ranges
themselves obey the standard notation for intervals on the line, the only difference is that the minimum
and maximum values are separated by two periods. If an upper(lower) bound is not included, that limit is
assumed to be plus(minus) infinity. The range “[1.0..100.0)” is all real numbers greater than or equal to 1
and less than 100. The rules for ranges also apply to the IntegerInput and ExponentialInput widgets.

Another very important attribute of all input widgets is the VALUE attribute. This is the value that the
widget is currently set to. This attribute should never be set inside a dialog, but it can be accessed at any
time to check what the state of the widget is. This attribute is useful for creating relationships between
widgets using the signals and slots mechanism discussed below.

Along with the input widgets already described, the Ecce widget set contains several label-type widgets
that have no behavior but just serve as labels or line separators. These can be used to organize the dialog
or provide some additional documentation. An example of the use of these labels is the DFT dialog screen
for NWChem, shown below

For this dialog, the LineLabelSeparator widgets have been used to break up the dialog into panels and the
LabelInput class have been used to create several standalone labels that provide some additional
description of portions of the dialog. The LineLabelSeparator has been used to create widgets such as the
“Memory Limits” separator and the LabelInput widgets were used to create the labels “Exchange-
Correlation Functionals” and “Grid Options”. The example also shows another type of input widget, the
MenuInput widget, which is used to make mutually exclusive selections from a list of options.

This dialog also makes extensive use of the globally defined variables to control the overall appearance of
the dialog. For example, the “Theory Options – DFT” panel in the above dialog is obviously irrelevant
unless a DFT calculation has been selected. The appearance of this set of widgets is conditional upon

selecting DFT as the theory category and can be controlled by checking the value of the
globals.Category variable before adding these widgets to the dialog. A complete listing of the
global variables is given in Appendix A.

Signals and Slots

Signals and slots are a mechanism used by PyQt to force a response by the program when a value is
entered into a widget. The Ecce widget set already takes care of much of this behavior, forcing the widget
to export a value to the calculation viewer whenever the widget is changed. However, it is still necessary
to apply constraints between different widgets, where the behavior of one widget is constrained by the
value of another widget. An example of this is the “Use Available Symmetry” toggle and the “Sym.
Tolerance” field. If the toggle is not set, then the value of the symmetry tolerance is irrelevant and the
input field should be disabled. Creating this interaction is accomplished using signals and slots. Like the
layout managers, the signals and slots mechanism has been adopted without modification from PyQt.

The signal and slots mechanism is based on the idea that each widget can potentially emit a “signal”
whenever its state is altered by the user. This signal can then be picked up be a “slot” on some other
widget and cause it to execute some action. The slots are basically functions associated with a widget.
The signal and slot are connected via the “connect” function, which is a function that acts on QObjects.
The syntax of the connect function, when used with the Ecce widget set is

widget.connect(send_widget,PYSIGNAL(“Signal”),slot_function)

The widget at the start of this call can actually be just about any widget, usually it is either the object
sending the signal or the object responding to the signal. Alternatively, the developer can just use QObject
at this location. The send_widget is the widget that emits the signal and the slot_function is the
function that is excuted whenever the signal is emitted. The PYSIGNAL is the particular signal emitted
by the widget whenever it is changed. It is possible for some widgets to have several types of signals, but
the Ecce widgets only emit one.

The example code above can be extended to include a slot an signal. It now looks like

file: nedtheory.py

#!/usr/bin/env python

import sys
from qt import *
import string
from templates import *
import globals
import templates

######## Initialization ##################

a = QApplication(sys.argv)

EcceInitialization(sys.argv)

######## Define Slots Connections ########

def slotSymmetry():
 if (symmetryTog.isChecked()):
 SymmetryTol.set_active()
 else:
 SymmetryTol.set_inactive()

######## Define GUI ######################

main = QWidget()
mainLayout = QVBoxLayout(main)

#---

top_panel = QHBoxLayout()
mainLayout.addLayout(top_panel)

top1_panel = QVBoxLayout()
top_panel.addLayout(top1_panel)

symmetryTog = ToggleInput(main)
symmetryTog.DEFAULT = 1
symmetryTog.NAME = "ES.Theory.UseSymmetry"
symmetryTog.LABEL = "Use Available Symmetry "
top1_panel.addWidget(symmetryTog, 0, Qt.AlignLeft)

SymmetryTol = FloatInput(main)
SymmetryTol.LABEL ="Sym. Tolerance:"
SymmetryTol.NAME = "ES.Theory.SymmetryTol"
SymmetryTol.DEFAULT = 1.0e-2
SymmetryTol.HARD_RANGE = "(0..)"
SymmetryTol.UNITS = "Angstroms"
top1_panel.addWidget(SymmetryTol, 0, Qt.AlignLeft)

symmetryTog.connect(symmetryTog,\
 PYSIGNAL("Clicked"),slotSymmetry)

####### Main Loop ########################

EcceEventLoop(a, 0, main, mainLayout,\
 "ECCE NWChem Editor: Theory Details", "")

The slot function, slotSymmetry, is executed whenever the toggle, symmetryTog, is clicked. The
signal emitted in this case is called “Clicked”. For this case, the slot function checks the current state the
toggle using the function isChecked(). If it is checked, then it executes the function set_active()
on the FloatInput widget SymmetryTol. This function causes the widget to switch to the active mode,
where it will accept input. If the isChecked() function returns false, then the slot function executes the

set_inactive() function on the SymmetryTol widget. This causes the input field to become
grayed out and the widget no longer accepts input. The addition of the slot and signal does not change the
appearance of the dialog, but it does affect it behavior. Switching on the “Use Available Symmetry”
toggle activates the “Sym. Tolerance” and allows the user to modify the value of the tolerance. Turning
off the “Use Available Symmetry” toggle deactivates the symmetry tolerance. This behavior reflects the
logical connection that if symmetry is not being used, there is no point in setting the symmetry tolerance.

Slots are also a good place to insert messages to the user. These are typically used to warn the user about
unfavorable combinations of parameters, but they may serve other purposes. The message will appear in
the message area of the dialog window, accompanied by a red flash. After a short period of time, the
message will disappear from the message area. To send a message to the message area, the slot function
first needs to set the globals.message variable with the string that is to be displayed and then call
the send_new_message function, e.g.

globals.message = “African or European swallow?”
send_new_message()

.edml file

The $ECCE_HOME/data/client/cap/CODE.edml file, where CODE is an identifying label for the code,
contains miscellaneous information about the particular code being registered. This information is
primarily used by the calculation editor to configure it behavior so that it reflect the particular capabilities
of the code being registered. This includes specifying the allowable theory-runtype combinations, the
ordering of angular momentum functions inside molecular orbital vectors, what setup fields are displayed
in the calculation editor, and various code-specific restrictions such as the maximum allowable angular
momentum value, whether the code supports the use of ECPs, etc. It is recommended that the user
examine some of the existing .edml files for codes such as NWChem and Gaussian 98 and use these as
a template for creating a new .edml file.

The .edml file is written in XML (extensible markup language) format. Each entry in this format has the
form

<Element attribute=“attribute_value”>Element_value</Element>

The basic unit is an element, each element can have and arbitrary number of attributes, each of which can
be assigned values, and the element itself can have a value. Elements can also be nested hierarchically so
that some elements can have additional elements as their element values. It is also possible to insert
comment lines into the .edml file. These are included as

<!-- Comment line or lines
-->

The basic .edml file has the form

<?xml version=“1.0” encoding=“utf-8” ?>
<appdescriptor>
 :
</appdescriptor>

Several additional elements are included within the appdescriptor element, and these elements contain
several sub-elements in turn. These are enumerated below.

<GaussianBasisSetRules>

This element and its sub-elements establish restrictions on the basis set and some of the calculations
performed by the code. This element has no attributes. The sub-elements contained within this element
are listed below, along with a description of the behavior they control.

• <MaxLValue>: The element value is an integer corresponding to the maximum value of the angular
momentum in the basis set supported by the code.

• <ECPS>: The element value is “True” or “False” and indicates whether the code supports the use of

ECPs.
• <GeneralContractions>: The element value is “True” or “False” and indicates whether the code

supports generally contracted basis sets.

• <PreferOptimization>: The element value is “True” or “False” and indicates (TO BE DONE)

• <MaxPrimitives>: (TO BE DONE)

• <MaxSharedExponent>: The element value is an integer and indicates (TO BE DONE)

• <SphericalCoordinates>: The element value is “True” or “False” and indicates (TO BE DONE)

• <DFTFitting>: The element value is “True” or “False” and indicates (TO BE DONE)

• <RecommendDFTCharge>: The element value is “True” or “False” and indicates (TO BE DONE)

• <RequireFullDFT>: The element value is “True” or “False” and indicates (TO BE DONE)

• <MaxTotalFunctions>: The element value is an integer and indicates (TO BE DONE)

• <MaxTotalPrimitives>: The element value is an integer and indicates (TO BE DONE)

• <MultipleOrbitals>: The element value is “True” or “False” and indicates (TO BE DONE)

• <MOOrdering>

This function determines the order that the angular momentum functions are listed in the molecular
orbital coefficient vector. It has one attribute, type that takes the value “cartesian” or “spherical”. This
element has one sub-element, <lshell>. The <lshell> element has no value, but it takes on an arbitrary
number of attributes. The first of these is the attribute lval whose value corresponds to the angular
momentum quantum number of the shell. The remaining attributes have the names a1, a2, a3,..,aN,
where N is the maximum number of functions in this shell. The attribute values for these shells are
strings corresponding to the cartesian monomial representation of the angular momentum function. As an
example, the element corresponding to the “d” shell for NWChem is written as

<lshell lval=“2” a1=“xx” a2=“yy” a3=“zz” a4=“xy” a5=“xz”
 a6=“yz”></lshell>

The strings are the angular momentum functions and can be written as combinations of the characters “x”,
“y”, and “z”. The ordering of these functions should be the same as their order in the molecular orbital
coefficient vector. For the “d” shells and beyond, this order is generally code dependent. An integer
following one of the characters x, y, or z is interpreted as an exponent, so the string “xx” is equivalent to
“x2”. Similarly, strings for higher order angular momentum functions such as “xxxy” can also be written
as “x3y”, etc.

Specifying spherical functions is a bit more complicated. Unlike the Cartesian functions, spherical
functions beyond the “p” shell cannot be written as a single monomial. To handle this, spherical
coefficients can be written as polynomials with rational coefficients (both numerator and denominator
must be expressed as integers). The spherical harmonic function from the “f” shell, 3x2y/2-y3/2 can be
written as the string “3xxy/2-yyy/2”. It could also be written as “3x2y/2-y3/2”. For each term in spherical
harmonic, the numerator of the coefficient is written first, then the monomial expression. If the
denominator of the coefficient is not one, the monomial is followed by a slash and the denominator.

<Editor>

This element has two attributes theorydialog and runtypedialog. The attribute values are the names of
the executables that bring up the theory and runtype dialog boxes from calculation editor. The <Editor>
element has one sub-element, the <Theory> element. This element has two attributes, called category
and name. The values of these two attributes correspond to the theory category and the theory name of
the theory. An example of a theory element is

<Theory category=“SCF” name=“ROHF”>

The theory names are listed under the theory category in the calculation editor.

The <Theory> element has one sub-element, the <runtype> element. This element has no attributes and
its value corresponds to one of the supported runtypes for the corresponding theory. A complete theory
listing looks like

 <Theory category=“SCF” name=“ROHF”>
 <runtype>Energy</runtype>
 <runtype>Gradient</runtype>
 <runtype>Geometry</runtype>
 <runtype>Vibration</runtype>
 <runtype>GeoVib</runtype>
 </Theory>

A listing of this type for each individual theory needs to be included under the <Editor> element.

<TheorySummary>

This element can be used to determine which summary fields appear in the calculation editor. Each
summary field has its own <TheorySummary> element. The <TheorySummary> element has the
attribute topLabel which can be used to provide a label for the theory summary field. This attribute is
generally only used when it is desirable to have several theory parameters appearing in a list. The
<TheorySummary> element has the sub-elements <item> that can be used to specify the actual theory
parameters that appear in the summary field. The <item> element has two attributes, key and label. The
key attribute is a character string corresponding to one of the key names assigned by the theory details
window described above, the label attribute is a character string corresponding to the label that should
appear before the key in the summary field. An example of a few theory summary fields for the
NWChem program are shown below.

<TheorySummary topLabel=“SCF Convergence-”>
 <item key=“ES.Theory.SCF.ConvergenceGradient.Value”
 label=“Gradient”></item>
 <item key=“ES.Theory.SCF.ConvergenceDensity.Value”
 label=“Density”></item>
 <item key=“ES.Theory.SCF.ConvergenceEnergy.Value”

 label=“Energy”></item>
</TheorySummary>
<TheorySummary>
 <item key=“ES.Theory.SCF.ConvergenceIterations”
 label=“SCF Max. Iterations:”></item>
</TheorySummary>

<RuntypeSummary>

This element works in exactly the same way as the <TheorySummary> element, except that the
summary fields are associated with runtype instead of the theory.

<DataFiles>

(TO BE DONE)

<IntegrationFiles>

This element has several sub-elements that specify the programs or scripts used to create input files,
import calculations, translate basis set functions into the correct format, etc. The sub-elements are listed
below.

• <Template> The template file used for creating input decks, assuming the template model of input
file generation is being used (see below).

• <InputGenerator> The script or program used to generate the input file.

• <Importer> The script or program used to import calculations run outside Ecce.

• <ParseSpecification> The .desc file (see below) used to parse the program output.

• <LaunchPreprocessor>

• <BasisTranslationScript> The script or program used to translate the standard basis set format

output from the basis set tool into the format of the code being registered.

Creation of a Script for Input File Generation\

The input file generation part of code registration currently consists of two components. The first
component is the creation of a template file (a .tpl file located in the $ECCE_HOME/scripts/parsers
directory) that is used as a model for setting up input decks. The second component is the creation of an
appropriate scripting program, written in Perl, that can take data from the GUI and combine it with the
template file to produce a valid input deck to run the target code. Thus far, all codes registered in Ecce
have keyword driven input for which the template model of input generation is appropriate. For codes
that use a formated numerical input, another model for input file generation may work better.

An example of a .tpl file is the g98.tpl file used to generate input files for running Gaussian 98. The
file has the form
$ RunGauss
%Mem=##MemorySize##000000
##G98Route##

##title##

##ChargeAndMultiplicity## ! charge and multiplicity
##chemsys## ! cartesian (or zmatrix) geometry listing

##basis##

##OrbitalsToCorrelate##

The input file generation script will read in this file and then replace all the keywords delimited by the
double # sign with the values set in the calculation setup GUI.

The Perl script that actually writes out the input file is invoked by Ecce as

ai.gauss98 calc.param calc.frag calc.basis calc.tpl

The input file generation script used in this example is for the Gaussian 98 code and is called
ai.gauss98. It is also located in $ECCE_HOME/scripts/parsers directory. The prefix “calc” is a name
that has been assigned to the calculation by the GUI. The calc.param file contains a list of keys that have
been set in the GUI along with their values, the calc.frag file contains the molecular geometry, the
calc.basis contains the basis functions to be used in the calculation and the calc.tpl file contains a copy of
the g98.tpl file. The ai.gauss98 script must then take the information contained in these files and use
them to generate an input file for the Gaussian 98 code.

The script ai.gauss98 is listed below, followed by a detailed description. It has the basic form

 #!/usr/bin/env perl
 {
 #
 # package for command-line options like -v
 #
 require “getopts.pl”;
 #
 # Add parser directory to list of directories that are searched
 # for by the require command.
 #
 my $sysdir = `sysdir`;
 chop $sysdir;
 push(@INC,”$ENV{ECCE_HOME}/platform/$sysdir/scripts/parsers”);
 #
 # Construct several useful arrays containing the symbols, names,

 # and atomic numbers of the elements, as well as several arrays for
 # converting between them.
 #
 require “pertab.pl”;
 &loadPT;
 #
 # Turn off system variable that enables buffering of output, force
 # output to be flushed.
 #
 $| = 1;
 #
 # Handle the options that were specified when ai.gauss98
 # was invoked. This does not do much except print out a message.
 #
 &Getopts(‘:hvt’);
 &handle_options;
 #
 # Setup dates and such. Currently not used for anything.
 #
 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

localtime(time);
 $month = (January, February, March, April, May, June,
 July, August, September, October, November, December)[$mon];
 #
 # Dictionary to be parsed from specified input file. Start by creating
 # the associative array %AbiDict
 #
 %AbiDict = ();
 #
 # Check to see if enough files were passed to ai.gauss98 when it was
 # invoked. ($#ARGV is the index of the last element in @ARGV.)
 #
 if ($#ARGV != 3) {
 &usage;
 }
 #
 # Main Routine. Start by verifying that .param and .frag files exist
 # and assign them the internal file names ABIDICT and CHEMSYS.
 #
 &verifyAbiFile;
 &verifyFragFile;
 #
 # Read in contents of .param file and assign them to the associative
 # array %AbiDict.
 #
 &readDict;
 #
 # If calculation requires a basis set, check to see if .basis file
 # exists and assign it the internal file name GBS.

 #
 if ($AbiDict{“Category”} ne “SE”) {
 &verifyGBSFile;
 }
 #
 # Read in molecular geometry from .frag file and assign to internal
 # Perl arrays.
 #
 &readChemSys;
 #
 # This is the major part of the input file generation script. This
 # subroutine scans through the .tpl file and uses it to construct
 # an input file using the information collected from the .param,
 # .frag, and .basis files.
 #
 &modifyInputFile;
 #
 # Close the input file and copy it to the appropriate location.
 #
 &cleanup;
 }

The more important subroutines in this script are described in detail below.

The first significant subroutine in the script ai.gauss98 is the readDict subroutine. This subroutine scans
through the calc.param file and creates the associative array %AbiDict. The argument of %AbiDict is a
key name and the corresponding array element is the key value. A typical .param file looks like

 ES.Theory.SCF.ConvergenceIterations: 70
 title: Calc
 parseFile: g98.out
 Category: SCF
 Theory: RHF
 RunType: Energy
 ChemSys.Multiplicity: 1

The maximum number of SCF iterations was increased from its default value, so the corresponding key
appears in the .param file. A number of other keys that are always exported to the calc.param file are also
present. The readDict subroutine parses each line in this file and splits them at the colon “:”. The left
hand side of the split is an index in %AbiDict and the right hand side is the corresponding value. The
current input generation scripts go somewhat further and break up each of the keys by chopping off
everything to the left of each “.” in the key name and assigning the new key name and the value as
another pair in the associative array. Thus, the key ES.Theory.SCF.ConvergenceIterations will end up
generating four entries in %AbiDict. The indices

 ES.Theory.SCF.ConvergenceIterations
 Theory.SCF.ConvergenceIterations

 SCF.ConvergenceIterations
 ConvergenceIterations
will all be assigned the value 70 in %AbiDict. Thus, the number of convergence interations can be
accessed by using any of the following references

 $AbiDict{“ES.Theory.SCF.ConvergenceIterations”}
 $AbiDict{“Theory.SCF.ConvergenceIterations”}
 $AbiDict{“SCF.ConvergenceIterations”}
 $AbiDict{“ConvergenceIterations”}

This is done so that the keys can be refered to using a shorthand notation. This can cause problems if
there is another key with the same final name, because the shorthand reference will contain the value of
whatever key was read in last. For cases where this is likely to occur, a longer portion of the key name
should be used. Because use of the full key name is unambiguous, this is the preferred mode for
referencing elements in the %AbiDict file and should be used in writing all future input generation
scripts.

The input file generation routine now has all the information in the calc.param and calc.frag files. It next
checks the theory category to see if the theory requires a basis set. If it does, then it verifies that the .basis
file exists and assigns it the internal name GBS. The molecular structure is read in from the .frag file
using the readChemSys subroutine. The total number of atoms is assigned to $chemsys_atoms, the
system name is assigned to $chemsys_name, and the atom labels and coordinates are assigned to the
arrays @tags{i} and @coords{i,j}, where i runs over the total number of atoms and j goes from 0 to 2 and
represents the spatial coordinates. These arrays can be accessed from any other subroutine in the input
generation script.

The call to modifyInputFile is the most important remaining subroutine call. This routine scans the
calc.tpl file and replaces all the keywords with appropriate strings constructed using the contents of the
calc.param, calc.frag, and calc.basis files. The modifyInputFile subroutine has the form

 sub modifyInputFile {
 local($keysave, $key, $subname, $prefix, $postfix, $finished);
 $inputFile = $ARGV[3];
 #
 # Open .tpl file and assign it the name TEMPLATE, open
 # file to contain program input and assign it the name
 # NEWFILE.
 #
 open(TEMPLATE, $inputFile);
 open(NEWFILE, “>tmpfile”);
 while (< TEMPLATE>) {
 #
 # Read successive lines from TEMPLATE. Parse each line
 # to find keyword that is delimited by the double # signs
 # and assign the keyword to the variables $keysave and
 # $key. If there are any prefixes and postfixes beyond

 # the ## delimeters, assign these to $prefix and $postfix.
 #
 if (/([^#]*)##([^#]*)##(.*)/) { ## Locate Tag
 $prefix = $1;
 $postfix = $3;
 $keysave = $key = $2;
 $finished = 0;
 while ($finished == 0) {
 $subname = $key;
 #
 # Replace and “.” in keyword with underscore characters “_”.
 #
 $subname =~ s/\./_/g;
 #
 # Keyword is in the dictionary
 #
 if (defined($AbiDict{$key})) {
 $finished = 1;
 #
 # Construct subroutine function call using the value in
 # $AbiDict{$key} as subroutine argument.
 #
 $value = $AbiDict{$key};
 $fct = “&$subname(‘$value’)”;
 $result = eval $fct;
 if (!(defined $result)) {
 #
 # Subroutine doesn’t exist so just replace keyword with the
 # value in $AbiDict{$key}.
 #
 s/##$keysave##/$value/;
 } elsif ($result ne ““) {
 #
 # Subroutine returns a string in $result. Replace $keyword
 # with $result.
 #
 $_ = $prefix . $result . $postfix . “\n”;
 }
 #
 # Keyword is not in dictionary.
 #
 } else {
 #
 # Check to see if keyword corresponds to a subroutine.
 #
 $finished = 1;
 $fct = “&$subname”;
 $result = eval $fct;
 if (!(defined $result)) {

 #
 # Subroutine does not exist. Check to see if viable
 # subroutine can be found by reducing keyword at the “.”.
 # Check to see if the number of characters before getting
 # to the first “.” is greater than or equal to the value
 # of the first array subscript “$[“. (“$[“ has the value 0.)
 # If no “.” is found, index function will return the
 # value -1.
 #
 if (index($key, “.”) >= $[) {
 #
 # Remove all characters after and including the final “.”.
 #
 $key =~ s/\.[^\.]*$//;
 $finished = 0;
 } else {
 #
 # No value found for keyword. Remove line from input file.
 #
 $_ = ““;
 }
 } elsif ($result ne ““) {
 #
 # Subroutine returns a string in $result. Replace $keyword
 # with $result.
 #
 $_ = $prefix . $result . $postfix . “\n”;
 }
 }
 }
 }
 #
 # Print contents of $_ to NEWFILE.
 #
 print(NEWFILE);
 }
 }

This subroutine will try a number of different things when it hits a keyword in the calc.tpl file. The first
is to see if the keyword corresponds to a subroutine call. For the Gaussian 98.tpl file given above, the
G98Route, ChargeAndMultiplicity, chemsys, basis, and OrbitalsToCorrelate all correspond to subroutine
names. If there is anything in the %AbiDict array corresponding to these keywords, then this is passed
along as the subroutine argument. If no subroutine is found, then the keyword is replaced by the
corresponding value in the %AbiDict array. If there is nothing in the %AbiDict array, then the whole line
is eliminated in the input file.

The only remaining part writing the input file generation routine is creating the subroutines that are used
to replace the keywords in the calc.tpl file with the appropriate strings for the input file. These are usually

fairly simple and can make use of all the available information that is now residing in the input file
generation script. An exception is the G98Route subroutine which is actually quite complicated and is
used for generating the route card used in Gaussian 98 input files. As an example, the subroutine
corresponding to the ChargeAndMultiplicity keyword is fairly simple and has the form

 sub ChargeAndMultiplicity {
 local($charge,$value);
 if ($AbiDict{“Charge”} eq ““) {
 $charge = 0;
 } else {
 $charge = $AbiDict{“Charge”};
 }
 $value = $charge.” “.&Multiplicity;
 return $value;
 }
 #
 # Multiplicity is now just a number signifying the number
 # of open shells
 #
 sub Multiplicity {
 local($multiplicity);

 if ($AbiDict{“ChemSys.Multiplicity”} =~ /(\d+)/) {
 $multiplicity = $1;
 } else {
 $multiplicity = 1;
 }
 return $multiplicity;
 }

This set of subroutines just returns a pair of space-separated integers representing the charge and
multiplicity. Note that it gets all the information it needs to construct the pair directly from the %AbiDict
file, it does not need any additional arguments.

The remainder of the input file is generated from information in the calc.frag and calc.basis files.
Subroutines are constructed to replace the keywords chemsys and basis with the molecular geometry and
basis functions in the appropriate format. The final subroutine in the ai.gauss98 script, cleanup, just
closes the files NEWFILE and ABIDICT replaces the contents of the original calc.tpl file with the
contents of NEWFILE.

Output File Descriptors and Parsing Scripts

The remaining task in registering a new code in Ecce is creating a parse descriptor file for the program
output and writing a collection of Perl scripts that can be used to scan blocks of output for useable
information. The model that Ecce uses to parse the output is the following: as data is written out to the
output file, the output parsing routines scan it looking for keywords or single line keyword phrases that

delimit output blocks refering to a particular data item (e.g., the total system energy). Once one of the
keywords is identified, Ecce then finds the end of the output block by either skipping down a prespecified
number of lines or by searching for another keyword phrase that delimits the end of the output block. The
whole block of output is then passed to a Perl script that is used to extract the appropriate data quantities
and assign them to variables in the Ecce database. This data can be examined using the Ecce calculation
viewer. It is also possible to read in entire data files of numerical data using the data parsing model. The
parse descriptor files and the parse scripts are all located in the $ECCE_HOME/scripts/parsers directory.

The Parse Descriptor File

The parse descriptor file contains a series entries having the form

[DATALABEL1][DATALABEL2]...[DATALABELN]
Script=perl-script.name
Begin=Output keyword phrase
Prefix=Output keyword phrase used in calculation imports
Files=Name of output file
Frequency=first,last,firstlast,all
Skip=number of lines in output
Line=number of lines in output
End=Output keyword phrase
[END]

Each entry in the .desc file is delimited by a set of database labels, DATALABEL1 etc., and the keyword
[END]. The database labels are currently ignored and only serve to mark the beginning of a parse
descriptor field. The Perl script that parses this information is defined using Script keyword. The
remaining keywords provide information on how to identify subsets of the program output for further
processing. These keywords are described in more detail below.

• Script: The name of the Perl script used for processing the output block. Once a block of text has
been extracted from the output file, the Perl script extracts the numerical values or text strings
corresponding to the data items represented by DATALABEL1 etc., and assigns them to the database.

• Begin: This is a keyword or key phrase that appears in the output file and is used to identify the

block of output containing the information being sought. For example, when NWCHEM is run under
Ecce it produces a file named ecce.out that is parsed for the quantities that are eventually assigned to
the Ecce database. The entry in the .desc file that is used for parsing the Mulliken partial charges is

 [MULLIKEN]
 Script=nwchem.mulliken

Begin=begin%total mulliken atomic
 Prefix=task
 Frequency=last
 End=task
 [END]

 The key phrase defined by the Begin keyword is “begin%total mulliken atomic”. The Ecce parser
searches through the ecce.out file and compares each line in the output file with the keyword or key
phrase defined by all the Begin statements in the .desc file. If there is a match, in this case with the
fragment “begin%total mulliken atomic”, then Ecce extracts a block of text from the output starting
with the line containing the key phrase. The end of the text block is determined by the Line or End
keyword. If the output is being read from a file specified by the File keyword (see below), then the
Begin keyword is set equal to the file name.

• Prefix: This is a performance enhancement and is only used for importing calculations into Ecce.

The parse descriptor checks the beginning of each line against the key phrase specified by the Prefix
keyword. If there is a match, then the rest of the line is checked to see if it contains the key phrase
specified using the Begin keyword. The key phrase specified using the Prefix keyword must exactly
match the beginning of the line containing the key phrase specified using the Begin keyword. This
includes white space. For the example listed above, the line containing the phrase “begin%total
mulliken atomic” always begins with the word “task”. The output parser checks each line during an
import to see if it begins with the word “task”. If it does, then it checks the rest of the line for the
phrase “begin%total mulliken atomic”, if the line does not begin with “task”, the parser goes to the
next line.

• File: This keyword is used to identify numerical output that is stored in a file other than the

designated output file. For example, Ecce needs the molecular orbital coefficients in order to
construct visual representations of the molecular orbitals using the calculation viewer. For the
Gaussian 9X programs, these are listed in a separate file, fort.7. The entry in the parse descriptor
file for reading this file is

 [MO][ORBENG]

Script=gaussian-98.mo
 File=fort.7
 Begin=fort.7
 [END]

This entry tells the output parser that when the file fort.7 appears, the contents are fed to the Perl script
gaussian-98.mo which will assign the contents to the database items MO and ORBENG. The Begin
keyword is set to the file name in this case.

• Frequency: This keyword is used to control which occurrences of the keyword phrase are actually
stored in the data base. If this is set to “first”, then only the data that is parsed the first time the key
phrase appears in the output is saved to the database, if it is set to “last”, then only the data that is
parsed on the last occurrence of the key phrase is saved to the database. If Frequency is set to
“firstlast”, then the first and last occurrences of the key phrase are saved to the database and if it is set
to “all”, then all occurrences of the key phrase are saved to the database.

• Skip: This keyword is used to specify how many lines should be skipped after the appearance of the
key phrase in the output before sending text to the Perl script. This can be used when the first useable
data does not occur until several lines after the key phrase appears in the output. This is particularly
true when the key phrase is part of a header in the output.

• Lines: This keyword is used to specify how many lines of text should be included in the text block

that is sent to the Perl script for parsing. The counting starts with the first line that is actually parsed.
For most cases this is the line specified by the Begin keyword, but if the Skip keyword is used the
counting begins after the number of lines specified by the Skip keyword have been read. The Skip
keyword can be used when the needed data always occurs within a fixed number of lines of the key
phrase. The end of the text block can also be specified using the End keyword.

• End: This keyword is used to identify a second key phrase that marks the end of the text block in the

output file. This can be used instead of the Line keyword for text blocks where the number of lines is
not fixed.

Output Parsing Scripts

Once a block of text in the output file is identified using the parse descriptor file, it is passed to the Perl
script specified in the parse descriptor file. The invocation of the script has the form

perl.script key runtype ucCategory theory < INPUT > OUTPUT

The extra arguments can be used by the Perl script to help parse the text block and assign the appropriate
values to the database variables. The argument “key” has been set to the process ID number of the parent
calling process and can be used to create utility files that are stored in the /tmp directory. The “runtype”,
“ucCategory”, and “theory” arguments are just the same as the RunType, Category, and Theory variables
exported to the .param file. (See the description in the input file generation section.) These can be used to
help correctly parse the text block stored in INPUT.

The output parsing script must do two things: 1) it must identify and extract the appropriate numerical
values and/or text strings from the text block and 2) it must write these into the file OUTPUT in a format
appropriate for transmission to the database. The standard formats, which are based on the
dimensionality of the data, are described in more detail below. An example of how a parsing script works
is the script for finding the gradients in a Gaussian-98 force calculation. The entry in the .desc file for
extracting this information has the form

 [EGRADVEC]
 Script=gaussian-98.egradvec
 Begin= Forces
 Prefix= Center
 Frequency=last
 Skip=3
 End=--------------------------------------
 [END]

The text block that will be identified in a typical output file is

Forces (Hartrees/Bohr) Center
Number

Atomic
Number X Y Z

1 8 0.000000000 0.000000000 -0.056234772
2 1 0.000000000 -0.021657478 0.028117386
3 1 0.000000000 0.021657478 0.028117386

Because the Skip keyword in the .desc file has been set to 3, the text that is actually sent to the gaussian-
98.egradvec script is

1 8 0.000000000 0.000000000 -0.056234772
2 1 0.000000000 -0.021657478 0.028117386
3 1 0.000000000 0.021657478 0.028117386

The parse script then extracts the forces for each atom from this text block and prints it to OUTPUT in a
format suitable for transmission to the Ecce database. The Perl script gaussian-98.egradvec that does this
has the form

 #!/usr/bin/env perl
 #
 # Force output to be flushed
 #

 $| = 1;

 #
 # The command line arguments (not used anywhere by this
 # particular routine).
 #
 ($key, $runtype, $ucCategory, $theory) = @ARGV;

 #
 # Read in atom index, atomic number and x,y,z components of
 # forces. The atomic index and atomic number are not used but
 # the components of the forces are stored in the arrays
 # @x,@y,@z and the total number of atoms is stored in $natom.
 # The calculation viewer is actually expecting gradients instead
 # of forces so first multiply forces by -1.
 #
 $natom = 0;
 while () {
 if (/-----/) { last; }
 chop;

 s/^\s*//;
 ($cnt,$atom,$x,$y,$z) = split(/ +/);
 push (@x,$x==0?$x:$x*-1.);
 push (@y,$y==0?$y:$y*-1.);
 push (@z,$z==0?$z:$z*-1.);
 $natom += 1;
 }

 #
 # Print out the data in standard format.
 #

 print “key: EGRADVEC\n”;
 print “size:\n”;
 print “$natom 3\n”;
 print “rowlabels:\n”;
 for ($i=1;$i<=$natom;$i++) { print “$i “; }

 print “\ncolumnlabels:\nX Y Z\n”;

 print “values:\n”;
 for ($i=0; $i<= $#x; $i++) {
 print “$x[$i] $y[$i] $z[$i]”;
 print “\n”;
 }
 print “END\n”;

The action of the script gaussian-98.egradvec on the text block is to produce the output

 key: EGRADVEC
 size:
 3 3
 rowlabels:
 1 2 3
 columnlabels:
 X Y Z
 values:
 0.000000000 0.000000000 0.056234772
 0.000000000 0.021657478 -0.028117386
 0.000000000 -0.021657478 -0.028117386
 END

The data can now be sent to the database in a format where it can read as a table by the calculation
viewer.

There are currently four formats for writing out data to OUTPUT so that it can be picked up by the Ecce
database. These are Scalar, Vector, Table, and Vector of Tables. The database elements listed for each
entry in the .desc file must also be declared in the $ECCE_HOME/data/admin/refload/props file. This

file determines whether a database element is a Scalar, Vector, etc., by setting the dbclass variable. The
dbclass values, DBValue, DBVector, DBTable, and DBVecTable correspond to the Scalar, Vector, Table,
and Vector of Tables formats, respectively, described below. Each of the formats begins with the word
“key: “ followed by the database label. It is important that there is a space between the colon and the
database label, otherwise the property will not be picked up.

The four currently supported database formats are:

• Scalar

 key:
 size:
 values:
 END

• Vector

 key:
 size:
 columnlabels:
 values:
 END

• Table

 key:
 size:
 rowlabels:
 columnlabels:
 values:
 END

• Vector of Tables

 key:
 size:
 vectorlabels:
 rowlabels:
 columnlabels:
 values:
 END

All formats contain the keywords “key” and “size”. The keyword “key” refers to the database label listed
in the entry in the .desc file. For the example above, “key” is set equal to EGRADVEC.

The keyword “size” determines the number of data points in the entry. The size is specified as a sequence
of positive integers, one for each dimension associated with the data format. For a scalar quantity, the
size is always set to 1. For a vector quantity, the size is a single positive integer representing the
dimension of the vector. If the size is set to 1 for a vector, then this is understood to mean that the value
printed out is to be appended to previous values already in the data base to construct the vector. As an
example, this option is used to construct a vector of energies in geometry optimizations. For tables, like
the one in the example above, the size is specified by two space-delimited integers. The first integer is
the number of rows, the second is the number of columns. Finally, for vectors of tables, three positive
integers need to be specified. The first is the number elements in the vector, the second is the number of
rows in an individual table, and the third is the number of columns. If the number of elements in the
vector is set to 1, then the table is appended to an existing vector of tables.

The “rowlabels”, “columnlabels”, and “vectorlabels” keywords are used to provide labels for the
corresponding elements in the data structure. The labels themselves are white-space delimited lists of
strings. The number of elements in the list must be the same as the dimension specified using the “size”
keyword. The label keywords and their associated lists can be omitted. The database still requires the
labels and in this case the C++ code will automatically supply labels that are a series of integers between
1 and the dimension of the labeled quantity. This option is useful when constructing vectors by
appending new data to an existing vector.

Finally, the values of the database entry must be printed out using the “values” keyword. The values are a
space delimited list of numbers that are written out in the order

 scan over vector elements (i)
 scan over row elements (j)
 scan over column elements (k)
 print value(i,j,k)
 end scan
 end scan
 end scan

For lower dimensional formats, the appropriate number of outer loops are eliminated. The list of values
can be broken up into lines in any convenient way. To complete the database entry, the keyword “END”
is included as the last line.

Many of the entries in the .desc file assign values to more than one database element. When this occurs,
the parse script can write several entries in the OUTPUT file. Each entry begins with the keyword “key”,
followed by whatever additional keywords and numerical values are appropriate, and is terminated by the
keyword “END”.

To complete the registration of a new property in the database, an entry corresponding to the database
name must be made in the $ECCE_HOME/data/admin/refload/props file. Each entry is a tab-delimited
list of entries corresponding to one line in the props file. The two most important entries are the
short_name and dbclass elements. The short_name is the database name that appears in the .desc file and
is used as the key when the parsed data is written to the OUTPUT file. The dbclass has the values

DBScalar, DBVector, DBTable, and DBVecTable and corresponds to the data formats described above.
A complete entry in the props files is

Derived Energy Gradient Vector EGRADVEC\\
Gradient DBTable noviceUser secondaryProperty Y

(Note that in an actual props file entry, this is all one line.) Additional documentation is available in the
props file itself. For the present, it is advisable to find a similar entry in the props file and simply copy
and edit it. The two most important parts of this entry are the database label EGRADVEC and the
database class specification DBTable. The arguments to the DBTable specification provide column and
row labels for this entry.

Appendix A: Ecce PyQt Toolkit

The Ecce PyQt toolkit has two major components. The first is a list of global constants that are initialized
based on information available in the Ecce calculation editor, the second is a set of widgets that can be
used to create dialogs. This appendix provides a complete description of both of these components.

Global variables

The following is a list of the globally available variables that can be used to control the behavior of details
dialogs. These variables can all be accessed using the syntax globals.variable.

globals.Category: a string containing the theory category selected in the calculation editor
(e.g. SCF, DFT, CC, etc.).

globals.Theory: a string containing the theory selected in the calculation editor (e.g. RHF,
UDFT, etc.).

globals.RunType: a string containing the runtype selected in the calculation editor (e.g.
Geometry, Vibration, GeoVib, etc.).

globals.SymmetryGroup: a string containing the symmetry group chosen in the builder and
appearing in the calculation editor summary field (e.g. C1, C2v, D2h, etc.).

globals.NumElectrons: an integer containing the number of electrons in the system.

globals.SpinMultiplicity: an integer representing the spin multiplicity of the system.

globals.NumFrozenOrbs: an integer representing the default number of frozen core orbitals
for the system.

globals.NumOccupiedOrbs: an integer representing the number of occupied orbitals in the
system

globals.NumVirtualOrbs: an integer representing the number of virtual orbitals in the
system.

globals.NumNormalModes: an integer representing the number of normal modes in the
system.

Ecce PyQt Widgets

A complete listing of all Ecce PyQt widgets, their attributes, and their associated functions is given
below. A complete specification of all attributes and functions is given below, the attributes and functions
that apply to specific widgets are listed in the description of individual widgets.

Attributes

LABEL: All Ecce widgets have a label attribute, except the LineSeparator widget. The label
attribute is used to assign a text string to the label that appears with the widget in the dialog.

NAME: All input widgets have a name attribute which must be assigned a unique character string
(see the description of these names in the text above). These names are a unique identifier that are
used internally to return the dialog to its state from a previous session and are also exported to the
.param file as the key in a key-value pair.

DEFAULT: All input widgets have a default attribute that represents the default value for the
parameter that the widget is assigning. This is the value that the widget takes when the dialog is
first invoked. If the REQUIRED_ON_EXPORT attribute is not set equal to 1, then the widget
does not export a value to the .param file if the widget value is equal to the default.

VALUE: All input widgets have a value attribute which represents the current value of the
widget (i.e. the value that appears on the screen). The VALUE attribute should not be set in the
dialog script, if at all possible, but can be accessed to control the behavior of parts of the dialog. If
it needs to be set in the dialog script, then it should be used in conjunction with the
init_widget() function so that the contents of the VALUE attribute is actually transmitted to
the display widget itself.

Comparing the values of floating point numbers can occasionally be tricky, since typically the
contents of VALUE are actually strings. This can lead to problems since different string
representations of floating point numbers are actually equivalent, e.g. 0.1 and 0.10. This problem
can be solved by first converting the values from strings to floating point numbers using the
syntax

rval = string.atof(str(widget.VALUE))

These comments also apply to the DEFAULT attribute.

ACTIVE: All input attributes have an active attribute which determines if the widget is currently
receiving input. Widgets that are inactive do not respond to the cursor or the keyboard and are
typically greyed out. This attribute is occasionally set when the widget is created, but in most
cases the ACTIVE attribute can be controlled with the set_active() and
set_inactive() methods.

REQUIRED_ON_EXPORT: This attribute is used to control whether values get exported to the
.params file that is used to create the input deck. Most keyword driven input is defaulted so that
unless a parameter is set to a non-default value, it is not included in the input deck. The current
Ecce input file generation scripts implement this by making use of the fact that parameters that
are set to their default values do not get exported to the .params file as key value pairs. This
behavior is overridden by setting the REQUIRE_ON_EXPORT attribute equal to 1.

WIDTH: This attribute is only used for the numerical and text input widgets. The width of the
input field is normally elastic and will stretch or contract to fill all the space made available to it
by the layout manager. This can be behavior can be overridden by setting the WIDTH attribute to
a finite value. The width of the input field is then fixed at the number of pixels assigned to
WIDTH.

UNITS: This attribute is only used for numerical input widgets. The text string assigned to units
is placed as a label on the upper right hand side of the input field.

HARD_RANGE: This attribute is only used for numerical input widgets. It is used to specify a
set of rigorous bounds on the values entered into the widget. Values falling outside this range are
rejected and the widget is reset to its previous value. A warning message also appears in the
message area. The HARD_RANGE attribute is assigned a text string as described above. This
text string also appears to the lower right of the input field, unless it is overridden by the
SOFT_RANGE or RANGE_LABEL attributes.

SOFT_RANGE: This attribute is only used for numerical input widgets. It is used to specify a
set of recommded bounds on the values entered into the widget. Values falling outside this range
are still accepted but a warning message appears in the message area. The SOFT_RANGE
attribute does not override the HARD_RANGE attribute, so if a value is entered that is outside
the limits set using the HARD_RANGE attribute, it will be rejected. The SOFT_RANGE
attribute is assigned a text string as described above. This text string also appears to the lower
right of the input field, unless it is overridden by the RANGE_LABEL attribute.

RANGE_LABEL: This attribute is only used for numerical input widgets. It is used to override
the text label appearing to the lower right of the input field that would otherwise be set by the text
fields in the HARD_RANGE or SOFT_RANGE attributes. It has no effect on the behavior of the
widget.

Ecce Widget Functions

Below is a complete listing of functions that can be called on widgets in the Ecce PyQt widget set. Most
of these functions can be called on all widgets, the few exceptions are noted in the function description.
The syntax for invoking these functions is widget.function().

init_widget(): The only instance when this function should be called is if the developer sets
the VALUE attribute by hand in a dialog. To transmit this value to the widget appearing in the
dialog it is necessary to invoke this method. Setting the VALUE attribute by hand should be
avoided, if at all possible.

set_active(): This method sets the ACTIVE attribute to 1 and activates the widget so that it
will receive input. This method is only invoked for input widgets.

set_inactive(): This method sets the ACTIVE attribute to 0 and deactivates the widget so
that it will not receive input. As a sign that the widget is deactivated, the input fields and text
labels associated with the widget become greyed out. This method is only invoked for input
widgets.

isChecked(): This method is only invoked for the ToggleInput widgets. It returns 1 if the
toggle is checked, 0 otherwise.

insertItem(“option”): This method is only invoked for the MenuInput widgets. It is used
to add items to the menu options list when the menu item is created. When insertItem(“option”) is
invoked the string “option” appears in the menu list exactly as written in the argument (be careful
with white space). The order that options appear is the same as the order in which they are added.

Ecce PyQt Widgets

Below is a complete listing of the Ecce PyQt widgets and a description of there behavior and appearance.
The label-type widgets are listed first, followed by the input widgets.

LabelInput: This widget produces a simple text label. The text in the label is set by the
LABEL attribute.

LineSeparator: This widget produces a horizontal line across the dialog window. It is used
for creating unlabeled “panels” of logically related input fields.

LineLabelSeparator: This widget produces a horizontal line across the dialog window that
is broken by a string of text. The text is determined by setting the LABEL attribute. This widget
is used for breaking the dialog up into “panels” of logically related input fields.

ToggleInput: This widget produces a labeled toggle in the dialog. The toggle label is set with
the LABEL attribute. Unlike the other input widgets, the label for toggle inputs appears to the
right of the widget. Because this input widget is frequently used to constraint other input fields,
the label is often suppressed by setting the LABEL attribute equal to a null string, “”. The toggle
widget returns values of 0 and 1. The value can also be determined with the isChecked()
function. The toggle input emits the PYSIGNAL “Checked”.

MenuInput: This widget produces a pull-down list of mutually exclusive options. Options are
added to the menu using the insertItem(“option”) function and the label is set with the
LABEL attribute. The label appears to the left of the menu. The menu input emits the
PYSIGNAL “ItemSelected” .

TextInput: This widget produces a labeled input field that can be used enter any unrestricted
text. The label is set with the LABEL attribute and appears to the left of the input field. The text
input emits the PYSIGNAL signal “SetValue” whenever any text is entered in the field.

FloatInput: This widget produces a labeled input field that can be used to enter a real
number. The label, which appears on the left hand side of the input field, is set with the LABEL
attribute. The float input has two other labels. The first is a units label, which is set with the
UNITS attribute, and appears to the upper right of the input field. The other is a range label,
appearing to the lower right of the input field, and can be set by either the HARD_RANGE,
SOFT_RANGE, or RANGE_LABEL attributes. The range of allowed values accepted by the
widget can be controlled with either the HARD_RANGE and SOFT_RANGE attributes.
Violations of the limits set by the HARD_RANGE attribute result in setting the value of the
widget back to its previous value and a warning message appearing in the dialog message area,
violations of the limits set by the SOFT_RANGE attribute results in only a warning. The float
input emits the PYSIGNAL “SetValue” whenever any text in entered in the field.

IntegerInput: This widget is almost identical to the FloatInput widget. The only
significant difference is that this widget will only allow integers to be entered in the input field.

ExponentialInput: This widget is almost identical to the FloatInput widget. The
only significant difference is that this widget will only allow floating point numbers that are an
integer power of 10 to be entered in the input field.

	DRAFT: Ecce Computational Code Registration
	Introduction
	Creation of a Graphical User Interface for Input File Generation
	Creation of the Details Windows
	.edml file
	<GaussianBasisSetRules>
	<Editor>
	<TheorySummary>
	<RuntypeSummary>
	<DataFiles>
	<IntegrationFiles>

	Creation of a Script for Input File Generation
	Output File Descriptors and Parsing Scripts
	The Parse Descriptor File
	Output Parsing Scripts

