
DRAFT: Ecce Computational Code Registration 
 
 
Introduction 
 
Code registration is designed to provide a mechanism for adding new computational chemistry codes to 
the suite of codes already supported within Ecce. Mechanisms are provided so that developers can make 
use of as much pre-existing functionality as possible, primarily through the use of parsing scripts written 
in Perl. A toolkit based on the PyQt, a Python wrapper for the Qt GUI toolkit has also been provided to 
allow developers to create customized input windows for their applications. Broadly speaking, the 
registration process can be divided into two major components: input file generation and output parsing. 
The input file generation process is illustrated schematically in Figure 1 below. 
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Figure 1. Schematic representation of the input file generation process. Blue shaded boxes represent 
existing Ecce modules, olive boxes are files and scripts that must be created as part of the code 
registration process, and unshaded boxes are files that are produced either by Ecce modules or the 
scripts. 

The Ecce builder and basis set tool can be used to create the basic elements of an electronic structure 
calculation, the geometry and basis set, and these are combined in the calculation editor. The 
configuration of the calculation editor can also be controlled to some extent using a .edml (Ecce Data 
Markup Language) file that allows the developer to specify what types of basis sets, theories, and 
runtypes are supported by the code. The developer can also create customized details dialogs, written in 



Python, which can be used to set the remaining code parameters. These typically include settings such as 
convergence tolerances, maximum iteration counts, different algorithm choices etc. The geometry, basis 
set, and parameter lists are then exported by the calculation editor as a set of standard formatted files that 
are used to create the input deck (the calculation editor also export a file contain a list of electrostatic 
charge fitting constraint setting, but this is only used by NWChem). The files containing the geometry, 
basis set, and parameter settings are combined together using an ai.input script, written in Perl, to generate 
an input deck for the calculation. It may also be necessary to write an additional script that reformats the 
basis set into a form suitable for the new code, although Ecce already supports a large number of basis 
sets formats. The codes currently registered in Ecce also make use of an auxiliary template file to generate 
the input decks, but this is not required and other input file generation strategies could be used. The 
template strategy works quite well for keyword driven input such as NWChem. 
 
The data parsing side of code registration is relatively simple compared to input file generation. The data 
parsing scheme for Ecce is illustrated schematically in Figure 2. 
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Figure 2. Schematic diagram of output parsing. Color scheme is the same as Figure 1. 

The output from the computational code is parsed by a job monitoring process, which employs a parse 
descriptor file to select blocks of text from the output file for further processing. Each of these blocks of 
text is then passed through a Perl script that extracts the useful data and reformats it. The reformatted data 
is then stored in the Ecce data base, where users can access it via the calculation viewer. Each block of 
text corresponding to a different type of data (energies, geometries, polarizabilities, etc.) needs its own 
separate Perl script, but the individual scripts themselves are relatively simple in most cases. 
 
The steps required to register a new code in Ecce consist of the following. 
 

• Create GUIs for setting values of the setup parameters for the code.  A simple set of widgets, based 
on the PyQt package, has been developed that allows users to create input GUIs tailored to specific 



codes in a straightforward way.  The GUI then writes out the values that have been set by the user to a 
.param file that can subsequently be used to create an input deck. 

 
• Write scripts to take the information in the .param file, combine it with information from the basis set 

tool (if appropriate) and the molecular builder and use it to create an input deck for the new code.  
The current model for this is to write a template file (a .tpl file) that has “slots” for the appropriate 
input variables, geometry, and basis set.  A series of functions are then written to replace the slots 
with actual values from the .param file, as well as information generated by the basis set tool and the 
builder.  Scripts also need to be developed for converting the information on geometry and basis set 
(available in the .geom and .basis files) into the format appropriate for the code being registered. 

 
• After the code has run the output must be parsed and information from it is stored in the Ecce 

database where it can be accessed by the calculation viewer and calculation browser.  This is done by 
creating a parse descriptor file (a .desc file) that is used to scan the output while it is being generated 
during the calculation.  The output that is identified using the .desc file is then parsed by a series of 
scripts to extract the values from the output that are written to the Ecce database.  The .desc file 
contains lists of strings that are searched for in the output.  The strings can be used to identify the 
beginning, and in some cases the end, of blocks of output that contain information that is to be further 
parsed for useable information.  The names of the database variables that the information contained in 
the output block will be assigned to are also contained in the .desc file, along with the name of the 
scripts that are used to parse the output block. 

 
There are also some minor tasks, such as creating a .edml file for the code, not covered above. Each of 
these steps will be described in greater detail below. 



Creation of a Graphical User Interface for Input File Generation 
 
The creation of a suitable GUI for input file generation can be accomplished using a set of widgets based 
on the open source PyQt package.  The GUI is responsible for generating key-value pairs, where the key 
corresponds to some input parameter in the code being registered and the value is the value set by the 
user.  These pairs are stored in the calculation editor and are eventually exported as a .param file, which 
can subsequently be used to create an input deck. The keys already in use by Ecce have the form  
 

ES.Theory.SCF.InitialGuess 
 
The ES tells the user that the key refers to an electronic structure calculation, the Theory means that this 
parameter refers to the theory as opposed to the runtype, SCF indicates that parameter describes an 
Hartree-Fock SCF calculation, and InitialGuess is the name for the actual parameter.  There is no 
requirement that keys have this form, however, we recommend it.  The values of some of the keys are 
also displayed in the calculation editor if they are set to non-default values. This behavior can be 
controlled in the .edml file. 
 
Creation of the Details Windows 
 
All GUIs for electronic structure codes can be customized by creating two details windows, one for 
theories and one for runtypes. These dialogs can be invoked from the main calculation editor window.  
The details windows are built up from a set of widgets based on the open source PyQt package. The 
widget set is fairly small and only requires basic Python programming skills. It should be possible for 
developers to begin producing usable windows within a day or so. Developers can also make use of the 
existing details dialogs for examples of code or to use as templates for new dialogs. A discussion of the 
Ecce PyQt toolkit is provided below, additional details about the toolkit are included in Appendix A. This 
includes a complete listing of all Ecce PyQt widgets and their attributes. 
 
The creation of the details windows follows an object oriented programming model and some familiarity 
with this type of programming is useful, although not essential, in understanding the following discussion.  
The widget set will automatically handle details such as communications with the main Ecce calculation 
editor, resetting values in the details window back to their defaults, enforcing limits on input values, error 
notification, and restoring window settings to the values from previous sessions.  The developer is 
primarily responsible for determining which values are set in the details windows, what the constraints or 
other relationships between input values are, and how the layout of the window is organized.  To create a 
details window, the developer first needs to create a Python script corresponding to the appropriate 
window.  The theory details window for NWChem will be used in the following discussion as an 
example. 
 
The minimal programming unit for creating a GUI is shown below. 
 

# file: nedtheory.py  
 
#!/usr/bin/env python 



 
import sys 
from qt import * 
import string 
from templates import * 
import globals                 
import templates 
 
 
###################################### 
######## Initialization ############## 
 
a = QApplication(sys.argv) 
 
EcceInitialization(sys.argv)   
 
###################################### 
######## Define GUI ################## 
 
main = QWidget() 
mainLayout = QVBoxLayout(main) 
 
####### Main Loop #################### 
 
EcceEventLoop(a, 0, main, mainLayout,\ 
  "ECCE NWChem Editor: Theory Details", "") 

 
This code should be included in any Ecce details dialog and will bring up the following window 
 

         
 
This dialog is fairly primitive and the only thing you can do with it is close itThe initial lines of code 
invoke the Python interpreter and import several libraries, including the Ecce widget set (templates) and 
a set of globally defined variables (globals). As discussed below, the globally defined variables are 
particular useful for controlling the layout as the user changes the theory and runtype. 
 
The two lines in the Initialization section do two things. The first line creates a Qt application. This is 
required by any application using the Qt library, but developers are not required to use it in any way, 
other than as an argument to the EcceEventLoop function. The second line initializes the Ecce widget set. 
This includes setting the variables in the globals library.The next two lines, in the Define GUI section 
create the parent widget and the parent layout. All other widgets in the window will use this widget 
(main) as their parent. The parent layout is the top level layout and is at the top of a tree that contains all 



layouts for the window. The layout manager from the PyQt toolkit is used without modification by the 
Ecce widget set and will be described in more detail below. Finally, the last line, invoking the 
EcceEventLoop function, starts the event loop so that the dialog appears on the screen, responds to user 
input, and sends data back to the calculation editor. This line also sets the title of the dialog window. 
 
The Qt Layout Manager 
 
The Qt layout manager is used without modification to control the overall placement of widgets within 
the details dialog. It also controls the behavior of the window when it resizes, and allows the individual 
widgets within the window to adjust their shape and position accordingly. The layout manager works as a 
hierarchy of layouts, with lower level layouts attached to upper level layouts. Everything attached to a 
lower level layout will move as a block within the upper level layout. There are two layout managers that 
are used by Ecce, QVBoxLayout and QHBoxLayout. The V and H in the layout names refer to vertical 
and horizontal layouts. Widgets that are added consecutively to a QVBoxLayout appear above each other 
in the window, the widgets added first are above the widgets added later. Similarly, widgets that are 
added to a QHBoxLayout appear consecutively from right to left in the order in which they are added. 
 
Layouts can be added to other layouts using the addLayout function. A new layout can be added to the 
mainLayout defined in the example above by adding the lines 
 

top_panel = QHBoxLayout() 
mainLayout.addLayout(top_panel)  

 
The first line creates another layout, top_panel, and the second line attaches it to the first layout. In 
subsequent steps, another layout could be created and attached to top_panel, and additional layouts 
could be attached to the new layout. The final window will be a hierarchy of nested layouts of the type 
illustrated schematically below. 
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To actually get some input widgets to appear on the screen, these must first be created and then added to 
their layout manager using the addWidget function. To illustrate how this works, the Python script is 
extended to 
 

# file: nedtheory.py  
 
#!/usr/bin/env python 
 
import sys 
from qt import * 
import string 
from templates import * 
import globals 
import templates 
 
########################################## 
######## Initialization ################## 
 
a = QApplication(sys.argv) 
 
EcceInitialization(sys.argv)   
 
########################################## 
######## Define GUI ###################### 
 
main = QWidget() 
mainLayout = QVBoxLayout(main) 
 
#----------------------------------------- 
 
top_panel = QHBoxLayout() 



mainLayout.addLayout(top_panel) 
 
top1_panel = QVBoxLayout() 
top_panel.addLayout(top1_panel) 
 
symmetryTog = ToggleInput(main) 
symmetryTog.DEFAULT = 1 
symmetryTog.NAME = "ES.Theory.UseSymmetry" 
symmetryTog.LABEL = "Use Available Symmetry        " 
top1_panel.addWidget(symmetryTog, 0, Qt.AlignLeft) 
 
SymmetryTol = FloatInput(main) 
SymmetryTol.LABEL ="Sym. Tolerance:" 
SymmetryTol.NAME = "ES.Theory.SymmetryTol" 
SymmetryTol.DEFAULT = 1.0e-2 
SymmetryTol.HARD_RANGE = "(0..)" 
SymmetryTol.UNITS = "Angstroms" 
top1_panel.addWidget(SymmetryTol, 0, Qt.AlignLeft) 
 
####### Main Loop ######################## 
 
EcceEventLoop(a, 0, main, mainLayout,\ 
  "ECCE NWChem Editor: Theory Details", "") 

 
The corresponding dialog window now looks like 
 

                    
 
The window now contains two widgets, a toggle and an field for inputting floating point numbers. The 
two toggles are create using the lines 
 

symmetryTog = ToggleInput(main) 
SymmetryTol = FloatInput(main) 

 
The ToggleInput function creates a new toggle input widget, and similarly FloatInput creates a 
float input widget. These are the “Use Available Symmetry” toggle and “Sym. Tolerance” field appearing 
in the dialog window. The routines that create widgets require that a parent widget be specified, hence, 
main is passed as an argument to all widget creation routines.  The widgets are attached to their layout 
manager with the addWidget functions. These are invoked in the lines 



 
top1_panel.addWidget(symmetryTog, 0, Qt.AlignLeft) 
top1_panel.addWidget(SymmetryTol, 0, Qt.AlignLeft) 

 
These two calls attach the symmetryTog and symmetryTol widgets to the top1_panel 
QVBoxLayout. Because symmetryTog is added before symmetryTol, it comes out on top. The first 
argument in addWidget is the widget, the second argument is the stretch factor, and the third argument is 
Qt defined parameter that controls how the widget is placed in the layout manager. The Qt.AlignLeft 
value forces the widget to be locate on the left hand side of the top1_panel layout. If the alignment 
value is set to zero, the widget will approximately occupy the entire cell. A complete list of alignment 
values is provided in an appendix. 
 
The stretch factor controls the behavior of the widget when the window is resized. If the stretch is set to 0, 
the widget size remains fixed if the window is resized, if the stretch factor is set to 1, the widget will 
adjust whenever the window is resized. Intermediate values mean that the widget grows at a variable rate 
compared to other widgets. For most purposes, a value of either 0 or 1 is sufficient. Note that the input 
field on widgets  requiring some kind of text input will generally expand or contract if the window size is 
adjusted, even if the stretch factor is set to 0. 
 
The Ecce Widget Set 
 
The window above also contains two examples widgets from the Ecce widget set. Widgets have have 
attributes and functions associated with them. Attributes can be set when the widget is created and control 
the appearance and properties of the widget. Functions can be invoked to get the widget to do something 
or change its state. For the most part, functions are used to constrain the behavior of one widget to the 
values set by another widget. This will be discussed in greater detail in the section on PyQt slots and 
signals. To illustrate the properties and behavior of widgets, we will examine the symmetryTol widget 
in more detail. This widget is set up and added to the layout manager in the lines 
 

SymmetryTol = FloatInput(main) 
SymmetryTol.LABEL ="Sym. Tolerance:" 
SymmetryTol.NAME = "ES.Theory.SymmetryTol" 
SymmetryTol.DEFAULT = 1.0e-2 
SymmetryTol.HARD_RANGE = "(0..)" 
SymmetryTol.UNITS = "Angstroms" 
top1_panel.addWidget(SymmetryTol, 0, Qt.AlignLeft) 

 
The first line creates the widget, and the last line adds the widget to the layout manager, as already 
discussed. The remaining lines assign widget attributes. 
 
The Ecce convention is that widget attributes are always in upper case and they can be assigned using 
conventional assignment statements. The LABEL attribute is assigned to “Sym. Tolerance” and causes 
that label to appear in the dialog on the left hand side of the text input field. The NAME attribute assigns 
a name to the widget. This name will be exported as the key when values from the widget are sent to the 
calculation editor as key-value pairs. The DEFAULT attribute stores the default value of the widget. This 



is the value the widget takes when the dialog is invoked for the first time on a calculation and it is also the 
value that the widget gets reset to if the reset button on the dialog window is pressed. The input widgets 
are all designed to only export values if the a non-default value is selected for the widget. This is designed 
to support keyword driven input which typically does not require a value if the default selected. However, 
this behavior is sometimes undesirable, so it can be overridden by setting the REQUIRED_ON_EXPORT 
attribute equal to 1. The UNITS attribute is a label that is added to the upper right hand side of the text 
input field. 
 
The HARD_RANGE attribute supplies the range label that appears on the lower right hand side of the 
text input field. This label also restricts the values that can be entered into the widget. The label used in 
this example “(0..)” requires the value to be greater than 0. If a value less than or equal to zero is entered, 
a warning is given in the dialog message area and the input field is reset to the previous value. There is 
also a SOFT_RANGE attribute that gives a range of recommended values. Values outside this range will 
be accepted, provided they do not violate any restrictions set using the HARD_RANGE attribute , but 
they will result in a warning message. If both HARD_RANGE and SOFT_RANGE attributes have been 
set, the SOFT_RANGE attribute will appear on the widget. This behavior can be overridden by setting the 
RANGE_LABEL attribute, which will use this attribute to set the range label on the widget. Note that the 
RANGE_LABEL attribute has no effect on what values are accepted by the widget. The ranges 
themselves obey the standard notation for intervals on the line, the only difference is that the minimum 
and maximum values are separated by two periods. If an upper(lower) bound is not included, that limit is 
assumed to be plus(minus) infinity. The range “[1.0..100.0)” is all real numbers greater than or equal to 1 
and less than 100. The rules for ranges also apply to the IntegerInput and ExponentialInput widgets. 
 
Another very important attribute of all input widgets is the VALUE attribute. This is the value that the 
widget is currently set to. This attribute should never be set inside a dialog, but it can be accessed at any 
time to check what the state of the widget is. This attribute is useful for creating relationships between 
widgets using the signals and slots mechanism discussed below. 
 
Along with the input widgets already described, the Ecce widget set contains several label-type widgets 
that have no behavior but just serve as labels or line separators. These can be used to organize the dialog 
or provide some additional documentation. An example of the use of these labels is the DFT dialog screen 
for NWChem, shown below 
 



                        
 
For this dialog, the LineLabelSeparator widgets have been used to break up the dialog into panels and the 
LabelInput class have been used to create several standalone labels that provide some additional 
description of portions of the dialog. The LineLabelSeparator has been used to create widgets such as the 
“Memory Limits” separator and the LabelInput widgets were used to create the labels “Exchange-
Correlation Functionals” and “Grid Options”. The example also shows another type of input widget, the 
MenuInput widget, which is used to make mutually exclusive selections from a list of options. 
 
This dialog also makes extensive use of the globally defined variables to control the overall appearance of 
the dialog. For example, the “Theory Options – DFT” panel in the above dialog is obviously irrelevant 
unless a DFT calculation has been selected. The appearance of this set of widgets is conditional upon 



selecting DFT as the theory category and can be controlled by checking the value of the 
globals.Category variable before adding these widgets to the dialog. A complete listing of the 
global variables is given in Appendix A. 
 
Signals and Slots 
 
Signals and slots are a mechanism used by PyQt to force a response by the program when a value is 
entered into a widget. The Ecce widget set already takes care of much of this behavior, forcing the widget 
to export a value to the calculation viewer whenever the widget is changed. However, it is still necessary 
to apply constraints between different widgets, where the behavior of one widget is constrained by the 
value of another widget. An example of this is the “Use Available Symmetry” toggle and the “Sym. 
Tolerance” field. If the toggle is not set, then the value of the symmetry tolerance is irrelevant and the 
input field should be disabled. Creating this interaction is accomplished using signals and slots. Like the 
layout managers, the signals and slots mechanism has been adopted without modification from PyQt. 
 
The signal and slots mechanism is based on the idea that each widget can potentially emit a “signal” 
whenever its state is altered by the user. This signal can then be picked up be a “slot” on some other 
widget and cause it to execute some action. The slots are basically functions associated with a widget. 
The signal and slot are connected via the “connect” function, which is a function that acts on QObjects. 
The syntax of the connect function, when used with the Ecce widget set is 
 

widget.connect(send_widget,PYSIGNAL(“Signal”),slot_function) 
 

The widget at the start of this call can actually be just about any widget, usually it is either the object 
sending the signal or the object responding to the signal. Alternatively, the developer can just use QObject 
at this location. The send_widget is the widget that emits the signal and the slot_function is the 
function that is excuted whenever the signal is emitted. The PYSIGNAL is the particular signal emitted 
by the widget whenever it is changed. It is possible for some widgets to have several types of signals, but 
the Ecce widgets only emit one. 
 
The example code above can be extended to include a slot an signal. It now looks like 
 

# file: nedtheory.py  
 
#!/usr/bin/env python 
 
import sys 
from qt import * 
import string 
from templates import * 
import globals 
import templates 
 
########################################## 
######## Initialization ################## 
 
a = QApplication(sys.argv) 



 
EcceInitialization(sys.argv)   
 
########################################## 
######## Define Slots Connections ######## 
 
def slotSymmetry(): 
  if (symmetryTog.isChecked()): 
    SymmetryTol.set_active() 
  else: 
    SymmetryTol.set_inactive() 
 
########################################## 
######## Define GUI ###################### 
 
main = QWidget() 
mainLayout = QVBoxLayout(main) 
 
#----------------------------------------- 
 
top_panel = QHBoxLayout() 
mainLayout.addLayout(top_panel) 
 
top1_panel = QVBoxLayout() 
top_panel.addLayout(top1_panel) 
 
symmetryTog = ToggleInput(main) 
symmetryTog.DEFAULT = 1 
symmetryTog.NAME = "ES.Theory.UseSymmetry" 
symmetryTog.LABEL = "Use Available Symmetry        " 
top1_panel.addWidget(symmetryTog, 0, Qt.AlignLeft) 
 
SymmetryTol = FloatInput(main) 
SymmetryTol.LABEL ="Sym. Tolerance:" 
SymmetryTol.NAME = "ES.Theory.SymmetryTol" 
SymmetryTol.DEFAULT = 1.0e-2 
SymmetryTol.HARD_RANGE = "(0..)" 
SymmetryTol.UNITS = "Angstroms" 
top1_panel.addWidget(SymmetryTol, 0, Qt.AlignLeft) 
 
symmetryTog.connect(symmetryTog,\ 
  PYSIGNAL("Clicked"),slotSymmetry) 
 
####### Main Loop ######################## 
 
EcceEventLoop(a, 0, main, mainLayout,\ 
  "ECCE NWChem Editor: Theory Details", "") 
 

The slot function, slotSymmetry, is executed whenever the toggle, symmetryTog, is clicked. The 
signal emitted in this case is called “Clicked”. For this case, the slot function checks the current state the 
toggle using the function isChecked(). If it is checked, then it executes the function set_active() 
on the FloatInput widget SymmetryTol. This function causes the widget to switch to the active mode, 
where it will accept input. If the isChecked() function returns false, then the slot function executes the 



set_inactive() function on the SymmetryTol widget. This causes the input field to become 
grayed out and the widget no longer accepts input. The addition of the slot and signal does not change the 
appearance of the dialog, but it does affect it behavior. Switching on the “Use Available Symmetry” 
toggle activates the “Sym. Tolerance” and allows the user to modify the value of the tolerance. Turning 
off the “Use Available Symmetry” toggle deactivates the symmetry tolerance. This behavior reflects the 
logical connection that if symmetry is not being used, there is no point in setting the symmetry tolerance. 
 
Slots are also a good place to insert messages to the user. These are typically used to warn the user about 
unfavorable combinations of parameters, but they may serve other purposes. The message will appear in 
the message area of the dialog window, accompanied by a red flash. After a short period of time, the 
message will disappear from the message area. To send a message to the message area, the slot function 
first needs to set the globals.message variable with the string that is to be displayed and then call 
the send_new_message function, e.g. 
 

globals.message = “African or European swallow?” 
send_new_message() 

 
.edml file 
 
The $ECCE_HOME/data/client/cap/CODE.edml file, where CODE is an identifying label for the code, 
contains miscellaneous information about the particular code being registered. This information is 
primarily used by the calculation editor to configure it behavior so that it reflect the particular capabilities 
of the code being registered.  This includes specifying the allowable theory-runtype combinations, the 
ordering of angular momentum functions inside molecular orbital vectors, what setup fields are displayed 
in the calculation editor, and various code-specific restrictions such as the maximum allowable angular 
momentum value, whether the code supports the use of ECPs, etc.  It is recommended that the user 
examine some of the existing .edml files for codes such as NWChem and Gaussian 98 and use these as 
a template for creating a new .edml file. 
 
The .edml file is written in XML (extensible markup language) format.  Each entry in this format has the 
form 
 

<Element attribute=“attribute_value”>Element_value</Element> 
 
The basic unit is an element, each element can have and arbitrary number of attributes, each of which can 
be assigned values, and the element itself can have a value.  Elements can also be nested hierarchically so 
that some elements can have additional elements as their element values.  It is also possible to insert 
comment lines into the .edml file.  These are included as  
 
<!-- Comment line or lines 
--> 
 
The basic .edml file has the form  
 
 



<?xml version=“1.0” encoding=“utf-8” ?> 
<appdescriptor> 
           : 
</appdescriptor> 
 
Several additional elements are included within the appdescriptor element, and these elements contain 
several sub-elements in turn.  These are enumerated below. 
 
<GaussianBasisSetRules> 
 
This element and its sub-elements establish restrictions on the basis set and some of the calculations 
performed by the code.  This element has no attributes.  The sub-elements contained within this element 
are listed below, along with a description of the behavior they control. 
 

• <MaxLValue>:  The element value is an integer corresponding to the maximum value of the angular 
momentum in the basis set supported by the code. 

 
• <ECPS>:  The element value is “True” or “False” and indicates whether the code supports the use of 

ECPs. 
• <GeneralContractions>:  The element value is “True” or “False” and indicates whether the code 

supports generally contracted basis sets. 
 

• <PreferOptimization>:  The element value is “True” or “False” and indicates (TO BE DONE) 
 

• <MaxPrimitives>:  (TO BE DONE) 
 

• <MaxSharedExponent>:  The element value is an integer and indicates (TO BE DONE) 
 

• <SphericalCoordinates>:  The element value is “True” or “False” and indicates (TO BE DONE) 
 

• <DFTFitting>:  The element value is “True” or “False” and indicates (TO BE DONE) 
 

• <RecommendDFTCharge>:  The element value is “True” or “False” and indicates (TO BE DONE) 
 

• <RequireFullDFT>:  The element value is “True” or “False” and indicates (TO BE DONE) 
 

• <MaxTotalFunctions>:  The element value is an integer and indicates (TO BE DONE) 
 

• <MaxTotalPrimitives>:  The element value is an integer and indicates (TO BE DONE) 
 

• <MultipleOrbitals>:  The element value is “True” or “False” and indicates (TO BE DONE) 
 

• <MOOrdering> 
 



This function determines the order that the angular momentum functions are listed in the molecular 
orbital coefficient vector.  It has one attribute, type that takes the value “cartesian” or “spherical”.  This 
element has one sub-element, <lshell>.  The <lshell> element has no value, but it takes on an arbitrary 
number of attributes.  The first of these is the attribute lval whose value corresponds to the angular 
momentum quantum number of the shell.  The remaining attributes have the names a1, a2, a3,..,aN, 
where N is the maximum number of functions in this shell.  The attribute values for these shells are 
strings corresponding to the cartesian monomial representation of the angular momentum function.  As an 
example, the element corresponding to the “d” shell for NWChem is written as 
 
<lshell lval=“2” a1=“xx” a2=“yy” a3=“zz” a4=“xy” a5=“xz” 
           a6=“yz”></lshell> 
 
The strings are the angular momentum functions and can be written as combinations of the characters “x”, 
“y”, and “z”.  The ordering of these functions should be the same as their order in the molecular orbital 
coefficient vector.  For the “d” shells and beyond, this order is generally code dependent.  An integer 
following one of the characters x, y, or z is interpreted as an exponent, so the string “xx” is equivalent to 
“x2”.  Similarly, strings for higher order angular momentum functions such as “xxxy” can also be written 
as “x3y”, etc. 
 
Specifying spherical functions is a bit more complicated. Unlike the Cartesian functions, spherical 
functions beyond the “p” shell cannot be written as a single monomial. To handle this, spherical 
coefficients can be written as polynomials with rational coefficients (both numerator and denominator 
must be expressed as integers). The spherical harmonic function from the “f” shell, 3x2y/2-y3/2 can be 
written as the string “3xxy/2-yyy/2”. It could also be written as “3x2y/2-y3/2”. For each term in spherical 
harmonic, the numerator of the coefficient is written first, then the monomial expression. If the 
denominator of the coefficient is not one, the monomial is followed by a slash and the denominator. 



<Editor> 
 
This element has two attributes theorydialog and runtypedialog.  The attribute values are the names of 
the executables that bring up the theory and runtype dialog boxes from calculation editor.  The <Editor> 
element has one sub-element, the <Theory> element.  This element has two attributes, called category 
and name.  The values of these two attributes correspond to the theory category and the theory name of 
the theory.  An example of a theory element is 
 
<Theory category=“SCF” name=“ROHF”> 
 
The theory names are listed under the theory category in the calculation editor. 
 
The <Theory> element has one sub-element, the <runtype> element.  This element has no attributes and 
its value corresponds to one of the supported runtypes for the corresponding theory.  A complete theory 
listing looks like 
 
 <Theory category=“SCF” name=“ROHF”> 
  <runtype>Energy</runtype> 
  <runtype>Gradient</runtype> 
  <runtype>Geometry</runtype> 
  <runtype>Vibration</runtype> 
  <runtype>GeoVib</runtype> 
 </Theory> 
 
A listing of this type for each individual theory needs to be included under the <Editor> element. 
 
<TheorySummary> 
 
This element can be used to determine which summary fields appear in the calculation editor.  Each 
summary field has its own <TheorySummary> element.  The <TheorySummary> element has the 
attribute topLabel which can be used to provide a label for the theory summary field.  This attribute is 
generally only used when it is desirable to have several theory parameters appearing in a list.  The 
<TheorySummary> element has the sub-elements <item> that can be used to specify the actual theory 
parameters that appear in the summary field.  The <item> element has two attributes, key and label.  The 
key attribute is a character string corresponding to one of the key names assigned by the theory details 
window described above, the label attribute is a character string corresponding to the label that should 
appear before the key in the summary field.  An example of a few theory summary fields for the 
NWChem program are shown below. 
 
<TheorySummary topLabel=“SCF Convergence-”> 
 <item key=“ES.Theory.SCF.ConvergenceGradient.Value” 
  label=“Gradient”></item> 
 <item key=“ES.Theory.SCF.ConvergenceDensity.Value” 
  label=“Density”></item> 
 <item key=“ES.Theory.SCF.ConvergenceEnergy.Value” 



  label=“Energy”></item> 
</TheorySummary> 
<TheorySummary> 
 <item key=“ES.Theory.SCF.ConvergenceIterations” 
  label=“SCF Max. Iterations:”></item> 
</TheorySummary> 
 
<RuntypeSummary> 
 
This element works in exactly the same way as the <TheorySummary> element, except that the 
summary fields are associated with runtype instead of the theory. 
 
<DataFiles> 
 
(TO BE DONE) 
 
<IntegrationFiles> 
 
This element has several sub-elements that specify the programs or scripts used to create input files, 
import calculations, translate basis set functions into the correct format, etc.  The sub-elements are listed 
below. 

• <Template> The template file used for creating input decks, assuming the template model of input 
file generation is being used (see below). 

 
• <InputGenerator> The script or program used to generate the input file. 

 
• <Importer> The script or program used to import calculations run outside Ecce. 

 
• <ParseSpecification> The .desc file (see below) used to parse the program output. 

 
• <LaunchPreprocessor> 

 
• <BasisTranslationScript> The script or program used to translate the standard basis set format 

output from the basis set tool into the format of the code being registered. 
 
Creation of a Script for Input File Generation\ 
 
The input file generation part of code registration currently consists of two components.  The first 
component is the creation of a template file (a .tpl file located in the $ECCE_HOME/scripts/parsers 
directory) that is used as a model for setting up input decks.  The second component is the creation of an 
appropriate scripting program, written in Perl, that can take data from the GUI and combine it with the 
template file to produce a valid input deck to run the target code.  Thus far, all codes registered in Ecce 
have keyword driven input for which the template model of input generation is appropriate.  For codes 
that use a formated numerical input, another model for input file generation may work better. 



An example of a .tpl file is the g98.tpl file used to generate input files for running Gaussian 98.  The 
file has the form  
$ RunGauss 
%Mem=##MemorySize##000000 
##G98Route##  
 
##title## 
 
##ChargeAndMultiplicity## ! charge and multiplicity 
##chemsys## ! cartesian (or zmatrix) geometry listing 
 
##basis## 
 
##OrbitalsToCorrelate## 
 
The input file generation script will read in this file and then replace all the keywords delimited by the 
double # sign with the values set in the calculation setup GUI. 
 
The Perl script that actually writes out the input file is invoked by Ecce as 
 

ai.gauss98 calc.param calc.frag calc.basis calc.tpl 
 
The input file generation script used in this example is for the Gaussian 98 code and is called 
ai.gauss98.  It is also located in $ECCE_HOME/scripts/parsers directory.  The prefix “calc” is a name 
that has been assigned to the calculation by the GUI.  The calc.param file contains a list of keys that have 
been set in the GUI along with their values, the calc.frag file contains the molecular geometry, the 
calc.basis contains the basis functions to be used in the calculation and the calc.tpl file contains a copy of 
the g98.tpl file.  The ai.gauss98 script must then take the information contained in these files and use 
them to generate an input file for the Gaussian 98 code. 
 
The script ai.gauss98 is listed below, followed by a detailed description.  It has the basic form 
 
 #!/usr/bin/env perl 
 { 
 # 
 # package for command-line options like -v 
 # 
  require “getopts.pl”; 
 # 
 #  Add parser directory to list of directories that are searched 
 #  for by the require command. 
 # 
 my $sysdir = `sysdir`; 
 chop $sysdir; 
 push(@INC,”$ENV{ECCE_HOME}/platform/$sysdir/scripts/parsers”); 
 # 
 # Construct several useful arrays containing the symbols, names, 



 # and atomic numbers of the elements, as well as several arrays for 
 # converting between them. 
 # 
 require “pertab.pl”; 
 &loadPT; 
 #   
 # Turn off system variable that enables buffering of output, force 
 # output to be flushed. 
 # 
  $| = 1; 
 # 
 #  Handle the options that were specified when ai.gauss98 
 #  was invoked. This does not do much except print out a message. 
 # 
  &Getopts(‘:hvt’); 
 &handle_options; 
 # 
 # Setup dates and such. Currently not used for anything. 
 # 
  ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = 

localtime(time); 
  $month = (January, February, March, April, May, June, 
    July, August, September, October, November, December)[$mon]; 
 # 
 # Dictionary to be parsed from specified input file. Start by creating 
 # the associative array %AbiDict 
 # 
  %AbiDict = (); 
 # 
 # Check to see if enough files were passed to ai.gauss98 when it was 
 # invoked. ($#ARGV is the index of the last element in @ARGV.) 
 # 
  if ($#ARGV != 3) { 
   &usage; 
  } 
 # 
 # Main Routine. Start by verifying that .param and .frag files exist 
 # and assign them the internal file names ABIDICT and CHEMSYS. 
 # 
  &verifyAbiFile; 
  &verifyFragFile; 
 # 
 # Read in contents of .param file and assign them to the associative 
 # array %AbiDict. 
 # 
  &readDict; 
 # 
 # If calculation requires a basis set, check to see if .basis file 
 # exists and assign it the internal file name GBS. 



 # 
  if ( $AbiDict{“Category”} ne “SE”) { 
   &verifyGBSFile; 
  } 
 # 
 # Read in molecular geometry from .frag file and assign to internal 
 # Perl arrays. 
 # 
  &readChemSys; 
 # 
 #  This is the major part of the input file generation script. This 
 #  subroutine scans through the .tpl file and uses it to construct 
 #  an input file using the information collected from the .param, 
 #  .frag, and .basis files. 
 # 
  &modifyInputFile; 
 # 
 # Close the input file and copy it to the appropriate location. 
 # 
  &cleanup; 
 } 
 
The more important subroutines in this script are described in detail below. 
 
The first significant subroutine in the script ai.gauss98 is the readDict subroutine.  This subroutine scans 
through the calc.param file and creates the associative array %AbiDict.  The argument of %AbiDict is a 
key name and the corresponding array element is the key value.  A typical .param file looks like 
 
 ES.Theory.SCF.ConvergenceIterations:  70 
 title: Calc 
 parseFile: g98.out 
 Category: SCF 
 Theory: RHF 
 RunType: Energy 
 ChemSys.Multiplicity:  1 
 
The maximum number of SCF iterations was increased from its default value, so the corresponding key 
appears in the .param file.  A number of other keys that are always exported to the calc.param file are also 
present.  The readDict subroutine parses each line in this file and splits them at the colon “:”.  The left 
hand side of the split is an index in %AbiDict and the right hand side is the corresponding value.  The 
current input generation scripts go somewhat further and break up each of the keys by chopping off 
everything to the left of each “.” in the key name and assigning the new key name and the value as 
another pair in the associative array.  Thus, the key ES.Theory.SCF.ConvergenceIterations will end up 
generating four entries in %AbiDict.  The indices 
 
 ES.Theory.SCF.ConvergenceIterations 
  Theory.SCF.ConvergenceIterations 



   SCF.ConvergenceIterations 
    ConvergenceIterations 
will all be assigned the value 70 in %AbiDict.  Thus, the number of convergence interations can be 
accessed by using any of the following references 
 
 $AbiDict{“ES.Theory.SCF.ConvergenceIterations”} 
  $AbiDict{“Theory.SCF.ConvergenceIterations”} 
   $AbiDict{“SCF.ConvergenceIterations”} 
    $AbiDict{“ConvergenceIterations”} 
 
This is done so that the keys can be refered to using a shorthand notation.  This can cause problems if 
there is another key with the same final name, because the shorthand reference will contain the value of 
whatever key was read in last.  For cases where this is likely to occur, a longer portion of the key name 
should be used.  Because use of the full key name is unambiguous, this is the preferred mode for 
referencing elements in the %AbiDict file and should be used in writing all future input generation 
scripts. 
 
The input file generation routine now has all the information in the calc.param and calc.frag files.  It next 
checks the theory category to see if the theory requires a basis set.  If it does, then it verifies that the .basis 
file exists and assigns it the internal name GBS.  The molecular structure is read in from the .frag file 
using the readChemSys subroutine.  The total number of atoms is assigned to $chemsys_atoms, the 
system name is assigned to $chemsys_name, and the atom labels and coordinates are assigned to the 
arrays @tags{i} and @coords{i,j}, where i runs over the total number of atoms and j goes from 0 to 2 and 
represents the spatial coordinates.  These arrays can be accessed from any other subroutine in the input 
generation script. 
 
The call to modifyInputFile is the most important remaining subroutine call.  This routine scans the 
calc.tpl file and replaces all the keywords with appropriate strings constructed using the contents of the 
calc.param, calc.frag, and calc.basis files.  The modifyInputFile subroutine has the form  
 
 sub modifyInputFile { 
  local($keysave, $key, $subname, $prefix, $postfix, $finished); 
  $inputFile = $ARGV[3]; 
 # 
 # Open .tpl file and assign it the name TEMPLATE, open 
 # file to contain program input and assign it the name 
 # NEWFILE. 
 # 
  open(TEMPLATE, $inputFile); 
  open(NEWFILE, “>tmpfile”); 
  while (< TEMPLATE>) { 
 # 
 # Read successive lines from TEMPLATE. Parse each line 
 # to find keyword that is delimited by the double # signs 
 # and assign the keyword to the variables $keysave and 
 # $key. If there are any prefixes and postfixes beyond 



 # the ## delimeters, assign these to $prefix and $postfix. 
 # 
  if (/([^#]*)##([^#]*)##(.*)/) {  ## Locate Tag 
   $prefix = $1; 
   $postfix = $3; 
   $keysave = $key = $2; 
   $finished = 0; 
   while ($finished == 0) { 
    $subname = $key; 
 # 
 # Replace and “.” in keyword with underscore characters “_”. 
 # 
    $subname =~ s/\./_/g; 
 # 
 # Keyword is in the dictionary 
 # 
   if (defined($AbiDict{$key})) { 
    $finished = 1; 
 # 
 # Construct subroutine function call using the value in 
 # $AbiDict{$key} as subroutine argument. 
 # 
    $value = $AbiDict{$key}; 
    $fct = “&$subname(‘$value’)”; 
    $result = eval $fct; 
    if (!(defined $result)) { 
 # 
 # Subroutine doesn’t exist so just replace keyword with the 
 # value in $AbiDict{$key}. 
 # 
    s/##$keysave##/$value/; 
   } elsif ($result ne ““) { 
 # 
 # Subroutine returns a string in $result. Replace $keyword 
 # with $result. 
 # 
    $_ = $prefix . $result . $postfix . “\n”; 
   } 
 # 
 # Keyword is not in dictionary. 
 # 
   } else { 
 # 
 # Check to see if keyword corresponds to a subroutine. 
 # 
    $finished = 1; 
    $fct = “&$subname”; 
    $result = eval $fct; 
    if (!(defined $result)) { 



 # 
 # Subroutine does not exist. Check to see if viable 
 # subroutine can be found by reducing keyword at the “.”. 
 # Check to see if the number of characters before getting 
 # to the first “.” is greater than or equal to the value 
 # of the first array subscript “$[“. (“$[“ has the value 0.) 
 # If no “.” is found, index function will return the 
 # value -1. 
 # 
    if (index($key, “.”) >= $[) { 
 # 
 # Remove all characters after and including the final “.”. 
 # 
    $key =~ s/\.[^\.]*$//; 
    $finished = 0; 
   } else { 
 # 
 # No value found for keyword. Remove line from input file. 
 # 
     $_ = ““; 
    } 
   } elsif ($result ne ““) { 
 # 
 # Subroutine returns a string in $result. Replace $keyword 
 # with $result. 
 # 
      $_ = $prefix . $result . $postfix . “\n”; 
     } 
    } 
   } 
  } 
 # 
 # Print contents of $_ to NEWFILE. 
 # 
   print(NEWFILE); 
  } 
 } 
 
This subroutine will try a number of different things when it hits a keyword in the calc.tpl file.  The first 
is to see if the keyword corresponds to a subroutine call.  For the Gaussian 98.tpl file given above, the 
G98Route, ChargeAndMultiplicity, chemsys, basis, and OrbitalsToCorrelate all correspond to subroutine 
names.  If there is anything in the %AbiDict array corresponding to these keywords, then this is passed 
along as the subroutine argument.  If no subroutine is found, then the keyword is replaced by the 
corresponding value in the %AbiDict array.  If there is nothing in the %AbiDict array, then the whole line 
is eliminated in the input file. 
 
The only remaining part writing the input file generation routine is creating the subroutines that are used 
to replace the keywords in the calc.tpl file with the appropriate strings for the input file.  These are usually 



fairly simple and can make use of all the available information that is now residing in the input file 
generation script.  An exception is the G98Route subroutine which is actually quite complicated and is 
used for generating the route card used in Gaussian 98 input files.  As an example, the subroutine 
corresponding to the ChargeAndMultiplicity keyword is fairly simple and has the form  
 
 sub ChargeAndMultiplicity { 
  local($charge,$value); 
  if ( $AbiDict{“Charge”} eq ““) { 
   $charge = 0; 
  } else { 
   $charge = $AbiDict{“Charge”}; 
  }  
  $value = $charge.” “.&Multiplicity; 
  return $value; 
 } 
 # 
 # Multiplicity is now just a number signifying the number 
 # of open shells 
 # 
 sub Multiplicity { 
  local($multiplicity); 
 
  if ( $AbiDict{“ChemSys.Multiplicity”} =~ /(\d+)/) { 
   $multiplicity = $1; 
  } else { 
   $multiplicity = 1; 
  } 
  return $multiplicity; 
 } 
 
This set of subroutines just returns a pair of space-separated integers representing the charge and 
multiplicity.  Note that it gets all the information it needs to construct the pair directly from the %AbiDict 
file, it does not need any additional arguments. 
 
The remainder of the input file is generated from information in the calc.frag and calc.basis files.  
Subroutines are constructed to replace the keywords chemsys and basis with the molecular geometry and 
basis functions in the appropriate format.  The final subroutine in the ai.gauss98 script, cleanup, just 
closes the files NEWFILE and ABIDICT replaces the contents of the original calc.tpl file with the 
contents of NEWFILE. 
 
Output File Descriptors and Parsing Scripts 
 
The remaining task in registering a new code in Ecce is creating a parse descriptor file for the program 
output and writing a collection of Perl scripts that can be used to scan blocks of output for useable 
information.  The model that Ecce uses to parse the output is the following:  as data is written out to the 
output file, the output parsing routines scan it looking for keywords or single line keyword phrases that 



delimit output blocks refering to a particular data item (e.g., the total system energy).  Once one of the 
keywords is identified, Ecce then finds the end of the output block by either skipping down a prespecified 
number of lines or by searching for another keyword phrase that delimits the end of the output block.  The 
whole block of output is then passed to a Perl script that is used to extract the appropriate data quantities 
and assign them to variables in the Ecce database.  This data can be examined using the Ecce calculation 
viewer.  It is also possible to read in entire data files of numerical data using the data parsing model.  The 
parse descriptor files and the parse scripts are all located in the $ECCE_HOME/scripts/parsers directory. 
 
The Parse Descriptor File 
 
The parse descriptor file contains a series entries having the form 
 
[DATALABEL1][DATALABEL2]...[DATALABELN] 
Script=perl-script.name 
Begin=Output keyword phrase 
Prefix=Output keyword phrase used in calculation imports 
Files=Name of output file 
Frequency=first,last,firstlast,all 
Skip=number of lines in output 
Line=number of lines in output 
End=Output keyword phrase 
[END] 
 
Each entry in the .desc file is delimited by a set of database labels, DATALABEL1 etc., and the keyword 
[END].  The database labels are currently ignored and only serve to mark the beginning of a parse 
descriptor field.  The Perl script that parses this information is defined using Script keyword.  The 
remaining keywords provide information on how to identify subsets of the program output for further 
processing.  These keywords are described in more detail below. 
 

• Script:  The name of the Perl script used for processing the output block.  Once a block of text has 
been extracted from the output file, the Perl script extracts the numerical values or text strings 
corresponding to the data items represented by DATALABEL1 etc., and assigns them to the database. 

 
• Begin:  This is a keyword or key phrase that appears in the output file and is used to identify the 

block of output containing the information being sought.  For example, when NWCHEM is run under 
Ecce it produces a file named ecce.out that is parsed for the quantities that are eventually assigned to 
the Ecce database.  The entry in the .desc file that is used for parsing the Mulliken partial charges is  

 
 [MULLIKEN] 
 Script=nwchem.mulliken 

Begin=begin%total mulliken atomic 
 Prefix=task 
 Frequency=last 
 End=task 
 [END] 
 



 The key phrase defined by the Begin keyword is “begin%total mulliken atomic”.  The Ecce parser 
searches through the ecce.out file and compares each line in the output file with the keyword or key 
phrase defined by all the Begin statements in the .desc file.  If there is a match, in this case with the 
fragment “begin%total mulliken atomic”, then Ecce extracts a block of text from the output starting 
with the line containing the key phrase.  The end of the text block is determined by the Line or End 
keyword.  If the output is being read from a file specified by the File keyword (see below), then the 
Begin keyword is set equal to the file name. 

 
• Prefix:  This is a performance enhancement and is only used for importing calculations into Ecce.  

The parse descriptor checks the beginning of each line against the key phrase specified by the Prefix 
keyword.  If there is a match, then the rest of the line is checked to see if it contains the key phrase 
specified using the Begin keyword.  The key phrase specified using the Prefix keyword must exactly 
match the beginning of the line containing the key phrase specified using the Begin keyword.  This 
includes white space.  For the example listed above, the line containing the phrase “begin%total 
mulliken atomic” always begins with the word “task”.  The output parser checks each line during an 
import to see if it begins with the word “task”.  If it does, then it checks the rest of the line for the 
phrase “begin%total mulliken atomic”, if the line does not begin with “task”, the parser goes to the 
next line. 

 
• File:  This keyword is used to identify numerical output that is stored in a file other than the 

designated output file.  For example, Ecce needs the molecular orbital coefficients in order to 
construct visual representations of the molecular orbitals using the calculation viewer.  For the 
Gaussian 9X programs, these are listed in a separate file, fort.7.  The entry in the parse descriptor 
file for reading this file is 

 
 [MO][ORBENG] 

Script=gaussian-98.mo 
 File=fort.7 
 Begin=fort.7 
 [END] 
 
This entry tells the output parser that when the file fort.7 appears, the contents are fed to the Perl script 
gaussian-98.mo which will assign the contents to the database items MO and ORBENG.  The Begin 
keyword is set to the file name in this case. 
 

• Frequency:  This keyword is used to control which occurrences of the keyword phrase are actually 
stored in the data base.  If this is set to “first”, then only the data that is parsed the first time the key 
phrase appears in the output is saved to the database, if it is set to “last”, then only the data that is 
parsed on the last occurrence of the key phrase is saved to the database.  If Frequency is set to 
“firstlast”, then the first and last occurrences of the key phrase are saved to the database and if it is set 
to “all”, then all occurrences of the key phrase are saved to the database. 



• Skip:  This keyword is used to specify how many lines should be skipped after the appearance of the 
key phrase in the output before sending text to the Perl script.  This can be used when the first useable 
data does not occur until several lines after the key phrase appears in the output.  This is particularly 
true when the key phrase is part of a header in the output. 

 
• Lines:  This keyword is used to specify how many lines of text should be included in the text block 

that is sent to the Perl script for parsing.  The counting starts with the first line that is actually parsed.  
For most cases this is the line specified by the Begin keyword, but if the Skip keyword is used the 
counting begins after the number of lines specified by the Skip keyword have been read.  The Skip 
keyword can be used when the needed data always occurs within a fixed number of lines of the key 
phrase.  The end of the text block can also be specified using the End keyword. 

 
• End:  This keyword is used to identify a second key phrase that marks the end of the text block in the 

output file.  This can be used instead of the Line keyword for text blocks where the number of lines is 
not fixed. 

 
Output Parsing Scripts 
 
Once a block of text in the output file is identified using the parse descriptor file, it is passed to the Perl 
script specified in the parse descriptor file.  The invocation of the script has the form  
 

perl.script key runtype ucCategory theory < INPUT > OUTPUT 
 
The extra arguments can be used by the Perl script to help parse the text block and assign the appropriate 
values to the database variables.  The argument “key” has been set to the process ID number of the parent 
calling process and can be used to create utility files that are stored in the /tmp directory.  The “runtype”, 
“ucCategory”, and “theory” arguments are just the same as the RunType, Category, and Theory variables 
exported to the .param file.  (See the description in the input file generation section.) These can be used to 
help correctly parse the text block stored in INPUT. 
 
The output parsing script must do two things:  1) it must identify and extract the appropriate numerical 
values and/or text strings from the text block and 2) it must write these into the file OUTPUT in a format 
appropriate for transmission to the database.  The standard formats, which are based on the 
dimensionality of the data, are described in more detail below.  An example of how a parsing script works 
is the script for finding the gradients in a Gaussian-98 force calculation.  The entry in the .desc file for 
extracting this information has the form  
 
 [EGRADVEC] 
 Script=gaussian-98.egradvec 
 Begin=             Forces 
 Prefix= Center 
 Frequency=last 
 Skip=3 
 End=-------------------------------------- 
 [END] 



The text block that will be identified in a typical output file is 
 

Forces (Hartrees/Bohr) Center 
Number

Atomic 
Number X Y Z 

1 8 0.000000000 0.000000000 -0.056234772 
2 1 0.000000000 -0.021657478 0.028117386 
3 1 0.000000000 0.021657478 0.028117386 

 
Because the Skip keyword in the .desc file has been set to 3, the text that is actually sent to the gaussian-
98.egradvec script is  
 

1 8 0.000000000 0.000000000 -0.056234772 
2 1 0.000000000 -0.021657478 0.028117386 
3 1 0.000000000 0.021657478 0.028117386 

 
The parse script then extracts the forces for each atom from this text block and prints it to OUTPUT in a 
format suitable for transmission to the Ecce database.  The Perl script gaussian-98.egradvec that does this 
has the form 
 
 #!/usr/bin/env perl 
 # 
 # Force output to be flushed 
 # 
 
 $| = 1; 
 
 # 
 # The command line arguments (not used anywhere by this 
 # particular routine). 
 # 
 ($key, $runtype, $ucCategory, $theory) = @ARGV; 
 
 # 
 # Read in atom index, atomic number and x,y,z components of 
 # forces. The atomic index and atomic number are not used but 
 # the components of the forces are stored in the arrays 
 # @x,@y,@z and the total number of atoms is stored in $natom. 
 # The calculation viewer is actually expecting gradients instead 
 # of forces so first multiply forces by -1. 
 # 
 $natom = 0; 
 while () { 
  if (/-----/) { last; } 
  chop; 



  s/^\s*//; 
  ($cnt,$atom,$x,$y,$z) = split(/ +/); 
  push (@x,$x==0?$x:$x*-1.); 
  push (@y,$y==0?$y:$y*-1.); 
  push (@z,$z==0?$z:$z*-1.); 
  $natom += 1; 
 } 
 
 # 
 # Print out the data in standard format. 
 # 
 
 print “key: EGRADVEC\n”; 
 print “size:\n”; 
 print “$natom  3\n”; 
 print “rowlabels:\n”; 
 for ($i=1;$i<=$natom;$i++) { print “$i “; } 
 
 print “\ncolumnlabels:\nX Y Z\n”; 
 
 print “values:\n”; 
 for ($i=0; $i<= $#x; $i++) { 
  print “$x[$i] $y[$i] $z[$i]”;  
  print “\n”; 
 } 
 print “END\n”; 
 
The action of the script gaussian-98.egradvec on the text block is to produce the output  
 
 key: EGRADVEC 
 size: 
 3  3 
 rowlabels: 
 1 2 3  
 columnlabels: 
 X Y Z 
 values: 
 0.000000000 0.000000000 0.056234772 
 0.000000000 0.021657478 -0.028117386 
 0.000000000 -0.021657478 -0.028117386 
 END 
 
The data can now be sent to the database in a format where it can read as a table by the calculation 
viewer. 
 
There are currently four formats for writing out data to OUTPUT so that it can be picked up by the Ecce 
database.  These are Scalar, Vector, Table, and Vector of Tables.  The database elements listed for each 
entry in the .desc file must also be declared in the $ECCE_HOME/data/admin/refload/props file.  This 



file determines whether a database element is a Scalar, Vector, etc., by setting the dbclass variable.  The 
dbclass values, DBValue, DBVector, DBTable, and DBVecTable correspond to the Scalar, Vector, Table, 
and Vector of Tables formats, respectively, described below.  Each of the formats begins with the word 
“key:  “ followed by the database label.  It is important that there is a space between the colon and the 
database label, otherwise the property will not be picked up. 
 
The four currently supported database formats are: 
 

• Scalar 
 
  key: 
  size: 
  values: 
  END 
 

• Vector 
 
  key: 
  size: 
  columnlabels: 
  values: 
 END 
 

• Table 
 
  key: 
  size: 
  rowlabels: 
  columnlabels: 
  values: 
  END 
 

• Vector of Tables 
 
  key: 
  size: 
  vectorlabels: 
  rowlabels: 
  columnlabels: 
  values: 
  END 
 
All formats contain the keywords “key” and “size”.  The keyword “key” refers to the database label listed 
in the entry in the .desc file.  For the example above, “key” is set equal to EGRADVEC. 
 



The keyword “size” determines the number of data points in the entry.  The size is specified as a sequence 
of positive integers, one for each dimension associated with the data format.  For a scalar quantity, the 
size is always set to 1.  For a vector quantity, the size is a single positive integer representing the 
dimension of the vector.  If the size is set to 1 for a vector, then this is understood to mean that the value 
printed out is to be appended to previous values already in the data base to construct the vector.  As an 
example, this option is used to construct a vector of energies in geometry optimizations.  For tables, like 
the one in the example above, the size is specified by two space-delimited integers.  The first integer is 
the number of rows, the second is the number of columns.  Finally, for vectors of tables, three positive 
integers need to be specified.  The first is the number elements in the vector, the second is the number of 
rows in an individual table, and the third is the number of columns.  If the number of elements in the 
vector is set to 1, then the table is appended to an existing vector of tables. 
 
The “rowlabels”, “columnlabels”, and “vectorlabels” keywords are used to provide labels for the 
corresponding elements in the data structure.  The labels themselves are white-space delimited lists of 
strings.  The number of elements in the list must be the same as the dimension specified using the “size” 
keyword.  The label keywords and their associated lists can be omitted.  The database still requires the 
labels and in this case the C++ code will automatically supply labels that are a series of integers between 
1 and the dimension of the labeled quantity.  This option is useful when constructing vectors by 
appending new data to an existing vector. 
 
Finally, the values of the database entry must be printed out using the “values” keyword.  The values are a 
space delimited list of numbers that are written out in the order  
 
 scan over vector elements (i) 
  scan over row elements (j) 
   scan over column elements (k) 
    print value(i,j,k) 
   end scan 
  end scan 
 end scan 
 
For lower dimensional formats, the appropriate number of outer loops are eliminated.  The list of values 
can be broken up into lines in any convenient way.  To complete the database entry, the keyword “END” 
is included as the last line. 
 
Many of the entries in the .desc file assign values to more than one database element.  When this occurs, 
the parse script can write several entries in the OUTPUT file.  Each entry begins with the keyword “key”, 
followed by whatever additional keywords and numerical values are appropriate, and is terminated by the 
keyword “END”. 
 
To complete the registration of a new property in the database, an entry corresponding to the database 
name must be made in the $ECCE_HOME/data/admin/refload/props file.  Each entry is a tab-delimited 
list of entries corresponding to one line in the props file.  The two most important entries are the 
short_name and dbclass elements.  The short_name is the database name that appears in the .desc file and 
is used as the key when the parsed data is written to the OUTPUT file.  The dbclass has the values 



DBScalar, DBVector, DBTable, and DBVecTable and corresponds to the data formats described above.  
A complete entry in the props files is 
 

Derived Energy Gradient Vector EGRADVEC\\ 
Gradient DBTable noviceUser secondaryProperty Y 

 
(Note that in an actual props file entry, this is all one line.) Additional documentation is available in the 
props file itself.  For the present, it is advisable to find a similar entry in the props file and simply copy 
and edit it.  The two most important parts of this entry are the database label EGRADVEC and the 
database class specification DBTable.  The arguments to the DBTable specification provide column and 
row labels for this entry. 
 
Appendix A: Ecce PyQt Toolkit 
 
The Ecce PyQt toolkit has two major components. The first is a list of global constants that are initialized 
based on information available in the Ecce calculation editor, the second is a set of widgets that can be 
used to create dialogs. This appendix provides a complete description of both of these components. 
 
Global variables 
 
The following is a list of the globally available variables that can be used to control the behavior of details 
dialogs. These variables can all be accessed using the syntax globals.variable.  
 

globals.Category: a string containing the theory category selected in the calculation editor 
(e.g. SCF, DFT, CC, etc.). 
 
globals.Theory: a string containing the theory selected in the calculation editor (e.g. RHF, 
UDFT, etc.). 
 
globals.RunType: a string containing the runtype selected in the calculation editor (e.g. 
Geometry, Vibration, GeoVib, etc.). 
 
globals.SymmetryGroup: a string containing the symmetry group chosen in the builder and 
appearing in the calculation editor summary field (e.g. C1, C2v, D2h, etc.). 
 
globals.NumElectrons: an integer containing the number of electrons in the system. 
 
globals.SpinMultiplicity: an integer representing the spin multiplicity of the system. 
 
globals.NumFrozenOrbs: an integer representing the default number of frozen core orbitals 
for the system. 
 
globals.NumOccupiedOrbs: an integer representing the number of occupied orbitals in the 
system 



 
globals.NumVirtualOrbs: an integer representing the number of virtual orbitals in the 
system. 
 
globals.NumNormalModes: an integer representing the number of normal modes in the 
system. 
 

Ecce PyQt Widgets 
 
A complete listing of all Ecce PyQt widgets, their attributes, and their associated functions is given 
below. A complete specification of all attributes and functions is given below, the attributes and functions 
that apply to specific widgets are listed in the description of individual widgets. 
 
Attributes 

 
LABEL: All Ecce widgets have a label attribute, except the LineSeparator widget. The label 
attribute is used to assign a text string to the label that appears with the widget in the dialog. 
 
NAME: All input widgets have a name attribute which must be assigned a unique character string 
(see the description of these names in the text above). These names are a unique identifier that are 
used internally to return the dialog to its state from a previous session and are also exported to the 
.param file as the key in a key-value pair. 
 
DEFAULT: All input widgets have a default attribute that represents the default value for the 
parameter that the widget is assigning. This is the value that the widget takes when the dialog is 
first invoked. If the REQUIRED_ON_EXPORT attribute is not set equal to 1, then the widget 
does not export a value to the .param file if the widget value is equal to the default. 
 
VALUE: All input widgets have a value attribute which represents the current value of the 
widget (i.e. the value that appears on the screen). The VALUE attribute should not be set in the 
dialog script, if at all possible, but can be accessed to control the behavior of parts of the dialog. If 
it needs to be set in the dialog script, then it should be used in conjunction with the 
init_widget() function so that the contents of the VALUE attribute is actually transmitted to 
the display widget itself.  
 
Comparing the values of floating point numbers can occasionally be tricky, since typically the 
contents of VALUE are actually strings. This can lead to problems since different string 
representations of floating point numbers are actually equivalent, e.g. 0.1 and 0.10. This problem 
can be solved by first converting the values from strings to floating point numbers using the 
syntax 
 

rval = string.atof(str(widget.VALUE)) 
 
These comments also apply to the DEFAULT attribute. 



 
ACTIVE: All input attributes have an active attribute which determines if the widget is currently 
receiving input. Widgets that are inactive do not respond to the cursor or the keyboard and are 
typically greyed out. This attribute is occasionally set when the widget is created, but in most 
cases the ACTIVE attribute can be controlled with the set_active() and 
set_inactive() methods. 
 
REQUIRED_ON_EXPORT: This attribute is used to control whether values get exported to the 
.params file that is used to create the input deck. Most keyword driven input is defaulted so that 
unless a parameter is set to a non-default value, it is not included in the input deck. The current 
Ecce input file generation scripts implement this by making use of the fact that parameters that 
are set to their default values do not get exported to the .params file as key value pairs. This 
behavior is overridden by setting the REQUIRE_ON_EXPORT attribute equal to 1. 
 
WIDTH: This attribute is only used for the numerical and text input widgets. The width of the 
input field is normally elastic and will stretch or contract to fill all the space made available to it 
by the layout manager. This can be behavior can be overridden by setting the WIDTH attribute to 
a finite value. The width of the input field is then fixed at the number of pixels assigned to 
WIDTH. 
 
UNITS: This attribute is only used for numerical input widgets. The text string assigned to units 
is placed as a label on the upper right hand side of the input field. 
 
HARD_RANGE: This attribute is only used for numerical input widgets. It is used to specify a 
set of rigorous bounds on the values entered into the widget. Values falling outside this range are 
rejected and the widget is reset to its previous value. A warning message also appears in the 
message area. The HARD_RANGE attribute is assigned a text string as described above. This 
text string also appears to the lower right of the input field, unless it is overridden by the 
SOFT_RANGE or RANGE_LABEL attributes. 
 
SOFT_RANGE: This attribute is only used for numerical input widgets. It is used to specify a 
set of recommded bounds on the values entered into the widget. Values falling outside this range 
are still accepted but a warning message appears in the message area. The SOFT_RANGE 
attribute does not override the HARD_RANGE attribute, so if a value is entered that is outside 
the limits set using the HARD_RANGE attribute, it will be rejected. The SOFT_RANGE 
attribute is assigned a text string as described above. This text string also appears to the lower 
right of the input field, unless it is overridden by the RANGE_LABEL attribute. 
 
RANGE_LABEL: This attribute is only used for numerical input widgets. It is used to override 
the text label appearing to the lower right of the input field that would otherwise be set by the text 
fields in the HARD_RANGE or SOFT_RANGE attributes. It has no effect on the behavior of the 
widget. 
 
 



 
Ecce Widget Functions 
 
Below is a complete listing of functions that can be called on widgets in the Ecce PyQt widget set. Most 
of these functions can be called on all widgets, the few exceptions are noted in the function description. 
The syntax for invoking these functions is widget.function(). 
 

init_widget(): The only instance when this function should be called is if the developer sets 
the VALUE attribute by hand in a dialog. To transmit this value to the widget appearing in the 
dialog it is necessary to invoke this method. Setting the VALUE attribute by hand should be 
avoided, if at all possible. 
 
set_active(): This method sets the ACTIVE attribute to 1 and activates the widget so that it 
will receive input. This method is only invoked for input widgets. 
 
set_inactive(): This method sets the ACTIVE attribute to 0 and deactivates the widget so 
that it will not receive input. As a sign that the widget is deactivated, the input fields and text 
labels associated with the widget become greyed out. This method is only invoked for input 
widgets. 
 
isChecked(): This method is only invoked for the ToggleInput widgets. It returns 1 if the 
toggle is checked, 0 otherwise. 
 
insertItem(“option”): This method is only invoked for the MenuInput widgets. It is used 
to add items to the menu options list when the menu item is created. When insertItem(“option”) is 
invoked the string “option” appears in the menu list exactly as written in the argument (be careful 
with white space). The order that options appear is the same as the order in which they are added. 

 
Ecce PyQt Widgets 
 
Below is a complete listing of the Ecce PyQt widgets and a description of there behavior and appearance. 
The label-type widgets are listed first, followed by the input widgets. 
 

LabelInput: This widget produces a simple text label. The text in the label is set by the 
LABEL attribute. 
 
LineSeparator: This widget produces a horizontal line across the dialog window. It is used 
for creating unlabeled “panels” of logically related input fields. 
 
LineLabelSeparator: This widget produces a horizontal line across the dialog window that 
is broken by a string of text. The text is determined by setting the LABEL attribute. This widget 
is used for breaking the dialog up into “panels” of logically related input fields. 
 



ToggleInput: This widget produces a labeled toggle in the dialog. The toggle label is set with 
the LABEL attribute. Unlike the other input widgets, the label for toggle inputs appears to the 
right of the widget. Because this input widget is frequently used to constraint other input fields, 
the label is often suppressed by setting the LABEL attribute equal to a null string, “”. The toggle 
widget returns values of 0 and 1. The value can also be determined with the isChecked() 
function. The toggle input emits the PYSIGNAL “Checked”. 
 
MenuInput: This widget produces a pull-down list of mutually exclusive options. Options are 
added to the menu using the insertItem(“option”) function and the label is set with the 
LABEL attribute. The label appears to the left of the menu. The menu input emits the 
PYSIGNAL “ItemSelected” . 
 
TextInput: This widget produces a labeled input field that can be used enter any unrestricted 
text. The label is set with the LABEL attribute and appears to the left of the input field. The text 
input emits the PYSIGNAL signal “SetValue” whenever any text is entered in the field. 
 
FloatInput: This widget produces a labeled input field that can be used to enter a real 
number. The label, which appears on the left hand side of the input field, is set with the LABEL 
attribute. The float input has two other labels. The first is a units label, which is set with the 
UNITS attribute, and appears to the upper right of the input field. The other is a range label, 
appearing to the lower right of the input field, and can be set by either the HARD_RANGE, 
SOFT_RANGE, or RANGE_LABEL attributes. The range of allowed values accepted by the 
widget can be controlled with either the HARD_RANGE and SOFT_RANGE attributes. 
Violations of the limits set by the HARD_RANGE attribute result in setting the value of the 
widget back to its previous value and a warning message appearing in the dialog message area, 
violations of the limits set by the SOFT_RANGE attribute results in only a warning. The float 
input emits the PYSIGNAL “SetValue” whenever any text in entered in the field. 
 
IntegerInput: This widget is almost identical to the FloatInput widget. The only 
significant difference is that this widget will only allow integers to be entered in the input field.  
 
ExponentialInput: This widget is almost identical to the FloatInput widget. The 
only significant difference is that this widget will only allow floating point numbers that are an 
integer power of 10 to be entered in the input field. 
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