Power Grid Monitoring and Alerting System

Adapting <u>The Morning Report</u> technology for monitoring the Electrical Power Grid

<u>The Morning Report</u> was originally developed as part of NASA's Aviation Safety Program.

Tom Ferryman Pacific Northwest National Laboratory

Battelle

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Overview of FY06 work and Vision for a Power Grid Monitoring and Alerting System

Overview of Data Analysis Approach developed for the NASA Aviation Safety Program

Review of results of analysis of PMU data for Western Grid

Overview of Data Analysis Approach developed for the NASA Aviation Safety Program

How to do it? The key elements of the approach

Aviation Safety Program uses:

- <u>On-board instrumentation</u> to record hundreds of variables that monitor the aircraft throughout every flight.
- <u>Sophisticated statistical analysis</u> programmed into a workstation that analyzes the data to find:
 - Typical patterns, that characterize ~99% of the flights
 - Atypical events, that are worthy of individual inspection
- <u>User-friendly software</u> enables the aviation user to rapidly and effectively drill into the gigabytes of data to find the insight needed to:
 - Understand safety issues and formulate corrective plans if appropriate
 - Monitor typical patterns for trends
- <u>Aviation Experts</u> inspired by new insight proactively identify and correct safety issues affecting aviation safety

Electrical Power Grid

ttelle

tom.ferryman@pnl.gov

- Instrumented system operation: <u>PMU systems</u>
- Adapt statistical analysis: <u>Proof-of-concept in work</u>
- User-friendly software: <u>On-hold</u>
- Expert review of results: <u>Yuri Makarov</u>

The Morning Report can be described in 12 Basic Steps

Step 1: Download Data

- Download daily or weekly
- From tapes, disks, or solid state devices
- Use commercially available playback software
- Insert data into commercially vended database
 - PMU data continuously recorded
 - > 400 variables from > 30 locations
 - Data could be:
 - Live / real time
 - From archives

Step 2: Check the Data Quality

- Apply knowledge-based filters
- Identify "bad" data
- Remove the "bad" data
- Inform user of QA problems

Limited data checks to remove dramatically bad data.

Pacific Northwest National Laboratory U.S. Department of Energy

tom.ferryman@pnl.gov

Battelle

Step 3: Conduct Pre-defined Exceedance Checks

- Airline experts define specific data comparisons to be made at specific routine events
 - Are the gear down while altitude is above 18,000 ft?
 - Are the flaps extended while airspeed is greater than 300 knots?
 - Etc.

Time (secs)	Param 1	Param 2	 Param P	Routine Events
1	103.40	1	277.40	Start Takeoff
2	103.70	1	266.30	
126	104.49	1	267.31	
127	104.98	1	268.19	
129	105.45	0	269.12	Gear Up
100				
131	106.39	0	269.78	
4021	106.82	0	270.71	
4022	107.33	0	270.78	
4023	107.89	0	270.85	10000 ft AFE
4024	108.40	0	271.14	
4025	108.53	0	271.53	
4026	109.38	0	272.03	
N	110.68	0	273 70	Touchdown

This requires that we <u>envision</u> the potential problems before they occur.

Power Grid Domain Experts could create Boolean Expressions for automatic monitoring. This effort is not part of the Proof-of-Concept investigation.

Step 4: Structure the Data

- Data are parsed into flight segments
- Flight Segments based on Event Markers, e.g.
 - Gear-up
 - Cross outer-marker
 - Descent through 1000 ft AFE
- Customizable to each air carrier phase definitions

	_				
Time (secs)	Param 1	Param 2	 Param P	Event Marker	ACR Phase
151					
152	103.40	1	277.40	Rotate	Takeoff
153	103.70	1	103.70		
335	105.13	1	105.13		
336	105.45	0	105.45	Gear Up	
337	105.73	0	105.73		
			 		climb
1225	106.82	0	106.82		
1226	107.89	0	107.89	10000 ft AFE	
1227	108.10	0	108.07		
3236	108.51	0	109.04		
3237	109.33	0	109.12	Max Altitude	Cruise
3238	110.25	0	109.74		
6259	109.04	0	108.60		
6260	109.85	0	109.57	10000 ft AFE	
6261	109.87	0	110.39		
			 		Approach
6673	110.70	0	110.53		
6674	111.19	0	110.68	Gear Down	
6675	111.90	1	111.29		
7786	112.13	1	112.10		Landing
7787	112.91	1	112.43	Touchdown	
7788	113.63	1	112.90		

Data maybe partitioned into "60 second" observations. Observations may be grouped for comparison as function of Time-of-Day and Day-of-Week.

Battelle tom.ferryman@pnl.gov U.S. Department of Energy

Pacific Northwest National Laboratory U.S. Department of Energy

Step 8: Select the Data

- Select a subset of data:
 - Aircraft type
 - Airports
 - Flight Phase
 - Time Frames
 - Other Parameters

	Time (secs)	Param 1	Param 2	 Param P	Event Marker
	1	103.40	1	277.40	Start Takeoff
	2	103.70	1	266.30	
	126	104.49	1	267.31	
	127	104.98	1	268.19	
	129	105.45	0	269.12	Gear Up
	130	105.73	0	269.73	
	131	106.39	0	269.78	
	4021	106.82	0	270.71	
	4022	107.33	0	270.78	
	4023	107.89	0	270.85	10000 ft AFE
	4005	400.52	0	074 50	
	4025	108.53	0	271.53	
	4026	109.38	0	272.03	
	· · ·	110.68		 	Touchdown
L	IN	110.08	0	273.70	Touchdown
Г			-	 	
	Time (secs)	Param 1	Param 2	 Param P	Event Marker
	129	105.45	0	269.12	Gear Up
	130	105.73	0	269.73	
	131	106.39	0	269.78	
	4021	106.82	0	270.71	
	4022	107.33	0	270.78	
	4023	107.89	0	270.85	10000 ft AFE
L					

Outers • Quantification captures values, trends, & noise

Step 9:

used enable:

duration

Time series analysis

Flight mode transitions

(secs) P	aram 1	Param 2	 Param P	Event Marker	ACR Phase
51					
52	103.40	1	277.40	Rotate	Takeoff
53	103.70	1	103.70		
35	105.13	1	105.13		
36	105.45	0	105.45	Gear Up	
37	105.73	0	105.73		
			 		climb
225	106.82	0	106.82		
226	107.89	0	197.89	10000 ft AFE	
227	108.10	0	108.07		
236	108.51	0	109.04		
237	109.33	0	109.12	Max Altitude	Cruise
238	110.25	0	109.74		
259	109.04	0	108.60		
260	109.85	0	9.57	10000 ft AFE	
261	109.87	0	110.39		
			 		Approach
673	110.70	0	110.53		
674	111.19	0	110.68	Gear Down	
675	111.90	1	111.29		
'86	112.13	1	112.10		Landing
'87	112.91	1	112.43	Touchdown	
88	113 63	1	112.90		

Transform the Signatures

Multivariate mathematical statistical techniques

Characterization independent of phase

May combine adjacent time periods for analysis (e.g.; 8-9am 9-10am, ... 3-4pm maybe combined)

> Pacific Northwest National Laboratory U.S. Department of Energy

May look at WECC as whole. May look at subset (e.g.; Olympic Peninsula)

Step 10: Cluster the Transformed Signatures

- Use several alternative clustering methods
 - Then, generate a consensus
- Typical patterns
 - Clusters of similar flights
 - Summarized in plain English via Storymeister
- Atypical flights
 - Singletons, clusters of one or two
 - Summarized in plain English via Rationale
- Performed for each user-defined and selected flight phase
 - Each dot represents a observation.
 - Dots are mapped to patterns with similar characteristics.
 - Some observations may be mapped to very small clusters.

Step 11: Find the Atypical Flights

- Atypical flights are defined to be
 - Singletons

Battelle

tom.ferryman@pnl.gov

- Very small clusters (atypical clusters)
- Differs from classic exceedance analysis
 - Which look for parameter values outside of pre-defined ranges within a flight phase
- Can be the impetus for further investigation
 - By operationally knowledgeable persons

• Atypical behavior of the Power Grid will be identified by the methodology.

- Domain Experts will assess the significance of the atypical behavior.
- If it represents insightful finding:

EUREKA !!!!

Finds the unenvisioned.

End-users don't have to know what they are looking for !!

The analysis finds atypical events never dreamt of !!

Step 12: Present the Findings

Data processing occurs over night
 Morning report is ready by 7am

- Morning report is ready by 7am every morning.
- Identifies most atypical flights
 - Excludes flights previously reviewed and dispositioned
 - Enables drill down to flight details
 - Allows capture images in Microsoft PowerPoint files for communication ease.
 - Nature of the displays are TBD.
 - Frequency of the displays are TBD.
 - Display focuses on atypical events.

This may evolve to *The Minute Report.*

Inalysis Overview] 4
Morning Report Name : After Re-Run	Report Date : 5/24/2004	
Summary of Flights		
Number of new flights : 3199		
Aircraft Model : B737-700		
Date Range of New Flights : 3/16/2004 - 5/30/2004		
Number of Level 3 Flights : 49	Cancel	
Number of Level 3 Phases : 178	Go To Flight List	
Number of Level 2 Flights : 194		
Number of Level 2 Phases : 610		
Number of Level 1 Flights : 727		

MS Mo	rning Report							
g Repo	et Tab							
mman	O Floht List							
orning	Report Summary							
				707 700		I evel 3 Flid	hts	
1404	Plights : 3188		Pieet : D	/3/-/00				
Ein	M Dates : 3/18/2004 - 5	5/30/2004				E Local 2 Elia	hte	
						rever 2 mig	nts	
Mor	ning Report Date : 5/24	1/2004						Explore Fig
						Level 1 Flig	hts	CAPIOLOT IN
und .	[Flott	Tall Number	Analysis ID	Phase	0 ricin	Destination	Validation	Rationale
3	3739 20040329 059	3739	5/24/2004 2:15:24 AM	3 Jandon	MENU	ATI	Pending	(1) and of attack L (2) and Pro
3	3739 20040329 024	3739	5/24/2004 1:21:50 AM	3 - Low Speed Climb	ATL	SAV	Pending	(1)Edg Gr Sel Dwn, (2)Angle of
3	3712 20040322 052	3712	5/24/2004 1:04:07 AM	3 - Takeoff	ATL.	DEN	Pending	(1)Eda Gr. Sel Dwp. (2)Apple of .
3	3701 20040329 037	3701	5/24/2004 2:15:24 AM	3-London	DAY	ATL	Pending	(1)Apple of attack L (2)Long Pri
3	3701 20040329 043	3701	5/24/2004 1-56-52 AM	3 - Final Approach	480	ATL.	Pending	(1)Gide Slope Dev Dots (2% do
3	3750 20040327 044	3750	5/24/2004 1:38:19 AM	3 - Low Speed Descent	IAD	ATL	Pending	(1)Edg Gr Sel Dwp. (2)Apple of
3	3761 20040330 007	3761	5/24/2004 2:15:24 AM	3-Landing	SAV	ATL	Pending	(1)Angle of attack L. (2)Long Pri
3	3762 20040307 003	3762	5/24/2004 12:59-29 AM	3 - Takeoff	S.C.	MCO	Pending	(1)Eat Pres Pos Corr. (2)Sod Bra
3	3707 20040301 018	3707	5/24/2004 2:10:57 AM	3-Landro	801	S.C.	Pending	(1)Dwn Adv. (2)Height Above LC
3	3748 20040328 037	3748	5/24/2004 2:15:24 AM	3-Landing	7867	ATL	Pending	(1)Angle of attack L (2)Long Pr
3	3751_20040331_015	3751	5/24/2004 1:04:07 AM	3 - Takeoff	ATL.	ORD	Pending	(1)Ldg Gr Sel Dwn, (2)Angle of
3	3739 20040329 041	3739	5/24/2004 1:56:52 AM	3 - Final Approach	0141	ATL	Pending	(1)Ldg Gr Sel Dwn, (2)Angle of
3	3763 20040307 000	3763	5/24/2004 1:52:00 AM	3 - Final Approach	MCO	80	Pending	(1)Up Advisory, (2)Elevator Pos
з	3712 20040322 051	3712	\$/24/2004 1:30:19 AM	3 - Low Speed Descent	OAK	ATL	Pending	(1)Ldg Gr Sel Dwn, (2)Angle of
э	3724 20040329 014	3724	\$/24/2004 2:15:24 AM	3 - Landing	DPW .	ATL	Pending	(1)Angle_of_attack_L, (2)Long_Ph
3	3740 20040320 023	3748	5/24/2004 1:04:07 AM	3 - Takeoff	ATL	805	Pending	(1)k.dg Gr Sel Dwn, (2)Angle of
3	3762_20040307_001	3762	5/24/2004 12:59:29 AM	3 - Takeoff	SLC .	LAX	Pending	(1)Lat Pres Pos Corr, (2)Fuel Fic
3	3758_20040325_034	3758	5/24/2004 1:21:50 AM	3 - Low Speed Climb	ATL	TLH	Pending	(1)Ldg_Gr_Sel_Dwn, (2)Angle_of_
з	3762_20040302_003	3762	5/24/2004 2:10:57 AM	3 - Landing	SF0	SLC	Pending	(1)Alt_QNE_Corr, (2)Height_Abov
3	3739_20040329_033	3739	5/24/2004 2:15:24 AM	3 - Landing	EWR.	ATL	Pending	(1)Angle_of_attack_L, (2)Long_Pri
3	3748_20040328_021	3748	5/24/2004 1:38:19 AM	3 - Low Speed Descent	SFO	ATL	Pending	(1)Ldg Gr Sel Dwn, (2)Angle of
3	3758 20040325 038	3758	5/24/2004 2:15:24 AM	3 - Landing	DPW	ATL	Pending	(1)Angle_of_attack_L, (2)Long_Ph
3	3705_20040229_014	3705	5/24/2004 12:59:29 AM	3 - Takeoff	SLC .	BOS	Pending	(1)Height_Above_TD, (2)AR_QNE.
3	3751_20040331_020	3751	5/24/2004 2:15:24 AM	3-Landing	SEA	ATL.	Pending	(1)Angle_of_attack_L, (2)Long_Pri
3	3761_20040330_004	3761	5/24/2004 1:21:50 AM	3 - Low Speed Climb	ATL.	GDL	Pending	(1)Ldg_Gr_Sel_Dwn, (2)Angle_of
3	3761 20040330 013	3761	5/24/2004 2:15:24 AM	3-Landing	MYR	ATL	Pending	(1)Angle_of_attack_L, (2)Long_Pri
3	3745_20040309_010	3745	5/24/2004 1:17:20 AM	3 - Low Speed Clinib	9.C	S.C.	Pending	(1)Elevator_Pos_L, (2)Pitch_Angle
3	3712_20040322_054	3712	5/24/2004 2:15:24 AM	2 - Landing	COS	ATL	Pending	(1)Angle_of_attack_L, (2)Long_Pn
3	3758_20040325_049	3758	5/24/2004 1:34:14 AM	3 - Low Speed Descent	EWR	SLC .	Pending	(1)Dwn_Adv, (2)Fuel_Burn_Hr_Av
3	3724_20040329_019	3724	5/24/2004 1:21:50 AM	3 - Low Speed Climb	ATL.	IAD	Pending	(1)Ldg_Gr_Sel_Dwn, (2)Angle_of_
_					-			

Drill-down Example

4:33:33 Time from Liftoff to left

Time to Touchdown from 0:00:20

_ 0

Summary of Approach Characteristics

- NASA invested > \$6 million over 10 years to move beyond traditional Statistical Quality Control approaches.
 - This technology is multivariate data-driven, with an option to incorporate physics-based elements.
- This technology has won multiple prestigious awards:
 - R&D 100 award, one of the best 100 inventions world-wide, 2005
 - R&D 100 Editor's Choice Award, Invention with the Greatest Impact on Safety
 - Federal Laboratory Consortium award for transfer of technology developed at a federal lab to the community, 2007
 - American Statistics Association, Best Statistical Application 2006
- For more info and a 5-minute overview video:
 - http://www.pnl.gov/statistics/RandD100.htm

Review of results of analysis of PMU data for Western Grid

- 9/12/05
- 38 substations in Western Grid
- Voltage, Phase Angle, Frequency at 30 Hz

Atypicality Index for 1 day Data is covered by NDA. Protect data. Proprietary data

Pacific Northwest National Laboratory U.S. Department of Energy

Atypicality Index for 1 day Data is covered by NDA Protect data Proprietary data

Rationale identifies variables that contribute significantly to the Atypicality Index And presents summary in plain English; e.g.:

> Variable W is very low. Variable X is low. Variable y is high. Variable Z is very high.

Battelle tom.ferryman@pnl.gov Pacific Northwest National Laboratory U.S. Department of Energy

Vision

Optimum Reliability comes from using both Proactive and Reactive Efforts

Battelle tom.ferryman@pnl.gov Pacific Northwest National Laboratory U.S. Department of Energy

Goals Off-line Support (Morning Report): Automated identification, characterization and localization of atypical events Reconstruction of sequence of significant events Identification of typical patterns and sequence of transitions amongst typical patterns Identification of typical patterns exhibited as a result of intentional actions (e.g., grid re-configuration)

Questions and Natural Next Steps

>?

Pacific Northwest National Laboratory U.S. Department of Energy