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abstract We describe some developments in the Popan system for the analysis of mark-

recapture data from Jolly- Seber (JS) type experiments. The latest version, Popan-6,

adopts the Design Matrix approach for specifying constraints and then uses it in the

constrained maximization of the likelihood. We describe how this is done and the diþ erence

it makes to convergence and parameter identi® ability over the constraint contrast-equation

methods used in Popan-5. Then we show how the SIMULATE capabilities of Popan

can be used to explore the properties of estimates, including their identi ® ability, precision,

and robustness to model misspeci® cation or capture heterogeneity.

1 Introduction

Over the last two EUR ING meetings, we have described the evolution of the

Popan system for the analysis of mark- recapture data using models of the Jolly-

Seber type (Schwarz, 2000). At Patuxent in 1994, we described Popan-4 (Arnason

& Schwarz, 1995), the ® rst version to implement the uni® ed model (Schwarz and

Arnason, 1996) that allowed general user-speci® ed constraints. The uni® ed model

produces a tractable likelihood using the logits of the fundamental parameters that

describe the dynamics of sampling and population change in an open population.

The fundamental parameters in a k-sample experiment are:

p i the probability of capture at sample time i, i 5 1, . . . , k,

u i the probability of an animal surviving between sample time i and sample time

i + 1 given it was alive at sample time i, i 5 1, . . . , k 2 1,
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b i the proportion of animals (out of a total recruitment of N animals) that enter

after sample time i and survive to sample time i + 1, i 5 0, . . . , k 2 1. The

® rst parameter, b0 , is used to estimate the initial stock of animals just before

the ® rst sample is taken.

The b i are the net birth proportions for each sample interval out of the total net

recruitment N , and formulating the likelihood in terms of these parameters was

key to ® nding a tractable means of imposing constraints. In Popan-4 you could

impose three kinds of constraints: (i) ® xed value constraints (e.g. setting u i to 1.0

or bi to 0.0 to specify no losses or recruitment in interval i ); (ii) sameness constraints

(e.g. constrain survival or survival per unit time to be the same over some sample

times); (iii) covariate model constraints (e.g. the capture rates are a linear or

quadratic function of known sampling e þ ort at each time).

One of the advantages of the uni® ed model is that it is possible to impose non-

linear constraints just as easily as linear constraints. The per-unit-time adjustments

to survival require this, since constraints have to be imposed on u 1/ d i
i where d i is the

time between sample i and i + 1. Constraints on the fundamental parameters are

easily translated into equivalent constraints on their logits, the model parameters.

Once the model has been ® t and the parameters estimated, further derived

parameters of interest to the biologist can be estimated and standard errors (SEs)

formed using the delta method and the numeric variance- covariance matrix that

drops out automatically with a numeric scoring algorithm for maximizing the

likelihood. These included, in Popan-4, the abundance and net and gross births,

de® ned as:

N i 5 n i /p i the abundance at sample time i, i 5 1, . . . , k,

B i 5 N bi the net births de® ned as the number of animals that enter after

sample time i and survive to sample time i + 1, i 5 1, . . . , k 2 1.

B 0 5 N1, the initial population size,

B *i 5 g( u i) B i the gross births where g( u i) 5 ln( u i) / ( u i 2 1) is the net to gross

adjustment, assuming the recruitment and survival per unit time is

uniform, or in practice changing only slowly, over the sample

interval.

In Popan-4, you could place sameness or covariate model constraints on net but

not on gross births. If you have unequal time intervals, you want to equate or

model the gross births per unit time, and this, over short uniform intervals, is:

g( u i)B i / d i . These constraints are diý cult to impose as they are non-linear and a

function of more than one fundamental parameter, but they are important to

biologists who model total escapements of ® sh (Schwarz et al., 1993) and to those

who model total emergence of insects (N. Schtickzelle, personal communication).

Such constraints are possible in Popan-5.

Popan-5 was introduced at the 1997 EURING meeting at Norwich (Arnason &

Schwarz, 1998, 1999). It extended the uni® ed model ® t (called procedure UFIT

in Popan) to groups so that sameness and covariate models could be imposed both

over time (temporal constraints) or over groups. This now brings to Jolly- Seber

models the ability to ® t general temporal and group constraints of the types usually

designated using the notation of Lebreton et al. (1992): group time interaction

models g*t; group eþ ect models g; time eþ ect models t; and constant parameter

models ( · ). So for example, Popan-5 can ® t the model ( pg , u g*t , b t) where capture

rates are constant over time but diþ erent among groups, survival is diþ erent at
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every time in each group, and the recruitment pattern varies over time but is the

same in every group.

As in Popan-4, constraints are speci® ed by contrast equations but with group

extensions (e.g. G1P1-G2P3 means that the parameter at time 1 in group 1 should

be constrained to equal the parameter at time 3 in Group 2). These contrasts are

used to generalize the scoring method used to maximize the likelihood. This

method has advantages (gone into in Arnason & Schwarz, 1999) but also some

limitations, which we explore below.

Popan-5 lets you de® ne the cohort groupings on the ¯ y by specifying logical

conditions on ® xed cohort attributes supplied with the animal encounter histories.

Thus, if you supplied attributes for gender, year class, and initial weight, you could

explore models using cohorts de® ned as any combination of these attribute values

without re-entering the data. In sampling breeding populations where samples are

annual and animals are marked in their year of birth, then year class is given by the

time of ® rst capture. Popan lets you de® ne groups based on this attribute too, so the

familiar age-dependent models of Lebreton et al. (1992) can be ® t. To ® t this and

other grouping models, Popan had to be extended to account for groups and to allow

for sample times that may have sample size 0. This can happen by design (e.g. there

are no 1997 year class animals in the 1996 sample) or by chance when one of the

groups happens to be small or hard to capture. We showed how Popan handles this

for the age-design models (in Arnason & Schwarz, 1999) and in this paper we will

discuss how to handle the by-chance cases. These missing samples create identi® -

ability problems that need to be resolved by ® xing appropriate parameters.

When you have data on multiple groups, there are additional models and

constraints that are of interest. For example, additive models where parameters are

constrained to follow the same pattern over time but at possibly diþ erent levels in

diþ erent groups. Additive models on the natural, log and logit scale were added in

Popan-5. Meta-constraints (not involving the fundamental parameters directly)

such as imposing equal slopes or intercepts or both across groups in a linear

covariate model are also of interest. These are also available in Popan-5 but a

problem with Popan-5 is that covariate models are applied across all sample times

and cannot be restricted to a sub-set of the sample times. In principle, this is

resolvable using the uni® ed model, but in practice, the means of implementing this

gets increasingly complex using the contrast equation approach in Popan-5. Such

meta-models are not a problem for the Design Matrix (DM) approach used to

specify such constraints on survival or capture rates in Program MARK (White &

Burnham, 1999) and SURGE (Pradel & Lebreton, 1993).

In order to circumvent such problems, and in order to incorporate the UFIT

procedure into Mark, Popan-6 abandons the contrast equation method and adopts

the DM approach. In this paper, we describe how the DM approach is imple-

mented, compared to the contrast equation method, and discuss the advantages

and disadvantages of switching approaches. We also show how the method is

generalized to adapt to arbitrary parameter transformations such as the log and

natural (anti-logit) transformations as well as such non-linear and cross-parameter

transformations as required for time adjustment of survival and gross birth rates.

We also discuss the convergence and identi® ability problems that can occur

because of chance small-sample problems. Then we give an example of how the

integration of UFIT with a general SIMULATE procedure, capable of doing both

deterministic and stochastic simulations, can be used to explore identi® ability, preci-

sion, and robustness of estimates to model misspeci® cation and assumption failures.
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2 Constraint implementation

To compare how Popan-5 and Popan-6 ® t constrained models, it is helpful to

consider a speci® c model: say ( pg, u t , bg*lin(t)) with g 5 2 (groups, say females and

males) and k 5 4 samples. The birth proportions bi are modelled as linear in time

(t 5 i 5 1, 2, 3) and initially we might look at models with diþ erent intercepts and

slopes for males and females and then see if models with common slope between

the sexes are supported. In the general g-group, k-sample model there are g(3k 2 1)

parameters and we let h be the vector of parameters in standard order:

p11, . . . p1k , u 11, . . . h 1k 2 1 , b10 , . . . b1 k 2 1 , p21 , . . . b2k 2 1 , pg1 , . . . bgk 2 1

where the ® rst subscript now indicates group. Standard order is the p, u and b for

group 1, followed by those for group 2, etc. Not all these parameters are identi® able

in the unconstrained case, but in our constrained example, just 11 of the

2(3 3 4 2 1) 5 22 full set of parameters are diþ erent and all 11 of the reduced set

are, it turns out, identi® able. If we call this reduced set the vector b , then

· b 1 and b 2 are the capture rates for males and females respectively,

· b 3 , b 4 and b 5 are the survival rates at times 1, 2 and 3 (common to both sex

groups),

· b 6 , b 7 and b 8 are b0 and the intercept and slope for females (g 5 1), and

· b 9 , b 10 and b 11 are b0 and the intercept and slope for males ( g 5 2).

Note that b0 is modelled as a separate parameter and not as part of the linear

model since this represents the initial proportion of the entries that are present just

prior to the ® rst sample. All the other bi are for the proportion of entries between

two samples and if samples are equally spaced, we might expect a consistent

pattern among these, but unrelated to b0 . The relationship between the full and

reduced parameter set is h 5 D b . In Table 1, we show the form of D, the 22 row

by 11 column full design matrix; h , the 22 by 1 vector of the full parameters in

standard order; and b the 11 by 1 vector of reduced parameters.

In Popan-6, as in MARK, it is easier to specify the sameness constraints (here,

on p and u ) using a parameter index matrix (PIM). This is an array of integer

indexes, one for each parameter in standard order, and if the index is the same for

two parameters, it means they are to be constrained to be the same. The user then

speci® es only a reduced DM for the remaining covariate and ® xed constraints if

any. For this example, the PIM is shown in Table 2.

The DM only has to specify the covariate model to impose further constraints

on the parameters with index (we call it, redundantly, the PIM index) numbers

7 . . . 9 and 11 . . . 13 to reduce the 13 parameters to 11 as before, or, as shown in

Table 2, to the 10-parameter common slopes model.

It is straightforward to reconstruct a full design matrix, D , from a PIM and a

reduced DM. Fixing parameters is done by adding a ® rst column to the reduced

DM to contain the value to ® x the parameter to (and all other cells in that row

must be empty).

In Popan-6, the maximization algorithm iteratively selects values for the b

parameters in its search to maximize the log likelihood. We can derive the method

of doing this from the scoring method for ® nding the unconstrained model

parameters by applying a chain rule. The scoring method used in Popan-5, ignoring
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Table 1. Full design matrix where the rows give the full parameters ( h row ) in standard order and the

columns give the reduced parameters ( b col). The meaning of the reduced parameters is indicated as

p( g,t) with a dot replacing the group g or time t to indicate a sameness constraint; or as int(g) and sl( g)

to indicate the parameters in group g are ® tted by a linear model with this intercept and slope

b 1 5 b 2 5 b 3 5 b 4 5 b 5 5 b 6 5 b 7 5 b 8 5 b 9 5 b 10 5 b 11 5

p (1,.) p (2,.) u (.,1) u (.,2) u (.,3) b (1,0) int(1) sl (1) b (2,0) int(2) sl (2)

h 1 5 p1,1 1 0 0 0 0 0 0 0 0 0 0

h 2 5 p1,2 1 0 0 0 0 0 0 0 0 0 0

h 3 5 p1,3 1 0 0 0 0 0 0 0 0 0 0

h 4 5 p1,4 1 0 0 0 0 0 0 0 0 0 0

h 5 5 u 1,1 0 0 1 0 0 0 0 0 0 0 0

h 6 5 u 1,2 0 0 0 1 0 0 0 0 0 0 0

h 7 5 u 1,3 0 0 0 0 1 0 0 0 0 0 0

h 8 5 b1,0 0 0 0 0 0 1 0 0 0 0 0

h 9 5 b1,1 0 0 0 0 0 0 1 1 0 0 0

h 10 5 b1,2 0 0 0 0 0 0 1 2 0 0 0

h 11 5 b1,3 0 0 0 0 0 0 1 3 0 0 0

h 12 5 p2,1 0 1 0 0 0 0 0 0 0 0 0

h 13 5 p2,2 0 1 0 0 0 0 0 0 0 0 0

h 14 5 p2,3 0 1 0 0 0 0 0 0 0 0 0

h 15 5 p2,4 0 1 0 0 0 0 0 0 0 0 0

h 16 5 u 2,1 0 0 1 0 0 0 0 0 0 0 0

h 17 5 u 2,2 0 0 0 1 0 0 0 0 0 0 0

h 18 5 u 2,3 0 0 0 0 1 0 0 0 0 0 0

h 19 5 b2,0 0 0 0 0 0 0 0 0 1 0 0

h 20 5 b2,1 0 0 0 0 0 0 0 0 0 1 1

h 21 5 b2,2 0 0 0 0 0 0 0 0 0 1 2

h 22 5 b2,3 0 0 0 0 0 0 0 0 0 1 3

Table 2. Parameter Index Matrix (PIM) for the sameness constraints speci® ed in Table 1 and the

design matrix for two reduced models based on the PIM parameterization. Notation for reduced

parameters is as in Table 1

PIM pg,1 pg,2 pg, 3 p g, 4 u g, 1 u g, 2 u g, 3 bg,0 bg, 1 bg, 2 bg, 3

(a) PIM

g 5 1 1 1 1 1 3 4 5 6 7 8 9

g 5 2 2 2 2 2 3 4 5 10 11 12 13

Diþ erent slopes DM Common slope DM

b 1 5 b 2 5 b 3 5 b 4 5 b 1 5 b 2 5 b 3 5

int(1) sl(1) int(2) sl(2) int(1) sl(.) int(2)

(b) Reduced models

h 1 5 PIM 7 1 1 0 0 1 1 0

h 2 5 PIM 8 1 2 0 0 1 2 0

h 3 5 PIM 9 1 3 0 0 1 3 0

h 4 5 PIM 11 0 0 1 1 0 1 1

h 5 5 PIM 12 0 0 1 2 0 2 1

h 6 5 PIM 13 0 0 1 3 0 3 1
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constraints for the moment, gets parameter estimates at iteration j + 1 from the

previous estimates at iteration j using

h j +1 5 h j + H
2 1
h ( h j)S h ( h j) (1)

where h is the vector of model parameters in standard order, of dimension n by 1,

where n 5 g(3k 2 1), and S h ( h j) is the n by 1 score vector of derivatives of the log

likelihood evaluated at the current parameter values h j ; and H
2 1
h ( h j) is the inverse

Hessian evaluated at the current values. The Hessian is the n by n array of second

partial derivatives of the log likelihood with respect to the n model parameters. In

Popan-6, the iteration is on the b vector of length m, say, using

b j +1 5 b j + H
2 1
b ( b j)S b ( b j) (2)

but it is possible to derive the three arrays in this equation from the design matrix

and the original score and Hessian matrix. First we get the current full parameters

from h j 5 D b j (some of these will be the same, but we can always compute the full

n model parameters given the b and the full design matrix). We can also ® nd the

beta score function from the old score function, since one application of the chain

rule gives

S b ( b j) 5 D ¢ S h ( h j) (3)

and a second application gives the method of deriving the Hessian from the old

Hessian:

H b ( b j) 5 D ¢ H h ( h j)D (4)

Applying these three substitutions to equation (2) gives equation (1), which shows

that both methods are equivalent in maximizing the log likelihood but since at each

step we are iterating on the b , the constraints speci® ed by the full design matrix

are being maintained on the h 5 D b at each iteration; hence at the expense of a

couple of matrix operations, the size of the Hessian to be inverted can be greatly

reduced (from 22 to 11 in our example) and a constrained maximization algorithm

is converted to the equivalent of an unconstrained search.

The method in equation (2) generalizes to allow the method to apply to any

transformation of the parameters provided the transformation is diþ erentiable with

respect to model parameters. This includes the per-unit-time (delta) transformation

of survival rates and the substitution of derived rates and other scales for model

parameters (e.g. constraints and covariate models on gross births instead of on

birth proportions; additive or covariate models on the log or natural scale rather

than on the logit scale), or on relative rates such as dilution or seniority rates

(described below). If h
(new)
j 5 T j( h ) is the transform function for replacing h j by its

transformed value, then equation (3) becomes

S b ( b j) 5 D ¢ TS h ( h j)

and equation (4) becomes

H b ( b j) 5 D ¢ T ¢ H h ( h j)TD

where T is the n by n array of partials T 5 [ti j 5 ¶ T i( h ) / ¶ h j]. Thus imposing diþ erent

transformations on diþ erent parameters just requires the computation of the T

array and some extra matrix operations at each step of the iteration. Simple

univariate transformations, such as the delta, log, or anti-logit transform, are easier

to implement because they result in a diagonal T. We have not yet decided whether
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Popan-6 will impose transformations globally or whether we will let the user specify

them on a parameter by parameter basis. In Popan-5 you specify them globally

(e.g. BIRTHS 5 GROSS) and then the transform is applied to all birth parameters

at all times and in all groups so that any constraints are on the gross births rather

than on the birth proportions. One can imagine situations in which one wanted

transformations for some parameters and a diþ erent transformation for other

parameters but this may give the user a bit too much ¯ exibility (i.e. rope with

which to hang oneself on the gallows of non-identi® ability).

In Popan-5, the imposition of constraints actually makes the score and Hessian

larger than n, because the constraints are imposed by the method of Lagrange

operators. The iteration from step j to step j + 1 becomes

f h j + 1

· g 5 f h j

· g + f H( h j) 2 C( h j)

2 C ¢ ( h j) 0 g
2 1

f S( h j)

c( h j) g
where c( h ) 5 0 is the vector of c contrast equations for the constrained model and

C( h ) is the n 3 c array of partial derivatives of each constraint with respect to each

parameter. (The terms indicated by · are Lagrange values that need not concern

us here.) For our example, there are 11 constraints. Six of these specify the group-

eþ ect constraint on the pgi (i.e. the capture rates are constant over time but diþ erent

for females and males; note that each constraint is expressed as a parenthesized

contrast expression which is to evaluate to 0):

( p11 2 p12) ( p12 2 p13 ) ( p13 2 p14 ) ( p21 2 p22 ) ( p21 2 p23 ) ( p23 2 p24 )

Three specify the time-eþ ect on the u gi (i.e. survival is the same for males and

females at each time but varies over time):

( u 11 2 u 21 ) ( u 12 2 u 22 ) ( u 13 2 u 23 )

and the last two constraints come from the covariate model for each sex (once the

slope and intercept is determined, the remaining (k 2 1) 2 2 birth parameters are

determined by their covariate values).

It is important to see how Popan-5 casts a covariate model into such constraints

because it leads to very diþ erent convergence properties than the DM method in

Popan-6. To take a slightly diþ erent example, suppose we had g 5 1 and k 5 5 and

we wished to model capture rate in terms of known eþ ort (say ei is the measure of

eþ ort for sample i ). Now at each iteration, the values of p1 and p2 allow us to solve

for a slope ( b 1) and intercept ( b 2 ) using the equations:

p1 5 b 1 + b 2 e1

p2 5 b 1 + b 2 e2

In matrix form, we could write this as p1:2 5 X1:2 b where X is the 2 by 2 coeý cient

matrix

f 1 e1

1 e2 g .
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The solution for the model coeý cients is then

b 5 X
2 1
1:2 p1:2 . (5)

The remaining k 2 2 parameters are modelled as

p3 5 b 1 + b 2 e3

p4 5 b 1 + b 2 e4

p5 5 b 1 + b 2 e5

or, in matrix form:

p3:5 5 X3:5 b

Given the current b and the known eþ ort at these three times, these are our three

constraints. The meta-constraints (e.g. equal slopes between two groups) can also

be cast as a contrast equation since, from equation (5) above it is clear that the b

can be viewed as a linear function of the fundamental parameters and hence any

sameness constraint between them is also a linear function. SEs for the b are also

derived using equation (5), the delta method and the variance- covariances of the

parameters ( p1 and p2 in the example above).

A disadvantage of this method is that the matrix X in equation (5) can be

singular. This would happen in our example if e1 5 e2 . This problem can be

circumvented in theory by choosing 2 other parameters to solve for b but Popan

does not do this for you because it is just too messy to detect and implement.

Instead you can apply a small jitter to e2 , which usually works, but introduces a

small amount of error.

Constraints and covariate models involving transformations of parameters are

easy to implement as there is no requirement that the constraints c( h ) be univariate

or linear in the model parameters. However, it is more diý cult to develop a single

means of letting the user specify such transformations and to then implement them

(including deriving SEs). In Popan-5 the user is allowed to choose from a pre-

speci® ed set of global transformations that apply to certain constraint models, and

then ad hoc code derives the necessary constraints and SEs. Constraints and their

partial derivatives for any meta-constraints need to be derived and programmed

explicitly. It certainly lacks the generality and ease-of-implementation of the DM

approach.

The constraint approach of Popan-5 has one advantage over DM when ® tting

covariate models: it almost always converges even if the covariate model is over-

speci® ed or misspeci® ed, or if the covariate coeý cients are imprecisely determined

by the data. If samples are large enough that fundamental parameter estimates are

reasonably precise and if the matrix X in equation (5) is invertable, then you always

get estimates of the covariate b coeý cients at each iteration, because the iteration

is updating the model parameters and then deriving the b coeý cients from them.

With the DM approach, you are iterating on the b coeý cients directly, and if the

likelihood surface is ¯ at or ill-shaped (e.g. ridges to in ® nity re¯ ecting the inability

to separately identify two coeý cients) in these parameters then the model may not

converge.

This diþ erence showed up when running the TESTUSIM example from the

Popan-5 test suite (Table 3). This is a stochastic simulation with g 5 1, k 5 6 and

diþ erent covariate models for each of the parameters p, u and b. The model for p
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Table 3. Example of a Popan-5 UFIT analysis of Simulated data to test convergence and check for

bias in covariate models. The SIMULATEd population is chosen so that it is correctly modelled by the

speci® ed UFIT model
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involves two covariates and four b coeý cients and these coeý cients are poorly

determined by the data. Nevertheless, in all 16 iterations of the model, there was

no convergence failure, the estimates of p were precise (CV around 15%) and

unbiased, while estimates of the b coeý cients, while unbiased, were quite imprecise

(CV over 100% in most cases) but this was clear from the SEs (also unbiased but

imprecise). On the other hand, when a number of these stochastically generated

data sets were run through Popan-6, none of them converged. It was simply

impossible to estimate the coeý cients. This is potentially a serious problem since,

in analysing real data, we do not know the correct model, so we typically try a

¯ exible but likely over-speci® ed model (say a cubic model in a covariate) and then

® t a nested set of more restrictive models (quadratic, linear) until the LRT or AIC

model selection rules tell us we have gone too far. If ® tting over-speci® ed models

is going to be a problem, then covariate model selection becomes diý cult in the

DM approach.

To summarize then, the advantages of the DM approach of Popan-6 over the

constraint approach of Popan-5 include:

· more generality and ¯ exibility in specifying constraints, especially on trans-

formed or derived parameters. Also, applying models such as covariate or

additive models to selected times or groups is easily accomplished,

· ease of implementation: reduced array sizes and a simple consistent method

of applying transformations and link functions; builds on existing iteration by

adding a few matrix operations, and permits a general algorithm to be used

for extracting derived parameters and their SEs.

Disadvantages include:

· appears to be much slower (the extra matrix operations are costly),

· may have more diý culty ® tting over-speci® ed or poorly-determined covariate

models.

3 Available estimates and their identi® ability

Not all of the g(3k 2 1) parameters are identi® able. A parameter is non-identi® able

if it always occurs in the likelihood function in some ® xed combination with

another parameter. This is a very dangerous situation because the estimates of

non-identi® able parameters may be plausible, but are in fact meaningless. Non-

identi® ability can also cause convergence problems, but this can be resolved by

imposing some additional constraints. What is identi® able depends on what further

constraints are imposed but, for the full time-dependent model, b0 and p1 are not

separately estimable, nor are u k 2 1 and pk . In Popan’ s UFIT, the user can resolve

this by constraining p1 and pk to be 1, but must realize, as we discuss below, that

this aþ ects the interpretation of these and other estimates. Popan includes a

keyword (AUTOMATIC) to impose these constraints in each group in addition to

any user-speci® ed constraints.

Popan automatically constrains the entry rates, bi , to sum to 1 (within each

group). The user can specify equality or closure (bi 5 0) constraints on b i for

i 5 0 . . . k 2 1 but they cannot all be constrained to 0 as they must sum to 1.0.

Note that if you constrain b i to 0 for the ® rst x sample times (i 5 0 . . . x 2 1) then

the population size will also be 0 until time x and you must also take steps to

constrain the p i and u i at these times as well, since they are non-identi® able. Within
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a group, you can constrain the proportion of entries at two times to be equal and

this will cause the estimated Net births at those two times to be equal. However if

you specify equality constraints on birth rates in two diþ erent groups, the Net birth

estimates will not be equal; this is because the total entries, N , is diþ erent for each

group (and cannot be constrained to be equal) and consequently constraints on

Net births are determined only within a constant of proportionality. This means

that when you constrain b i across groups you are hypothesizing that the relative

rather than absolute birth patterns are the same but this is generally what you want

to do. As noted earlier, the b0 should not be involved in sameness or covariate

constraints as they represent initial populations rather than entry rates. You can

constrain either the net or the gross rates and adjust on a per unit time basis, but

equalities are still relative when across groups (keywords ADJUST and BIRTHS

control this).

De® ciencies in the data can also produce non-identi® ability and convergence

problems. Sometimes this is due to small samples, high turnover, or low recapture

rates, but sometimes, as in age-structured models, it happens because a group is

empty at certain times. We dealt with the age-structured models in Arnason &

Schwarz (1999). Here we give some brief guidelines on the ® rst situation.

The completely unrestricted model ( pg*t , u g*t , bg* t) has the following non-

identi® ability problems:

· pk u k 2 1 cannot be separated

· p1* b0 cannot be separated

· A complicated function of b1 , p1 and u 1 , cannot be separated.

This has implications for counting the number of parameters and for model

® tting. In the model ( pg*t , u g*t , bg*t ), the restrictions p1 5 1 and pk 5 1 can be set

automatically (using AUTO 5 BOTH) to remove the non-identi® ability and avoid

convergence problems, but they introduce inference problems. These restrictions

imply that, in each group, u k 2 1 , b0 and b1 now estimate some confounded

parameters (see Schwarz & Arnason, 1996). If reduced models are ® t, you need to

pay careful attention to what other restrictions you apply; e.g. if you ® t the model

u t where survival is equal over groups, then u k 2 1 should not be included in the

restriction because it is actually estimating pk* u k 2 1 and it is unlikely that this

quantity is the same over all groups. In the next section we show how simulation

can be used to show this sort of e þ ect.

Additional non-identi® abilities can be introduced when certain summary statis-

tics are 0. The main problems occur when a complete sample is zero (n i 5 0 and

hence the number of marks in the sample, m i , and the number returned to the

population, si is also 0, as are the number of later recoveries from those returned,

ri 5 0) but problems can also occur if there are no marked recaptures in samples

after the ® rst (m i 5 0 for i > 1), no subsequent recoveries after a sample (ri 5 0) or

there are no uncaptured but known-alive animals (z i 5 0 for i > 1 and i< k). We

deal with these case by case.

(i) m i 5 0, n i> 0 for i> 1: No marked animals captured in a recapture sample

This could be a problem because the likelihood estimate for the population size

could be in ® nite. However, the u i provide some information about the true

population size and, in many cases, the program does converge properly. If the
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program seems to be driving bi 2 1 to 1.0 then you need to constrain b i 2 1 to some

value.

(ii) n i 5 0 (and hence m i , s i, r i 5 0) z i > 0: null sample

Usually caused by no samples taken at a particular sample time. This can often

happen by chance in any multi-group analysis where one of the groups (e.g.

females) is small or hard to catch relative to other groups. Popan must analyse the

same set of sample times for all groups, so these samples cannot be eliminated

(e.g. by OMIT or GROUP in SELECT) without eliminating what might be large

numbers of captures of animals in the other groups. Nevertheless, the best solution

is usually to eliminate such problem times so one should always consider re-

mapping the sample histories (in SELECT) or rede® ning the groups (in UFIT) to

make them larger and so eliminate these small-sample problems, provided there is

not too much loss of precision and insight. Sometimes this cannot be done (e.g.

covariates like e þ ort may be hard to de® ne if samples are pooled). When there is

a null sample at time i the following holds.

u i 2 1 u i can be estimated. Constrain u i 5 1 and interpret u i 2 1 as the product.

b i 2 1 + bi can be estimated. Constrain b i 5 0 and use bi 2 1 as the sum.

p i 5 0. Constrain p i 5 0. There will be no estimate of abundance at i.

(iii) zi 5 0, r i > 0

This situation is usually caused by poor sample sizes or high turnover rates. It

seems to indicate there are no marked animals left in the population except those

caught in the current sample. If convergence problems occur, try restricting p i 5 1

using the design matrix.

(iv) zi 5 0, r i 5 0

Usually caused by poor sample sizes. Program should converge when restricting

u i 5 0, but this causes problems in estimating the gross births.

3.1 Derived estimates added in Popan-6

UFIT provides for multiple starting points in the likelihood maximization search

using automatic or user-speci® ed initial parameter values. The user can modify the

convergence criteria and can ask for diþ erent levels of detail in tracking the search

process in case there are problems in converging to the maximum. On convergence,

it prints out the maximized likelihood and the number of actual restrictions used

in the ® t (excluding redundant constraints). This permits the user to use likelihood

ratio or Akaike Information Criterion (AIC) methods for model selection.

UFIT then reports the statistics and PIM mapping used and then provides

estimates of the fundamental parameters ( p, u , b), the derived parameters (net

and gross births including total recruitment, and abundances) and their SEs (as

was done in Popan-5). There is an option to see the full set of model (logit)

parameter estimates and their SEs. In Popan-6 the (reduced DM) b estimates and

their SEs are reported and the estimate table includes derived estimates for relative

rates of change in births and abundance: gamma, called the seniority rate (Pradel,

1996) between two times c i +1 5 N i u i /N i +1 is the inverse of Jolly’ s (1965) dilution

rate; and lambda, the ® nite rate of population change between two times is
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k i 5 N i +1 /N i . These estimates are known to be much more robust to capture

heterogeneity than the absolute birth and abundance estimates (Schwarz, 2000) and

are important in their own right for assessing demographic trends in populations.

Eventually, it will be possible in Popan-6 to constrain these derived parameters

through the DM, permitting the testing of hypotheses about the stationarity of a

population ( k 5 constant). This is more general than testing for stable population

size ( k 5 1), which can be done in Popan-5 by using the covariate model ( p i 2 cn i )

where the sample size n i is used as a covariate in a no-intercept linear model. The

estimated slope c is an estimate of 1 /N.

Popan creates standard Estimate Tables for output of all parameter estimates and

their SEs. This ensures that UFIT can be integrated with the Popan SIMULATE

paragraph for exploring the properties of estimates and their SEs over replicated

probabilistic simulations of a speci® ed sampling and demographic model.

4 Explorations of estimate properties using SIMULATE

The SIMULATE paragraph provides a general means of generating replicated,

stochastic sampling experiments applied to a population with user-speci® ed demo-

graphic rates. To use it with UFIT, you ® rst specify the constrained analysis (by a

PIM and DM in Popan-6) but designate that the procedure is to be saved

(SAVE 5 UFIT) rather than being executed immediately as is usually done for real

data. You then specify a SIMULATE procedure giving mechanisms for capture,

survival and entry rates (see TESTUSIM in Table 3 for an example). Mechanisms

can be speci® ed that satisfy, or that violate, assumptions such as homogeneity of

rates over individuals. SIMULATE then uses the mechanisms to generate an

encounter history ® le and passes this as input to UFIT, which analyses it as if it

were real data. SIMULATE traps the Statistics and Estimate tables and rather

than print them out, it accumulates sums and sums of squares so that after the last

replication, it can report means and standard deviation (SD) of every estimate and

every SE over the replications. Comparison of these estimate means with their true

value can reveal the magnitude of bias in estimates. The mean of a SD helps predict

precision for a given sampling scheme imposed on a hypothesized population with

given turnover rates. The mean of a SE can be compared with the SD of the

estimate over replications to look for bias in the SE. The R ANK keyword lets the

user provide an observed maximized log likelihood (mll ) and the simulation will

then report the percentile rank of that value among the simulated mll values. This

is the parametric bootstrap estimate of Goodness-of-Fit of the data to that model.

Violations that can be modelled in SIMULATE include tag-loss, temporary

emigration, marking and handling eþ ects on survival and subsequent capture rates.

Heterogeneity due to age and other cohort eþ ects can be modelled and group

eþ ects are allowed. You can investigate bias due to model misspeci® cation by using

a UFIT procedure whose constraints do not match the mechanisms speci® ed in

SIMULATE. However, if there are no sources of rate heterogeneity other than

group and time eþ ects, investigations of bias and precision can be investigated

more e ý ciently by a non-stochastic mean value (MV) analysis. This is possible in

Popan because UFIT can accept either encounter histories or a table of summary

statistics as input.

In a MV analysis, the expected values of the statistics (the n, m , s, r, z for each

sample time in each group) given the mechanisms are generated by SIMULATE

and these are passed to a UFIT procedure to be analysed as if they were
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real summary statistics (the expected values need not be whole numbers but,

unfortunately, Popan stores them as integers, thus losing some accuracy in the

rounding). This is the numerical equivalent of the technique used by Carothers

(1973) and many later authors to investigate the bias and precision of mark-

recapture estimates.

In Table 4 we show a Popan-6 program that carries out a simple MV analysis. The

true parameter values used to drive the simulation for this six-sample experiment are

shown in Table 5(a) in the form they appear in SIMULATE’s preliminary report:

Capture Probability (CP(I) 5 p i ); Survival Probability (SP(I) 5 u i ), and New

Entries (NE(I) 5 N b i 2 1 5 B i 2 1 ). These result in the expected abundance shown

under CN(I) and expected sample size, shown under N(I). Popan also reports the

remaining expected summary statistics (for m , s, r, etc) but we have not reported

them here.

When the ® rst UFIT paragraph is run, Popan imposes the AUTOmatic con-

straint on p1 and p6 (CP(1) and CP(6) in Table 5(a)) which leads to confounded

estimates for u 5 (SP(5)) and also for B 1 and B 5 . Excerpts of the estimate table are

given in Table 5(b). We will now use the POPAN notation for the parameters, as

de® ned in Table 5, because it distinguishes between the true value of the parameter

(e.g. SP(5) in Table 5(a)) and the MV of its estimate (e.g. PHI(5) in Tables 5(b)-

(d)). Notice ® rst that most of the estimates are, to three signi® cant ® gures or more,

exactly equal to their true values (disagreement is partly because the expected

statistics are rounded on input to the nearest whole number). The obvious

exceptions are the confounded parameters: PHI(5) which clearly estimates the

product SP(5) 3 CP(6) 5 0.8 3 0.5 5 0.4; and BH(1) and BH(5), whose meaning

is a bit more complicated. First note that the derived parameters NH(1) and

NH(6), which are derived from PH using NH(I) 5 N(I) /PH(I) are also confounded.

Because PH(1) 5 PH(6) 5 1, we have that NH(1) 5 N(1) and NH(6) 5 N(6).

Then, BH is derived from the NH and PHI as follows:

BH(I ) 5 NH(I + 1) 2 PHI(I ) + (NH(I ) 2 N(I ) + S(I ))

5 NH(I + 1) 2 PHI(I ) 3 NH(I ) when there are no losses on capture.

Thus, substituting the confounded value for NH(1), we see that BH(1) is an

estimate of

CN(2) 2 SP(1) 3 N(1)

which, in this case, is 1000 2 0.9 3 500 5 550, a seriously biased estimate of the

true value for B 1 5 NE(2) 5 100. For BH(5), substituting the confounded values

for both PHI(5) and NH(6) shows that BH(5) is an estimate of

N(6) 2 SP(5) 3 CP(6) 3 CN(5)

which is 558.8 2 0.8 3 0.5 3 1272.0 5 50.0; again not very close to the true value

of NE(6) 5 100.

Finally, note that the last estimate in the BH column is for the total net births

over the experiment (we can denote it BH(tot) rather than BH(6)). It is derived as:

BH(tot) 5 NH(1) + +
k 2 1

I 5 1

BH(I )

and so is also confounded whenever NH(1) or any of the BH is confounded.
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Table 4. Example of a Popan-6 Mean Value analysis using SIMULATE and UFIT. In the SIMULATE

paragraph, expected statistic (XSTAT) data are generated from the one-group model ( pt , u t , bt ) and

passed to three UFIT analyses, the ® rst two from the correct model (without and with confounding

removed) and the second from the almost correct model (p, u t , b t)
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Table 5. Selected output from the example in Table 4. The notation of this paper is given in the

column headings to explain the POPAN notation below it (in uppercase letters). E(parm) and SE(parm)

are the expected value and SE of the estimated parm computed by the mean value analysis

i pi u i N b i 2 1 N i n i 5 N i p i

I CP(I) SP(I) NE(I) CN(I) N(I)

(a) Preliminary Report (parameters and expected statistics)

1 0.5000 0.9000 1000.0 1000.0 500.0

2 0.4500 0.9000 100.0 1000.0 450.0

3 0.5500 0.8500 250.0 1150.0 632.5

4 0.4500 0.8000 300.0 1277.5 574.9

5 0.5500 0.8000 250.0 1272.0 699.6

6 0.5000 0.7000 100.0 1117.6 558.8

i E( pi ) SE( pi ) E( u i) SE( u i) E(Nbi ) SE(Nbi ) E(N i ) SE(N i )

I PH(I) S(PH(I)) PHI(I) S(PHI(I)) BH(I) S(BH(I)) NH(I) S(NH(I)!N)

(b) First UFIT (correct model, confounding not removed)

1 1.0000 G 0.0000 0.9007 0.0257 547.984 7 45.2717 500.000 0 19.1970

2 0.4507 0.0259 0.8994 0.0278 252.868 0 48.3365 998.353 0 50.4905

3 0.5501 0.0237 0.8499 0.0309 299.826 5 44.6376 1150.740 5 44.2887

4 0.4500 0.0223 0.8001 0.0362 250.371 3 40.6372 1277.860 8 53.4390

5 0.5506 0.0263 0.4000 0.0185 50.429 5 15.0682 1272.792 8 55.6019

6 1.0000 G 0.0000 0.0000 U 0.0000 U 1901.480 1 23.3154 559.547 7 19.8718

(c) Second UFIT (correct model, confounding removed)

1 0.4999 0.0391 0.9007 0.0257 97.496 3 86.2650 1000.134 0 87.2729

2 0.4507 0.0259 0.8994 0.0278 252.867 4 48.3539 998.353 8 50.7495

3 0.5501 0.0237 0.8499 0.0309 299.825 8 44.6640 1150.740 4 44.6801

4 0.4500 0.0223 0.8001 0.0362 250.373 6 40.6577 1277.859 3 53.8391

5 0.5506 0.0263 0.8001 0.0362 100.870 6 30.1186 1272.798 0 55.9841

6 0.4999 0.0391 0.0000 U 0.0000 U 2001.567 7 31.7782 1119.245 4 83.3283

(d) Third UFIT (approximately correct model, confounding removed)

1 0.4988 0.0122 0.8844 0.0233 50.890 1 40.6524 1002.360 0 45.9738

2 0.4988 0.0122 0.9368 0.0257 344.879 1 36.8731 937.354 4 35.7344

3 0.4988 0.0122 0.8033 0.0250 218.632 0 33.4788 1222.987 1 40.1051

4 0.4988 0.0122 0.8698 0.0295 322.593 5 34.7327 1201.005 1 38.8143

5 0.4988 0.0122 0.7688 0.0347 70.567 0 28.3493 1367.229 0 45.1705

6 0.4988 0.0122 0.0000 U 0.0000 U 2009.921 8 28.1885 1121.751 2 48.7772

There are many ways to resolve the confounding: the simplest is to use a linear

constraint on p6 or u 5 at the one end, or a linear constraint on p1 or on b1 at the

other. Note that you cannot constrain b0 , but any constraint that resolves the

confounding of b1 (and hence B 1 ) should also resolve the confounding of p1 . In

many situations, a closure constraint on b1 is a reasonable restriction. Other ways

are a covariate model for any of the three parameter types ( p, u , b) although a

covariate model for u only resolves p6 and you would still need to constrain p1 .

The second UFIT (Table 4) uses sameness constraints speci® ed by a PIM to

resolve all parameters. The constraints are arti® cially chosen using knowledge of

the correct model to show (Table 5(c)) that all the estimates can now be determined

and BH(tot) is unbiased for the true total (2000). In analysing real data, we would

have to guess reasonable parameter constraints that will resolve confounding and

carefully assess their validity using goodness of ® t and other model ® t diagnostics.

MV analysis can also be used to investigate the expected precision of estimates

and their sensitivity to incorrect constraints. Note that while precision is expected
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to be good for the capture rate and survival estimates (S(PH(I )) and S(PHI(I )) in

Table 5), it is rather poor for the net births S(BH(I )). In the last UFIT in Table

4, we ® t the constant capture probability model CPCON 5 CONST. This will

resolve the confounding but it introduces bias because the capture rates are not, in

fact, constant. The degree of bias in the model parameters and the derived

parameters NH and BH(tot) can be judged by comparing the expected value of

the estimates in Table 5(d) with the true values in Table 5(a). Bias in the overall

recruitment is negligible although individual recruitment and population estimates

are more severely biased.

5 Discussion

We expect that open models of the Jolly- Seber ( JS) type will become increasingly

important in bird studies now that the software to analyse data from JS experiments

is readily available in MARK and in Popan. The UFIT method in Popan provides

a means of modelling the birth and recruitment process, in addition to the survival

and capture rates, and thence derives estimates of population size and total

recruitment. Temporal and group constraints on births can be imposed in a fashion

that will be familiar to those who model survival and capture rates using CJS

models in MARK. Age constraints can also be imposed (i.e. where groups are year

classes in annually sampled populations) but the group by time parameter structure

in Popan is rectangular, not triangular as in annual CJS and band-recovery studies

so special steps have to be taken to deal with structural zeros among the sample

sizes (Arnason and Schwarz, 1999).

The birth process is both more complex and more diý cult to model than the

survival process. As with survivals, the user needs to consider occasions when there

is closure (no births and /or losses) and model these as ® xed constraints, and to

adjust for unequal sample time intervals in imposing sameness or covariate con-

straints between times. Unlike survival rates, sameness and covariate constraints

that involve more than one group are not absolute, but constrain the relative

recruitment patterns in the two groups. Estimates of gross births are available and

can be adjusted to a per-unit-time basis and can be modelled and constrained, but

the user has to consider whether the conditions for deriving gross births apply and,

because gross births is a function of both survival and birth rates, whether

confounding in the u estimates makes some of the gross births meaningless; e.g. if

the confounding of u k 2 1 pk is arti® cially resolved (as in the MV example in Table

4) by ® xing pk to 1, then u k 2 1 is biased and hence so is B *k 2 1. Total net and gross

recruitment are available over the entire sampling experiment (the initial population

estimate plus the sum of the B i or B *i ) but to obtain this, the non-identi® ability of

initial population size and b0 has to be resolved by imposing constraints, usually on

p1 or (in emergence and escapement studies) by starting sampling early enough

that it is reasonable to assume that b0 5 0. When the conditions for estimating total

recruitment apply, the JS model can allow derivation of average staging time (mean

time spent on the area when arrival and departure of birds are the sole sources of

`births’ and `deaths’ ) using Little’ s Law (Allen, 1990): the average staging

time 5 total standing population /total arrivals 5 ( R N i ) / ( R B *i )

The use of a DM in Popan-6 to obtain the constrained maximum of the open-

model likelihood makes it easy to obtain and constrain other derived parameters,

such as the fecundities (B i / N i ) and the seniorities (c i) and ® nite rates of change

( k i ) de® ned above. However, just because these parameters can be constrained,
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does not mean it makes biological sense; for example what does it mean to model

or constrain the c i , a complex function of the birth and death rates, especially if

the underlying (b i , u i ) rates are not constrained? The biologists needs to consider

what eþ ects in¯ uence the population dynamics and which mechanisms they operate

on. On the other hand, ® tting a constraint on a derived parameter, such as

constraining the k i to be ® xed, is a useful smoothing trick (in this case, to

approximate the change in population size over time by a linear trend) even if we

do not believe there is a complex balancing of births and mortalities needed to

achieve this. Alternatively one might ® t a random eþ ects model in which the k i

vary about a common k as implemented for u in MARK.

There may be technical diý culties in getting the more complex JS models to ® t.

There are g k more parameters to estimate than in an equivalent CJS model, and

these additional birth parameters are notorious for being imprecise, even in

experiments where the capture and survival rate estimates are quite precise. We

have noted in this paper that there may be diý culty in obtaining convergence of

the iterative maximization when there are unresolved parameter confoundings,

small statistics problems, or mis- or over-speci® ed covariance models. We have

suggested here some technical solutions to try when these problems arise: ® xing

parameters (which may create interpretation problems); adding constraints (which

may introduce bias), or regrouping sample times and cohort groups (which may

increase sample and summary statistic sizes but risks introducing heterogeneity).

As we have shown here, these eþ ects can be investigated using simulation. MV

simulations are useful for estimating precision and bias and the e þ ects of parameter

confounding and model over-simpli® cation on these. It can also be used to get an

idea of the ability to discriminate among candidate models by comparing the

(expected) deviances obtained with diþ erent MV simulations models run with one

set of input statistics. Stochastic simulations can be used to determine if conver-

gence is likely to occur reliably for the chosen candidate model when ® t to data

with given (guessed) population and sample sizes and turnover rates. As we have

described above, it can also be used to perform a parametric bootstrap goodness-

of-® t test of a ® tted model.

Another useful strategy in ® tting JS models is to ignore the birth component

initially and use CJS models in MARK to ® t the survival and capture components

using the AIC and goodness-of- ® t criteria to select the most appropriate model.

One can then use Popan to explore models involving diþ erent candidates for

modelling the b while keeping the ( p, u ) part of the model ® xed at the ® nal model

determined in the CJS analyses. We have done a number of experiments with

simulated data that show this is a reasonable strategy and yields much the same

model selection criteria ( D AIC) and estimates, at least when there are no serious

violations of the assumptions of capture and survival homogeneity (see the

TESTMARK suite of examples available from the Downloads page of the Popan

web site: www.cs.umanitba.ca / ~ popan).

Finally, the most important consideration in using JS rather than CJS methods

is to ensure that the sample design supports meaningful estimates of recruitment

and abundance. Because CJS models derive estimates entirely from the marked

animals and do not take account of the numbers of unmarked animals encountered,

the biologist does not have to be particularly concerned with how unmarked

animals are added to the sample. As long as the animals chosen and marked can

be considered representative in their survival and recapture rates of some wider

population of interest, it does not matter if samples are drawn from a well-de® ned
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target population. In JS experiments, having a well-de ® ned target population and

having a proper probability sample from that population, become crucial. For

example, recruitment estimates could be meaningless if the study area is expanded

over time, thus changing the `population at risk’ of capture. Similarly, siting

sampling locations in a small sub-area of a larger, unbounded population can

create time-varying diþ erences in the population at risk and in the biasing in¯ uence

of transient animals and those whose home range only partly overlaps the sub-area

and so are at reduced risk of capture. And using the derived relative rates is not a

solution. While it is known that the bi , c i and k i are more robust to capture

heterogeneity than the B i and N i (Schwarz, 2000), they can still be rendered

meaningless by an ill-de ® ned population and inadequate sample coverage of that

population in space and time.

Despite these diý culties, the uni® ed open JS model opens up new methods for

studying the dynamics of populations. Popan-5 provides one method of ® tting the

uni® ed model that is particularly strong when trying to ® t environmental covariates

and group eþ ects. Popan-6 provides another method that is particularly convenient

for providing user ¯ exibility in constraint de® nition and ease of implementing

derived estimates. In the future, the likelihood can be redeveloped by computing

the contribution to the likelihood from each encounter history, rather than from

the summary statistics; this would then allow the use of individual covariates.

Eventually, we may see it used with Bayesian approaches to model estimation and

selection, and this may provide another uni® ed approach to parameter interval

estimation, model selection, and random eþ ects modelling.
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