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abstract We discuss the analysis of random eþ ects in capture- recapture models, and

outline B ayesian and frequentists approaches to their analysis. Under a normal model,

random eþ ects estimators derived from B ayesian or frequentist considerations have a

common form as shrinkage estimators. We discuss some of the diý culties of analysing

random eþ ects using traditional methods, and argue that a B ayesian formulation provides

a rigorous framework for dealing with these diý culties. In capture- recapture models,

random eþ ects may provide a parsimonious compromise between constant and completely

time-dependent models for the parameters (e.g. survival probability). We consider applica-

tion of random eþ ects to band-recovery models, although the principles apply to more

general situations, such as Cormack- Jolly- Seber models. We illustrate these ideas using a

commonly analysed band recovery data set.

1 Introduction

Capture- recapture methods are widely used in ecology to estimate important

attributes of animal populations including survival, recruitment and mortality rates.

Maximum likelihood estimation of parameters in a conventional `® xed eþ ects’

framework, in which parameters are regarded as being unknown constants to be

estimated, is standard practice for most capture- recapture problems.

There are many instances in which one would like to consider using random

eþ ects in capture- recapture models. First, random eþ ects represent a parsimonious

compromise between overly simplistic and more realistic complex models, but

which may be diý cult to ® t adequately. For example, ecologists often consider the

extremes of constant survival and year-speci® c survival models. Random eþ ects

lead to a ¯ exible class of intermediate models.
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Second, shrinkage estimation is a natural consequence of a random eþ ects

assumption on a set of parameters. Shrinkage can lead to improved estimation (in

a mean-squared error sense) of a collection of parameters, particularly when there

is a large number of parameters in the model; we believe that shrinkage estimation

has great potential for many problems, especially those involving small sample sizes

and /or highly parameterized models. Third, ecologists are often interested in

modelling `pattern among parameters’ , for example, modelling trend or weather

eþ ects in survival rates. The dependence of parameters on covariates is commonly

described using ultra-structural models, which specify deterministic relations

among collections of related parameters. Thus, for instance, a collection of tempor-

ally varying parameters may be reduced to a pair of parameters, a slope and an

intercept. This approach, while possibly reproducing the correct marginal mean

structure, often fails adequately to capture variation in the data, leading to over-

dispersion relative to the multinomial assumption (e.g. Burnham & Anderson,

1998, p. 52). Random eþ ects enable a generalization of ultra-structural models

that accounts for this departure. Finally, there are many problems in which

parameters are more naturally thought of as being generated from some probability

distribution. These include models with spatially or temporally indexed parameters

and models for individual heterogeneity. These are typical longitudinal data prob-

lems of the type that random eþ ects methodology was developed to address. As

their use for modelling longitudinal data suggests, random eþ ects models are well

suited for parameterizing correlation among observations.

While some eþ ort has gone into the development of likelihood-based random

eþ ects models for capture- recapture data (e.g. Burnham, 2000), the current

treatment of this problem is informal and we feel that a more rigorous, model-

based framework is needed. In particular, two important issues that arise in random

eþ ects models are accounting for uncertainty in estimation of the parameters of

the random eþ ect distribution, and analysis of non-normal random eþ ects models

such as the multinomial model used in capture- recapture settings. These are

both diý cult problems within a conventional likelihood-based framework. On

the other hand, a Bayesian framework naturally deals with these issues in a

concise and uni® ed framework. The Bayesian analysis of data on marked animals

has started to receive considerable attention in the literature with the advent of

practical computing methods. Two recent examples are Brooks et al. (2000a, b).

1.1 Of eggs and omelettes

The distinction between Bayesian and frequentist approaches to dealing with

random eþ ects may be summarized with respect to the two de® ning characteristics

of the Bayesian paradigm: (1) the treatment of parameters as random; and (2)

inference based on the posterior distribution. In this regard, there is an old

metaphor attributed by Morris (1983, rejoinder) to Savage (1961) which refers to

considering parameters to be random as `breaking the Bayesian egg’ and posterior

inference as `enjoying the omelette’ that results from breaking that egg. Morris

summarized major statistical theories in terms of the egg metaphor as follows:

Enjoys omelette Does not enjoy omelette

Breaks egg Bayesian Empirical Bayesian

Does not break egg Fiducialist Frequentist
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In practical terms, and in the present context, `enjoying the omelette’ means

exploiting the Bayesian framework to aid in dealing formally with uncertainty in

prior parameters and the analysis of non-normal models with random parameters.

That is, since all unknowns are treated as random, the machinery of probability

calculus provides a consistent and rigorous framework within which to convert

likelihoods and priors, to posteriors. In contrast, we will see that a frequentist (at

least partially) breaks the egg, but because some parameters remain ® xed, and

because frequentists do not adopt posterior inference, these two problems are

diý cult. Of the two remaining cells in this table, ® ducial inference is not relevant

to our discussion. On the other hand empirical Bayes (see Carlin & Louis, 1996,

ch. 3) has considerable relevance as classical frequentist methods for analysing

random eþ ects may be viewed as such (Laird & Ware, 1982), due to the manner

in which the ® xed parameters are estimated. We discuss this in Section 3.2.

1.2 Overview

In this paper, we provide a general discussion of random eþ ects and associated

technical issues within both Bayesian and classical frameworks.

The ® rst half of this paper is essentially background material, describing various

strategies for analysing random eþ ects. Several of these approaches are Frequentist

(i.e. treat some or all of the unobservable quantities as `® xed but unknown’

quantities, and base inference on the distribution of the data given the parameters).

We also describe the Bayesian approach, in which all unobservable quantities are

treated as random variables, and inference is based on the posterior distributions

of the parameters given the data. Shrinkage estimators arise naturally as estimators

of random eþ ects under either paradigm.

In the second half of the paper, we address random eþ ects models in the context

of capture- recapture problems. In Section 5, we speci® cally deal with random

eþ ects in band recovery (or ring recovery) models, which are a special case of a

more general class of capture- recapture models. However, the essence of the

random eþ ects modelÐ a probability distribution on a collection of parameters

such as yearly survival probabilitiesÐ is generally applicable. We illustrate these

ideas using a waterfowl band-recovery data set in which year speci® c survival and

recovery probabilities are parameterized as normal random eþ ects, on the logit

scale. Discussion and conclusions are given in Section 8.

2 Random eþ ects in Bayesian analysis

Random eþ ects are standard operating procedure in a Bayesian analysis since

typically all parameters are regarded as random variables. The other important

characteristic of Bayesian analysis is that inference is based on the conditional

distribution of the parameters given the data, a quantity known as the posterior

distribution. We will not go into much detail on Bayesian analysis here, instead

relying on the simple normal- normal model to make some salient points. In

particular, random eþ ects provide a bridge between frequentist and Bayesian

methods, in so far as they produce the same estimators when the parameters of

the random eþ ects distribution are known. Thus, we will see that interesting

posterior quantities discussed here also arise from frequentist considerations in

Section 3. The important point of this section is that, by assuming that all unknown

quantities in a model are random, Bayesian analysis is able to exploit simple rules
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of probability calculus in order to provide a uni® ed treatment not only of random

eþ ects estimation, but also of prior parameter estimation and accounting for

uncertainty in those estimates.

We require some terminology and notation. We will use the notation [´] to refer

to the `distribution of ´’ , and indicate conditioning with ` ½ ’ ; i.e. the conditional

distribution of x given y is [x ½ y]. The nominal Bayesian model in which we are

interested consists of a data model (i.e. the likelihood) [y ½ a , c ], a prior distribution

for the parameters a , [ a ½ c ], and perhaps a further prior distribution for the

remaining parameters c , [ c ]. For the purposes of this paper, we suppose that

primary interest lies in estimating a (these will be the `random eþ ects’ parameters

in our model). In our development, c will consist of both parameters in the random

eþ ects distribution, and additional parameters in the likelihood of y, which are not

explicitly accounted for by a .

The posterior distribution of the unknown parameters is then, by Bayes rule,

equal to:

[ a c ½ y] 5
[y ½ a , c ] [ a ½ c ] [ c ]

[y]
(1)

where [y] is the marginal distribution of the data. The nature of the likelihood and

prior distributions is obviously problem-speci® c, but the probability machinery

required to compute the posterior is identical no matter the precise speci® cation

of the likelihood and prior(s) (a subtle but important point).

2.1 The normal- normal model

Consider the simple model yt ½ a t ~ N( a t , r
2
e ): t 5 , 2, . . . , n with random eþ ects a t

assumed to be N( l , r 2
a ), Thus, c 5 (r 2

e , l , r
2
a ), and we will assume that c is known

for the time being. The derived precision parameters, s a 5 1/r 2
a and s e 5 1/r 2

e will be

convenient in some expressions. We might think of this model as applying to data

collected over time, and thus a t are `year eþ ects’ , y t are yearly sample means, and

our interest is an estimation of the collection of random eþ ects { a t}.

The posterior distribution of a t is proportional to the product of the likelihood and

prior, which is easily shown to be:

[ a t ½ y t ] 5 N ( l + ( r
2
a

r
2
a + r

2
e ) ( y t 2 l ),

r
2
a r

2
e

r
2
a + r

2
e ) (2)

The mean of this posterior distribution is taken as an estimator of a t and the

posterior variance is then used to assess uncertainty about a t . In general, the

posterior is conditional on all data, so we might more formally express the posterior

as [ a t ½ y1 , . . . , yn ]. However, with ® xed c , the posterior of a t depends only on y t .

The posterior mean is often referred to as a shrinkage estimator, in the sense that

the usual estimator of a t , namely y t (i.e. the yearly sample mean), is adjusted (or

`shrunk’ ) back towards the prior mean of a t ; if the sample mean is larger than the

prior mean, it is adjusted downward, and if it is smaller than the prior mean, it is

adjusted upward. Clearly, the relative size of `among year’ versus `within year’

variation controls the amount of shrinkage being done via the shrinkage weight

c 5 r
2
a /(r

2
a + r

2
e ). We discuss shrinkage estimation further in Section 3.3.
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An important generalization arises by considering the model:

y 5 X b + Z a + e (3)

where b and a are vectors of parameters and X and Z are known `design’ matrices.

The distributional assumption on a is typically made more general by allowing the

a s to be correlated: a ~ N(0, r
2
a D h ), where D h is some correlation matrix with

parameter h . The model given by (3) forms the basis of the classical linear mixed

model (LMM) (Robinson, 1991) wherein, to a frequentist, b are the `® xed’

parameters and a are the `random eþ ects’ . Typically then, the constant l from (2)

would be an element of b and regarded as ® xed. Although Bayesians do not

generally entertain the notion of ® xed eþ ects, placing a constant (i.e. uniform)

prior on b has the eþ ect of yielding results that are often consistent with frequentist

procedures. Special cases of (3) are common throughout statistics, and include the

usual random eþ ects ANOVA, repeated measures ANOVA, spatial models that

form the basis of kriging (in which case D is a spatial variance- covariance matrix),

and many others. Under this slightly more general formulation, the posterior

distribution of interest (which we omit) is analogous to (2) (see Laird & Ware,

1982).

2.2 Unknown prior parameters

Up to now, we have assumed that c is known. Consequently, the resulting posterior

distributions were implicitly conditional on c . Such posterior distributions are

usually called conditional posterior distributions. Although this may appear to be a

gross simpli® cation of real problems, it turns out that conditional posterior distribu-

tions play a very important role in simulation-based analysis of the posterior using

Markov chain Monte Carlo (MCMC) methods (Gilks et al., 1996a). Moreover, it

is the mean of equation (2) that is often used as the frequentist random eþ ects

estimator, although derived from diþ erent considerations as we discuss in Section

3. Frequentist applications, however, su þ er through various (often ad hoc) pro-

cedures to estimate c and account for that uncertainty. In the Bayesian framework,

when c is unknown, it is endowed with a prior distribution, and the rules of

probability are applied both to estimate it, and account for that uncertainty in a

rigorous manner, as we now discuss.

If c is unknown with prior distribution [ c ], then inference about it is based on

the marginal posterior distribution [ c ½ y]. This is easily enough computed in most

cases using standard methods. One is often interested in estimation of a , the

random eþ ects. Then, focus is on the marginal posterior distribution, [ a ½ y], which

is related to the conditional posterior distribution [ a ½ y, c ] as follows:

[ a ½ y] 5 ò [ a ½ y, c ] [ c ½ y] d c (4)

In words, the conditional posterior is averaged over c , weighted according to the

posterior distribution of c . This integration problem is often analytically intractable

and closed form expressions do not generally exist, even under the normal- normal

model with unknown variance components. Nevertheless, we see from this last

expression how the Bayesian approach accommodates `estimation uncertainty’ in

prior parameters in a very formal fashion. Computation of interesting features of

this marginal posterior distribution is easily accomplished by simulation-based

MCMC techniques.

One useful case is to assume that l in equation (2) is unknown, but not the
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variance components. With a ¯ at prior on l , the posterior mean in (2) has yÅ in

place of l . This result also applies with b as in equation (3). Some diý culty arises

when variance components are unknown. In general, a Bayesian analysis simply

requires application of equation (4) in more generality, whereas frequentist

approaches are less formal (as discussed in Section 3.2).

2.3 Non-normal models

The probability calculus employed in Bayesian analysis also facilitates the analysis

of random eþ ects in non-normal models. Obviously, in the general relation between

likelihood, priors, and posterior, as expressed by equation (1), there is nothing

restricting our likelihood to be normal, nor even our random eþ ects distribution

(the prior) to be normal. Models involving Poisson, Binomial, or, in the case of

capture- recapture, Multinomial likelihoods, with (e.g. normal) random eþ ects, are

common in modern statistical practice. It is almost universally the case that these

posterior distributions cannot be analysed directly, but with the recent advances

made in numerical and simulation based methods, relevant features of the posterior

distribution are easily computed. Very general MCMC algorithms (see Gilks et al.,

1996a) are easily applied to these problems. For example, the software package

BUGS (Spiegelhalter et al., 1996) implements a wide array of MCMC algorithms

for many common classes of statistical models. Indeed, BUGS may be used to

analyse data from studies of marked animals as Brooks et al. (2000b) illustrate.

3 Frequentist random eþ ects and shrinkage

There are several diþ erent approaches for analysing random eþ ects within the

Frequentist paradigm. Although these may be perceived as being independent, the

resulting random eþ ects estimator under the normal model is a shrinkage estimator

similar to that based on the conditional posterior distribution (that is, with ® xed

prior parameters). In the subsequent development, we will assume that these prior

parameters are ® xed, and discuss unknown prior parameters in Section 3.2.

3.1 Estimation of random eþ ects

There is a rigorous model-based framework for random eþ ects estimation within the

frequentist paradigm. This is known as the best unbiased prediction (BUP). The

best unbiased predictor (we will also use the acronym BUP for that, and let the

context determine its meaning) is de ® ned as the unbiased predictor with minimum

variance (the frequentist convention is to use the term predictor for estimators of

random e þ ects, while reserving estimator for ® xed eþ ects). BUP is typically appealed

to in time-series and spatial analyses, in which inference about future observables

is of interest; Frequentists are comfortable regarding these quantities as random.

It is easy to establish the BUP directly. Let y be one or more realizations of a

random variable (i.e. data). We wish to predict some quantity z based on y (z is

typically an unobserved value of y, but could be a random eþ ect in that model for

y). Then, if zÄ ( y) is any function of y, the minimizer of E(z 2 zÄ ( y))2 (the mean-

squared prediction error) is zÃ ( y) 5 E[z ½ y]. In addition, E[zÃ ( y)] 5 EE[z ½ y] 5 E[z]

(unbiased). Thus, the BUP is, in general, the conditional expectation of the thing

to predict given the data. To a Bayesian, E[z ½ y] is the posterior mean, but clearly

it is reasonable without regard to one’s philosophical beliefs (as the estimator which
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minimizes the mean squared prediction error). It is also clear that, under the

normal- normal model introduced in Section (2.1), the posterior mean given by

equation (2) (with known c ) is the conditional expectation of a t given the data, and

hence the BUP. Thus, despite philosophical diþ erences, frequentist and Bayesian

alike might agree on the utility of BUP.

The BUP is the `gold standard’ for estimating random eþ ects in classical

statistics. As stated in the Introduction, the de® ning characteristics of the Bayesian

paradigm are the treatment of parameters as random variables, and conditioning

on data (i.e. posterior inference). Clearly both are present BUP-based estimations

of random eþ ects. However, the frequentist adoption of BUP retains the `® xed but

unknown’ viewpoint on the prior parameters. Thus, while the Bayesian will

integrate c from the conditional posterior as discussed in Section 2.2, the fre-

quentist tendency is to use the estimator in its conditional (on c ) form. This leads

to some diý culty in its application, as we discuss in Section 3.2.

Finally, the BUP in the normal- normal case is linear, and consequently is also

the best linear unbiased predictor (BLUP); i.e. optimal within a slightly less

restrictive class of estimators. However, in general, the BUP is not linear (i.e. in

most non-normal models). Also, if we plug-in MLEs for the ® xed parameters ( l

or more generally b ), than the `BUP’ is no longer BUP, but it remains BLUP,

since the estimator of the mean parameters is linear in the data.

Model-free development. Estimation on the BUP makes use of distributional

assumptions in so far as it is the conditional expectation under those assumptions.

Alternatively, a model-free development proceeds by minimizing an expression

referred to as a penalized likelihood, or penalized least-squares criterion. Since this

is the classical derivation of random eþ ects estimators in the linear mixed model

setting (e.g. Laird & Ware, 1982), we adopt the general statement of the model

given in equation (3) for this discussion. The penalized likelihood for the general

model is:

(y 2 X b 2 Z a ) ¢ s e (y 2 X b 2 Z a ) + s a a ¢ D 2 1 a (5)

Diþ erentiating leads to the so-called mixed-model equations (e.g. see Robinson,

1991), which may be solved for b and a . In particular, the random eþ ects estimator

is a conditional posterior mean, as in (2), but under the more general model

formulation given by (3).

This penalized least-squares criterion is just a variance weighted sum-of-squares,

with the eþ ect of forcing the a s to 0 (i.e. shrinking them). The penalty term a ¢ D 2 1 a
can be thought of as a roughness penalty, which eþ ectively constrains the random

eþ ects to be `smooth’ . This penalized likelihood motivation is nice because it

uni® es a wide array of statistical procedures including thin-plate splines, kriging,

ridge regression, mixed models, and others (for some perspective on this, see

Nychka, 1998). Although the constrained optimization device provides a non-

parametric justi ® cation for many techniques, it was originally justi® ed informally

from normal likelihood considerations (Henderson, 1950). Discussion of these

various derivations can be found in Robinson (1991).

A similar distribution-free derivation of random eþ ects estimators proceeds by

explicitly minimizing the mean squared prediction error among linear predictors. This

is more common in spatial statistics, for development of kriging estimators (for an

example of this, see Cressie, 1991, p. 123). Burnham (2000) also presents that

development.



336 J. A. Royle & W. A. Link

Thus, while frequentist random eþ ects estimation may be given a formal model-

based development as a conditional expectation, estimators may also be derived

within a `distribution-free’ framework (i.e. the solution to an optimization problem).

Under the normal model with known variance components, the random eþ ects

estimator has a close correspondence to the mean of the (conditional) posterior in

a Bayesian analysis.

Unbiased? The random eþ ect estimator is often called the Best Linear Unbiased

Predictor, but this is somewhat misleading. Strictly speaking, unbiased here means

in a marginal sense, so that E[ a Ã t ½ l ] 5 l + cE[ y t 2 l ] 5 l + c0 5 l 5 E[ a t ½ l ]. This is

not the same as E[ a Ä t ½ a t] 5 a t, which is the usual interpretation of an unbiased

estimator. Clearly, E [ a Ã t ½ a t] 5 l + cE[ y t ½ a t ] ¹ a t unless c 5 1. Thus, we see that the

shrinkage estimator is, in fact, conditionally biased. This is generally the case for

shrinkage estimators. Many statistical procedures accommodate a small amount of

bias, in exchange for producing better estimators in terms of mean-squared error.

This concept of a `bias /variance trade-o þ ’ appears in smoothing methods (e.g.

Hastie & Tibshirani, 1990), model selection (e.g. Burnham & Anderson, 1998,

p. 23), and elsewhere.

3.2 Variance component estimation

In estimation of random eþ ects, we have assumed that variance components

r
2
a , r

2
e are known. Formally, estimation of variance components usually proceeds

by maximizing the marginal likelihood of y (that is, integrating the random eþ ects

from the conditional likelihood). Typically then, these estimates are used in the

known-variance expressions arising from solving the mixed model equations, BUP

considerations, etc. This has led to the terminology, `plug-in’ estimator, which is

also often called the estimated best linear unbiased predictor, or EBLUP. The same

approach also applies to estimation of other parameters in the speci® cation of the

random eþ ects distribution. For example, one could assume that the random

eþ ects are correlated (the usual context in spatial statistics). That is, Var( a ) 5
r

2
a D h where D h is a correlation matrix with parameter h .

To illustrate, consider the following normal- normal model:

y ½ a ~ Normal(Z a , r
2
y I)

and

a ~ Normal( l 1, r
2
a D h )

where Z is a design matrix as in (3). Then, the marginal distribution of y is:

y ~ Normal( l 1, r
2
y ZZ ¢ + r

2
a D h )

The multivariate normal likelihood may be maximized to obtain estimates of

c 5 ( l ,r 2
y ,r 2

a , h ). These may then be used in the known- c expression for a Ã , obtained

by minimizing the penalized least-squares criterion. This is essentially the empirical

Bayes approach to estimating prior parameters (Laird & Ware, 1982; Carlin &

Louis, 1996, ch. 3).

There has been much discussion of this plug-in procedure (for discussion and

references, see Laird & Ware, 1982; Christensen, 1991, p. 276; Robinson, 1991;

Handcock & Stein, 1993), most having to do with the failure of this procedure

properly to account for uncertainty associated with the variance component estima-
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tion in the variance of the prediction. Thus, the expected value of the estimated

variance of the plug-in predictor will tend to be smaller than its true variance

(which must be greater than the variance of the BLUP, by de® nition). Nevertheless,

use of plug-in predictors is often justi® ed as reasonable based on results by Kackar

and Harville (1981) showing the plug-in predictor to be unbiased, apparently

neglecting the fact that we primarily do statistics on the basis of our ability to

quantify uncertainty.

Frequentists have proposed various corrections to account for estimation of the

prior parameters (e.g. Kackar & Harville, 1984; Louis, 1984; Laird & Louis, 1987;

Link & Hahn, 1996. However, we believe that the Bayesian paradigm provides a

much more consistent approach to dealing with this issue, as was discussed in

Section 2.

3.3 James- Stein shrinkage

Shrinkage estimators arise throughout statistics, and we have seen that they arise

as a consequence of random eþ ects estimation (or prediction) under either Bayesian

or frequentist considerations. Such estimators have the desirable property that they

perform better in a mean squared error sense, for estimating a collection of

parameters. In fact, the frequentist random eþ ects estimator is typically developed

explicitly to minimize the mean squared prediction error. Consequently, shrinkage

estimators tend to be (conditionally) biased, and may not possess a smaller variance

than traditional component-wise estimators.

There is another important, `true frequentist’ derivation that leads to essentially

the same estimator as that based on the conditional posterior mean, or from BUP

considerations. This is known as James- Stein estimation, and is presented here for

historical interest, and also because the main result of Stein (1955) provides the

primary frequentist justi® cation for shrinkage (i.e. not dependent on assuming

parameters to be random). We emphasize that the James- Stein theory does not

provide a framework for the analysis of random eþ ects models (indeed, it is wholly

unrelated to anything having to do with random eþ ects, hence our labelling it a

`true frequentist’ approach). Instead, it merely motivates interest in shrinkage

estimation.

As before, assume that y t ½ a t ~ N( a t , r
2
e ) for t 5 1, 2, . . ., p, with r

2
e known. With

no additional model structure imposed among the a t , Stein (1955) showed that if

p > 3, then the obvious estimator of the multivariate normal mean (i.e. the sample

means) is inadmissable under mean-squared-error loss. Put another way, Stein

showed that there exists an estimator that is uniformly better than the usual sample

mean. While Stein did not provide such an estimator, this led to the well-known

James- Stein estimator of a t ( James & Stein, 1961):

a Ã
js
t 5 ( 1 2

(p 2 2)r
2
e

R y
2
t ) yÅ t

This estimator looks like the posterior mean in (2), but with l 5 0, and using a

reasonable estimate for the `total’ variance, r
2
e + r

2
a . To see this, note that

r
2
a /(r 2

a + r
2
e ) 5 1 2 r

2
e /(r 2

a + r
2
e ), and further note that (p 2 2) /( R y

2
t ) is unbiased for

1/(r 2
a + r

2
e ) under a normal model.

Thus, James & Stein seem to have proposed shrinkage towards 0 as a generally

better estimator than the usual sample mean! An obvious extension of this is to
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shrink towards something other than 0, such as the `overall’ mean (Efron & Morris,

1975), i.e. the mean of the sample means y t . Casella & Berger (1990, pp. 495 -

500) is a good introductory reference on `Stein’ s Paradox’ , Stein estimation, and

related issues. Carlin & Louis (1996, pp. 84- 85) discuss Stein estimation in the

context of empirical Bayes procedures.

Note that the James- Stein estimator is `model-free’ in the sense that there are

no distributional assumptions imposed on a t Ð it is not even random! What’ s more

troubling is that there is nothing about the problem that requires that the y t even

be of the same `type’ of variable. For example, why not apply shrinkage to batting

averages and pork belly prices (Efron & Morris, 1997)? This is in contrast to the

linear mixed model development, in which the a j are assumed to be random,

typically normally distributed random variables. Because they are assumed to be

generated from a common distribution, this would seem to mitigate concerns about

combining batting averages and pork bellies. These ideas were concisely articulated

by Robinson (1991):

[The work by Stein (1955)] . . . has led to some theoretical work that I

believe to be of little practical value. This work is characterized by a

tendency to combine unrelated estimation problems. BLUP helps us to

know when to combine estimation problems. Situations where estimation

problems ought to be combined are when the parameters to be estimated

can be regarded as coming from some distribution. Equivalently, they are

`exchangeable’ , or are `random eþ ects’ .

And so, batting averages and pork bellies ought not be related to each other, and

hence should not be combined into a joint estimation problem. That is, shrinkage

only makes sense given a random eþ ects model, and there is little rational basis for

one applying to both pork bellies and batting averages.

4 Synthesis

While we have given essentially a frequentist treatment of random eþ ects estimation

in Section 3, there are distinctly Bayesian aspects to that development. Clearly, the

treatment of parameters as being random is inherently Bayesian (`breaking the egg’ ).

In addition, consideration of the BUP approach invokes an explicit conditioning on

data (`eating the omelette’ ). Indeed, under a normal- normal model, either penal-

ized likelihood or BUP considerations yield estimators that are equivalent to that

based on the conditional posterior distribution; i.e. with known prior parameters.

Thus, despite philosophical diþ erences between the Bayesian and frequentist

schools of thought, there seems to be a correspondence between their respective

solutions in normal random eþ ects models.

How then are the Bayesian and frequentist approaches diþ erent with respect to

random eþ ects? The diþ erence lies primarily in the way that c is dealt with. In

essence, frequentist shrinkage is Bayesian, with known c . Frequentists most often

use so-called `plug-in’ predictors and estimators. Bayesian use standard probability

calculus and average over the posterior distribution of c . Thus, we feel that Bayesian

analysis provides a more rigorous framework for accounting for uncertainty in

parameter estimation.

Aside from the more formal treatment of c that Bayesian analysis permits,

Bayesian analysis of random eþ ects allows one to entertain much more complex

models (e.g. non-normal) while not having to worry about how to derive estimators,
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since very general simulation-based (i.e. MCMC) algorithms are easy to adapt to

complex problems. The key to Bayesian analysis of random eþ ects is that one must

only be able to compute the posterior distribution of the quantity of interest (the

particular random eþ ect), under whatever distribution is appropriate. This leads

us to consideration of capture- recapture problems in which the likelihood is

multinomial.

5 Models for band-recovery data

The ® eld of capture- recapture encompasses a broad class of models for analysing

data from marked animals and even a brief introduction is beyond the scope of

this paper. Our primary interest is in band-recovery models, (in which there are

no formal recaptures) which are a special case of the more general Cormack- Jolly-

Seber (CJS) models (e.g. Lebreton et al., 1992). We will brie¯ y review the basic

structure of band recovery models here (e.g. Brownie et al., 1985). Ideas pertaining

to random eþ ects in band recovery models, which we will develop shortly, also

apply to more general capture- recapture models. The common thread is that all

of these models contain a collection of survival and capture probability parameters Ð

the presence of recaptures is generally dealt with trivially.

5.1 Model structure

Band-recovery data may be conveniently summarized in terms of a recovery matrix

containing the number of band recoveries over time. For example:

Year

Cohort N bands 1 2 3 ´ ´ ´ ´ ´ T

1 N1 n11 n12 n13 ´ ´ ´ ´ ´ n1T

2 N2 n22 n23 ´ ´ ´ ´ ´ n2T

3 N3 n33 ´ ´ ´ ´ ´ n3T

´ ´ ´ ´ ´ ´

´ ´ ´ ´ ´

´ ´ ´ ´

T NT nTT

In this table, N i is the number of birds banded in year i (say, cohort i) and n i j is

the number of bands recovered from cohort i in year j. In waterfowl applications

(such as ours), recoveries are bands returned as a result of hunting activity in year

j, although there may be formal recaptures (these are simply moved to the next

row of the table and treated as initial releases).

The usual assumption is that the vector of recoveries from each cohort is a

multinomial random variable, and that the cohorts are independent of one another.

For example, for cohort 1 we assume that

(n11 , n12 , . . ., n1T , N 1 2 R n1 j) ~ MN( p 11 , p 12 , . . ., p 1T , 1 2 R p 1j , N 1 )

where p i j is the probability that a band from cohort i is recovered in year j. We will

employ the conventional shorthand notation [n i ½ p i , N i] to represent this distribu-

tion. Assuming conditional independence among cohorts, the joint likelihood is

merely the product of T such multinomial likelihoods:

[n ½ p , N] 5 *
T

i 5 1

MN(n i ½ p i , N i)
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Typically, the p i js are not of direct interest. Instead, they are assumed to be

functions of more relevant parameters such as survival and reporting probabilities.

Let k t be the reporting probability in year t (i.e. the proportion of dead birds that

get reported), and u t be the sur vival probability (the probability that a bird alive at

time t survives to time t + 1). Then, the expected multinomial cell frequencies may

be expressed as:

E[n11 ] 5 N 1 p 11 5 N 1 (1 2 u 1 ) k 1

E[n12 ] 5 N 1 p 12 5 N 1 u 1 (1 2 u 2 ) k 2

E[n13 ] 5 N 1 p 13 5 ´

´ ´

´ ´

´ ´

´ ´

´ ´

E[n1T ] 5 N 1 p 1T 5 N 1 ( *
T 2 1

t 5 1

u t ) (1 2 u T ) k T

Thus, the multinomial cell probabilities are p 11 5 (1 2 u 1 ) k 1 , etc. One feature of

these full year-dependent models is that u T and k T are confounded (see Seber, 1982,

p. 241), so that only their product may be estimated. Consequently, the model

contains 2T 2 1 parameters, when the number of recovery years is equal to the

number of cohorts. It is a simple matter to compute maximum likelihood estimates

using standard software packages such as MARK (White & Burnham, 1999).

5.2 A posteriori shrinkage of estimates

One might consider BLUP-like shrinkage applied to a collection of MLEs, say

u Ã 1 , u Ã 2 , . . ., u Ã T 2 1 (recall that there are only T 2 1 estimable survival parameters). If

we specify the data model as:

u Ã t ~ N( l h , r
2
u )

then we are naturally led to consider the estimator (Burnham, 2000):

u Ä t 5 l Ã u + r
2
u

r
2
u + r

2
e

( u Ã t 2 l Ã u ) (6)

where r
2
u 5 Var( u t ) and r

2
e is the sampling variance and l Ã u is the sample mean of

u Ã t . This, of course, mimics the conditional posterior mean in (2), or the BLUP

(using an estimate of l u ). Recall too that one may justify this without invoking a

normal assumption. Burnham (2000) also considered another form of shrinkage

estimator, where the shrinkage weight in equation (6) is replaced by its square-

root. See Burnham (2000) for motivation of this form of shrinkage. The software

package MARK (White & Burnham, 1999) implements this BLUP-like shrinkage

based on MLEs.

To estimate variance components, one might use a number of reasonable choices

in a `plug-in’ type estimator. Precisely which estimator to use in the plug-in

procedure is a complex issue, since the obvious choice, namely the MLE based on
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the marginal distribution of the data, is diý cult to compute (we illustrate this in

Section 6.3), since the likelihood is multinomial, leading to a complex integration

problem. Burnham (2000) suggests using moment estimators, or MLEs computed

by regarding the u Ã s as `data’ . He also suggests accounting for sampling covariance

in the u Ã s, replacing r
2
e with a variance- covariance matrix, and applying the matrix

equivalent of equation (6). In addition to some diý culty in estimation of prior

parameters under this approach, it is unclear how to accommodate uncertainty

associated with that estimation process, which may be particularly important in

small sample problems.

This BLUP-like shrinkage approach may lead to reasonable answers, particularly

if sample sizes are large. However, it is relatively straightforward to ® t random

eþ ects models more formally within the multinomial framework, thus negating

issues of prior parameter estimation and uncertainty.

6 Bayesian analysis of band-recovery data

Bayesian analysis of capture- recapture data, and band recovery data in particular,

has been addressed by George & Robert (1992), Vounatsou & Smith (1995),

Dupuis (1995) and recently by Chavez-Demoulin (1999) and Brooks et al.

(2000a,b). Consequently, we do not feel it necessary to provide in-depth technical

detail here. Instead, we present a brief overview, and refer the interested reader to

the aforementioned references for further information, and computational details.

The ® rst stage of the Bayesian model consists of the multinomial model given in

Section 5 (i.e. the likelihood). The distinction between Bayes and classical model-

ling approaches is that the Bayesian model requires prior distributions for u and

k , say [ u ½ c ] and [ k ½ c ], which depend on parameters c .

Since survival and recovery parameters are probabilities, it is natural to model

them on the logit scale. In the simplest random eþ ects case, we assume that:

logit( u t ) 5 a t and logit( k t) 5 c t

where a t is the survival `year eþ ect’ and c t is the reporting rate year e þ ect. One way

to parameterize the random eþ ects is to assume they are normally distributed:

a t ~ N( l u , r
2
u ) and c t ~ N( l k , r

2
k ) (7)

Obviously, these models could be considerably more general, perhaps including

covariates in the mean, etc. In this regard, we believe that it is most natural to

parameterize variation in survival and recovery rate parameters on the logit scale

(as in logistic regression). Note that if one desires estimates on the probability

scale, that is u t 5 expit( a t ) where expit(x) 5 exp(x) (1 + exp(x)), then this can be

computed directly from the MCMC output for a t as we discuss below. Instead of

the logit parameterization, a Beta distribution on u t and k t also seems reasonable.

We discuss this further in Section 6.2.

We now require prior distributions on the mean and variance parameters in the

prior distributions given in (7) (i.e. c in our previous notation). Common non-

informative priors for the mean parameters are Normal distributions with mean 0

and large variance (say 1000). For variance components, inverse-Gamma priors

are used. Equivalently, assign Gamma(a,b) priors to the precisions (i.e. the inverse

of the variances). One may reasonably specify non-informative priors by ® xing a

and b to be small, say 0.01 (using the common parameterization in Gelman et al.,

1995).



342 J. A. Royle & W. A. Link

To accommodate the confounding of u T and k T in a Bayesian analysis, we could

® x one or the other, say u T 5 1, and then specify a prior distribution for the remaining

parameter (e.g. a reasonably non-informative prior is logit( k T ) ~ N(0,10)). This

acknowledges that it is distinct from those that are assigned the random eþ ects

distribution (in essence, this Tth parameter is a pork belly, whereas the remaining

are batting averages). One might also consider placing a uniform prior on the pro-

duct u T k T .

We seek to describe features of the marginal posterior distributions:

[ a ½ n]µ [n ½ a , c ] [ a ½ c ] [ c ]

and

[ c ½ n]µ [n ½ a , c ] [ c ½ c ] [ c ]

which are products of the multinomial likelihood, normal random eþ ects distribu-

tion, and various prior distributions speci® ed for c . These posterior distributions

may be analysed using MCMC techniques, as illustrated by Vounatsou & Smith

(1995), and Brooks et al. (2000a,b). Gilks et al. (1996a) is a good general reference.

The details behind MCMC are beyond the scope of this paper, but MCMC for

the analyses reported on in the following sections is very easy to implement. We

give a brief sketch of the algorithm we employed.

One form of MCMC, known as component-wise Metropolis- Hastings, involves

sampling from the full-conditional distribution of each parameter using the Metro-

polis- Hastings algorithm (Gilks et al., 1996b). For example, the full conditional

distribution for the ® rst survival year eþ ect, a 1 , is the product of the multinomial

likelihood with the normal prior distribution:

[ a 1 ½ ´]µ [n ½ a , c ] [ a 1 ½ c ] (8)

The parameter a 1 does not appear in any of the expected cell frequencies beyond

those of banding cohort 1, and so this reduces to:

[ a 1 ½ ´] µ [n1 ½ a , c ] [ a 1 ½ c ] (9)

where n1 is the vector of returns for the ® rst banding cohort. As it turns out, this

distribution is not of a convenient form from which to sample, but use of

Metropolis- Hastings is relatively simple and straightforward. This proceeds by

drawing a candidate value from some proposal distribution, and accepting that

value with some prescribed probability as described in Gilks et al. (1996b).

The whole set of full conditionals (one for each unknown, including the recovery

rate parameters) is sampled from many times. The resulting output is then used to

estimate features of the relevant posterior distribution. For example, the mean of

[ a 1 ½ n] is estimated with the mean of the posterior simulated values of a 1 generated

from the MCMC algorithm. One nice aspect of MCMC is that posterior quantities

of a function of model parameters may be estimated by applying that function to

the MCMC samples. For example, the posterior mean of u 1 may be estimated as

the mean of expit(a
(m)
1 ):m 5 1, 2, . . ., M where a

(m)
1 is the mth simulated value of a 1 .

There are many technical issues having to do with assessing convergence,

choosing reasonable proposal distributions, starting values, etc. We are not con-

cerned with these here, although they are important in any analysis. The interested

reader should consult Gilks et al. (1996a) for details.

Although we did our own programming for the analyses presented in Section 7,

we were also able to duplicate our results using the software package BUGS
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(Spiegelhalter et al., 1996) quite easily. Although there are many ways to implement

these models in BUGS, the most straightforward is to write out the expected

cell frequencies directly, which can be easily mechanized for general problems.

Consequently, the reader familiar with standard packages (e.g. SURVIV), which

operate in this manner, should have little diý culty implementing them in BUGS.

6.1 Model selection and assessment

Model selection and assessment are of great practical importance in any application.

Biologists often rely on AIC (Burnham & Anderson, 1998) to choose the best

model from among several competing models. AIC is simple to implement and

widely understood and accepted among biologists. On the other hand, Bayesian

ideas such as Bayes factors and Bayesian model-averaging are not so easily

implemented in complex models, and are unfamiliar to practitioners. Brooks et al.

(2000b) discuss some of these ideas in the context of modelling animal survival.

One tool that shows promise towards simplifying Bayesian model selection is the

Deviance Information Criterion (DIC), proposed by Spiegelhalter et al. (1998).

Essentially, a Bayesian version of AIC, the DIC is easy to compute in most

problems using standard MCMC output. The DIC is based on the posterior

distribution of minus twice the log-likelihood (i.e. Bayesian deviance):

D( u , k ) 5 2 2 log[n ½ u , k ]

Denote the posterior mean of this quantity as DÅ ( u , k ), which is easy enough to com-

pute from the MCMC output (retaining the simulated values of u (m)
t 5 expit( a (m)

t )

and k
(m)
t 5 expit( k (m)

t )). In addition to this measure of model ® t, we require some

measure of model complexity. Spiegelhalter et al. (1998) de® ne the e þ ective number

of parameters as

pD 5 DÅ 2 D( u Å , k Å ) (10)

where D( u Å , k Å ) is minus twice the log-likelihood evaluated at the posterior means of

u and k . They then de® ne the DIC as

DIC 5 D( u Å , k Å ) + 2pD

which may be applied in a manner analogous to AIC (i.e. small values are

better than large values). Spiegelhalter et al. (1998) provide the decision-theoretic

justi® cation for use of the DIC.

Another particularly simple tool for model assessment, is the B ayesian p-value.

The basic idea is to compare the distribution of some ® t statistic computed from

the data to that from simulated data under the model. Similar distributions (a p-

value near 0.5) suggests consistency of the data with that model. Extreme values

suggest otherwise. While we provide both DIC and Bayesian p-value results in our

analysis below, we refer the interested reader to Brooks et al. (2000b) for details

on computation of Bayesian p-values. We followed the approach outlined by them

for our analysis.

6.2 On prior distributions

The Beta model is appealing for capture- recapture problems since the survival

and recovery parameters are probabilities. Thus, we might assume u t ~ Beta(a,b)

(Burnham & Overton, 1978; George & Robert, 1992). Of course, one would
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generally desire prior distributions on a and b, and it is unclear how those may be

chosen in general and, in particular, in a manner that facilitates modelling covariate

eþ ects (one bene® t of the logit-normal parameterization). One possibility is to

parameterize covariate e þ ects in the mean, a /(a + b), perhaps on the logit scale. A

prior distribution for the variance, or surrogate (such as a + b, the precision) is also

needed. We feel that there is generally less diý culty in modelling the prior

parameters using the logit-normal model. In particular, modelling covariates is

straightforward. For example, in addition to random year eþ ects, survival might be

parameterized to depend on one or more environmental covariates, x1t , x2t , . . ., xpt as:

logit( u t) 5 a t + +
p

k 5 1

b k xkt

There are other considerations that motivate consideration of the logit-normal

model. One important one is that it is easily generalized to many types of problems

making use of a multivariate normal assumption on random eþ ects. One application

that we have investigated is the ® tting of multispecies models wherein u kt is the

survival probability of species k in year t. Then, de® ning logit( u kt) 5 a kt, and

a t 5 ( a 1t , a 2t , . . ., a Kt ), one may consider interspecies correlations by assuming:

a t ~ N( l , R )

Various parameterizations of R can be employed, either suggested by biology, or

perhaps chosen from among standard parametric families. Such models may have

applications in estimation of survival and other vital rates for rare species, when it

is easier to mark one or more abundant species that may be related in terms of

their variation in model parameters. Also, this model may make it feasible to

exploit sparse banding databases that have been largely untapped for reasons of

data scarcity (e.g. the vast banding record which results from US Fish and Wildlife

Service banding activity). In essence, information on poorly sampled species is

`borrowed’ from more abundance species.

Similar models for parameterizing dependence among k and u , and even a

generalized cohort model, with dependence among sexes and age classes, may be

employed. One other obvious extension is to accommodate autocorrelation among

the year e þ ects, perhaps by assuming that the a t behave according to an autoregress-

ive process.

6.3 B est unbiased prediction using MCMC

One could argue that the BLUP is reasonable for arbitrary (i.e. non-normal)

problems, due to its model-free interpretation (and its convenience is hard to

argue). Nevertheless, one might hope to construct better estimators in non-

normal problems by employing the appropriate distributional assumptions (e.g.

multinomial), particularly in small-sample problems, wherein no sense of normality

(asymptotic, approximate, or otherwise) is reasonable. In particular, one might

consider attempting to compute the BUP and, following the ideas of Section 3.2,

use a `plug-in’ procedure, whereby estimates of prior parameters c are used in the

known- c expressions.

As before, let [y ½ a , c ] be the likelihood of data, y given random eþ ects a , and

parameters c ; and, let [ a ½ c ] be the random eþ ects distribution. Assuming that c
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is known, the distribution of [ a ½ y, c ] (i.e. the conditional posterior distribution, to

a Bayesian), is

[ a ½ y, c ] 5
[y ½ a , c ] [ a ½ c ]

[y ½ c ]

where [y ½ c ] is the marginal distribution of the data. Then, following the frequentist

framework for estimating random eþ ects, our estimator of a is taken as the mean

of this distribution (i.e. the BUP) but with a reasonable estimate in place of c (i.e.

the Estimated BUP, or EBUP). Unfortunately, under the multinomial model,

known- c expressions are unattainable. However, one may evaluate the plug-in

BUP indirectly, using MCMC, as we now explain.

To compute the EBUP, we ® rst require an estimator of c . The most obvious

estimator of c is the MLE based on the marginal distribution [y ½ c ]. An adequate

approximately to the true MLE, may be obtained as the marginal posterior modes

(i.e. for each element) under a Bayesian model with ¯ at priors on the elements of

c . Thus, a is integrated out of the likelihood using MCMC. Although marginal

modes are not precisely the MLEs, for low-dimensional c they tend to be similar

(the point of this exercise is not to compute MLEs but to attempt BUP, and so we

will neglect this minor detail). Then, to compute the EBUP, we ® x those parameters

at their estimated values and rerun the MCMC algorithm to yield estimates of the

posterior means say, [ a 1 ½ n, c 5 c (mle)]. In essence, this is a plug-in empirical Bayes

procedure Ð maximum likelihood estimation on prior parameters, followed by

computation of the best unbiased predictor of the random eþ ects by MCMC

simulation. Consequently, this approach is entirely analogous to the usual, fre-

quentist approach of estimating random eþ ects, which was described in Section 3,

except that now we are working in the context of a non-normal model, and

estimating parameters (and predicting) using MCMC.

We see the diý culty in attempting to retain frequentist notions (i.e. `® xed’ prior

parameters) in complex problems. While still failing to account for prior parameter

uncertainty, we are faced with two computationally demanding exercisesÐ compu-

tation of c Ã , and computation of the random eþ ects estimates. Of course, a simpler

uni® ed treatment of the whole problem arises when a fully Bayesian framework is

adopted. However, our outlining this approach is intended to demonstrate the

impact of failing to account for prior parameter uncertainty. We will compare

results computed under this approach to more formally Bayesian and frequentist

procedures in Section 7.

7 Illustration: mallards from the San Luis Valley

We consider random eþ ects models for year-speci® c survival and reporting rates,

using band recovery data from adult male mallards banded in the San Luis Valley,

CO (taken from Brownie et al., 1985, Example 2.2a). There are 9 years of

recoveries from 9 years of banding activity. In addition to the random eþ ects model

structure, we consider several other potential models in order to evaluate the utility

of the random eþ ects structure. In particular, we considered the sequence of

models as follows (in order of increasing complexity, or number of parameters):

Model 0: Constant u and k .

Model 1: Random eþ ects model on both logit( u t ) and logit( k t ).

Model 2a: Random eþ ects model on logit( k t), ¯ at priors on logit( u t ).
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Model 2b: Flat priors on logit( k t ), random eþ ects on logit( u t).

Model 3: Flat priors on both logit( u t ) and logit( k t ).

For the models containing random eþ ects structure, the prior distributions were

speci® ed according to (7). Thus, for Model 1, our parameters of interest are the

vectors k and u , which consist of eight reporting-rate and eight survival-rate

parameters, respectively. Due to the random eþ ects structure, this model is

expected to have fewer than 17 parameters (see Section 6.1). Also recall that the

model contains an additional parameter consisting of the product of the last

reporting and survival rates. Although present in the model, we omit details

concerning that parameter from the following discussion of results. In a classical

setting, the full year-dependent model would contain 17 parameters. To evaluate

models more complex than that implied by the random eþ ects structure, we

assigned ¯ at priors to u and /or k . For example, we might expect a ¯ at prior on u t

to correspond to a model with eight survival parameters. Flat priors on both u t

and k t would produce the full 17 parameter model.

Estimation was by MCMC as outlined in Section 6. Bayesian deviance and p-

values (see Section 6.1) were computed from the MCMC output. These are shown

in Table 1. Convergence is always an issue in analyses based on MCMC. Based

on the Gelman- Rubin (GR) convergence statistic (Brooks & Gelman, 1998), we

generally observed rapid convergence except for Model 3. For this model, the

Markov Chains for the reporting rate parameters were particularly ill-behaved,

exhibiting very strong autocorrelation. However, the GR statistic did seem to

indicate eventual convergence. To investigate this further, we explored other prior

speci® cations (including highly informative ones), with only slight improvement.

One consequence of this poor convergence for Model 3 is that the measure of DIC

model complexity, estimated according to (10), was negative. Consequently, in

calculation of the DIC, we used an eþ ective number of parameters for this model

of 17.

The results of Table 1 suggest that the three shrinkage models (1, 2a and 2b)

are generally preferred, although there is certainly some ambiguity in the results,

particularly among those three models. Owing to the non-linear nature of the

model, shrinkage on one component induces some structure (shrinkage) on the

other component, perhaps explaining the equivalent complexity of 1 and 2b, and

the general similarity among all three random eþ ects models. The eþ ective number

of parameters for Model 0 was estimated to be 3.51, which is considerably larger

than the nominal number of parameters expected (i.e. 2). Subsequently, we will

focus on estimates based on Model 1 to make a couple of salient points.

Since analysis of the model is based on a simulation of all unknowns in the

model, one could spend a fair amount of space summarizing the output in various

formats, such as history plots and histograms of the simulated values. Instead, we

Table 1. Bayesian p-value and DIC results for model set

Model p-value deviance eþ . df DIC

0 0.043 8677.44 3.51 8680.96

1 0.448 8655.81 11.10 8666.91

2a 0.447 8656.43 12.64 8669.07

2b 0.444 8655.80 11.00 8666.80

3 0.362 8658.32 17.00 8675.32
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will just present posterior means (point estimates) and standard deviations of the

relevant parameters. For the mallard data, the estimated posterior means and

standard deviations of the survival and recovery parameters are: l u 5 0.547,

r u 5 0.3530, l k 5 2 1.468 and r k 5 0.322. One reviewer commented on the

diý culty in interpreting parameter estimates on the logit scale. Notwithstanding

the rationale for use of the logit parameterization given in Section 6, these estimates

may be used to generate results that are interpretable on a probability scale. For

example, simulate the sequence of a
(i) ~ Normal( l (i)

u , r
(m)
u ) where l (m)

u and r
(m)
u are

the mth sample from the posterior distribution (i.e. the output from MCMC

analysis). Then, characterize the distribution of u 5 expit( a ) from the sequence

{expit( a
(m) ):m 5 1, . . .}. In Bayesian parlance, this would constitute an estimate of

the posterior predictive distribution for the survival rate in an unsampled year. Figure

1 shows this quantity using our MCMC output. The mean and standard deviation

(on the probability scale) are 0.627 and 0.091. In this case, the mass of the

distribution is not too near the boundary and so summarization by mean and

standard deviation seems reasonable (and clearly a normal approximation to Fig.

1 is not unreasonable).

Irrespective of the scale of prior parameter estimates, interest does not typically

focus on prior parameters. Instead, the `random eþ ects’ model structure is

employed in the name of parsimony, and /or to yield improved estimates of annual

survival and reporting rate, which are more often the quantities of interest. Under

our logit parameterization, one directly obtains estimates of the annual survival

and reporting rate year e þ ects, a t , and c t . However, for practical reasons (e.g.

harvest management applications), one would prefer estimates of the probabilities

expit( a t ), expit(c t). Thus, we present the estimates on this scale. (As pointed out

in Section 6, one may summarize functions of the MCMC output for a t and c t in

order to estimate the posterior distribution of functions of those parameters.)

Although summary by mean and standard deviation may not be entirely adequate

for probabilities, space does not permit more adequate characterization of a large

number of posterior distributions.

Fig. 1. Posterior predictive distribution of survival probability.



348 J. A. Royle & W. A. Link

Table 2. Survival and reporting probability estimates under Bayesian, MLE and EBUP procedures

for the Mallard data

Bayes MLE EBUP
Time

period mean std mle SE mean std

Survival

1 0.654 0.066 0.579 0.114 0.650 0.054

2 0.605 0.050 0.611 0.078 0.606 0.042

3 0.679 0.042 0.669 0.081 0.677 0.038

4 0.684 0.042 0.785 0.098 0.675 0.036

5 0.654 0.042 0.638 0.074 0.655 0.039

6 0.582 0.045 0.536 0.059 0.589 0.039

7 0.606 0.044 0.590 0.071 0.604 0.042

8 0.584 0.058 0.559 0.136 0.589 0.051

Reporting

1 0.158 0.036 0.103 0.041 0.162 0.028

2 0.219 0.033 0.233 0.054 0.217 0.027

3 0.188 0.029 0.180 0.050 0.187 0.025

4 0.210 0.033 0.309 0.155 0.202 0.026

5 0.173 0.025 0.150 0.038 0.174 0.023

6 0.166 0.023 0.143 0.025 0.169 0.020

7 0.192 0.026 0.188 0.039 0.190 0.023

8 0.210 0.031 0.202 0.069 0.211 0.029

The posterior means and standard deviations of the year-speci® c survival rates

are shown in Table 2 (columns 2- 3). In addition to these Bayesian estimates, we

present results from two other analyses. The estimates given in columns 4- 5 are

the MLEs computed using MARK (White & Burnham, 1999). These results

illustrate clearly the shrinkage eþ ect attained by treating the parameters as being

random. That is, less variability than exhibited by the MLEs, and larger standard

errors of the MLEs as compared with the posterior standard deviations. Since the

MLE standard errors are very similar to posterior standard deviations of the

estimates under a ¯ at prior distribution, the diþ erence may be interpreted as that

induced by the additional model structure (i.e. what is, in essence, an informative

prior). Interestingly, the Bayes estimate for u 1 is larger than the mean survival,

whereas the MLE is lower than the mean survival. Using the linear BLUP-based

shrinkage approach, such behaviour is not possible (which is not to say that it is

desirable, either). This is a consequence of random eþ ects parameterization within

the non-linear multinomial likelihood.

The third set of estimates (columns 6- 7) is based on the EBUP procedure

described in Section 6.3. While the actual philosophical underpinings of this

procedure are somewhat ambiguous, we believe it is essentially a `frequentist-like’

solution to the problem, as it mimics the normal random eþ ects procedures

described in Section 3. Note that while the estimates are almost identical to the

Bayes estimates, the important result is that the EBUP standard error estimates are

always smallerÐ a consequence of failure to account for uncertainty in prior

parameter estimation, and so we would tend to overstate our con® dence in the

results.

For completeness, estimates of k t are given in Table 2, although we omit

discussion of these results.
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8 Discussion and conclusions

Models containing random eþ ects have proven useful in many ecological settings

and we believe they have great promise in modelling data from studies of marked

animals. Notions of improved estimation through shrinkage, modelling pattern in

parameters, and accounting for correlation among model e þ ects are all facilitated

by consideration of random eþ ects models.

Informal estimation of random eþ ects within a capture- recapture framework

may be carried out by applying BLUP-like estimators to collections of MLEs

obtained using conventional methods. While this approach may perform well with

large sample sizes, it has several important drawbacks. Notably, it fails to account

for uncertainty in prior parameter estimates, and it is not generally suited for

analysis of random eþ ects in non-normal models. On the other hand, these are

easily and rigorously dealt with within a Bayesian framework. This is because the

probability calculus required to compute the posterior distribution of interest is

the same no matter the context of the problem.

Adopting the random view of parameters has great promise, not only for conven-

tional modelling applications, but also for the development of models that are largely

intractable using conventional techniques, such as parameterization of correlation

among eþ ects, as mentioned in Section 6.2. We believe that an enhanced ability to

® t models where the secondary model structure is imposed on parameters is the

most important bene® t of adopting a Bayesian framework. The classical random

eþ ects models are only one relatively simple class of such models. One ® nal advan-

tage of Bayesian analysis that we did not discuss in detail, is that Bayesian inference

is not asymptotic, as are almost all likelihood-based procedures. Therefore, the

subjective determination of whether or not asymptotic results apply is unnecessary,

and honest accounting of uncertainty is not dependent on that determination.

While we feel that Bayesian analysis has important advantages in capture-

recapture settings, the old adage that there is no such thing as a free lunch certainly

applies. Importantly, even with recent advances made in Bayesian computation,

there are no general software packages available for modelling data from marked

animals that compare with those available for applying traditional methods (e.g.

MARK; White & Burnham, 1999). However, computation in speci® c situations is

easily accomplished using the popular program BUGS (Spiegelhalter et al., 1996).

Brooks et al. (2000b) provide the BUGS code required to ® t certain types of band-

recovery models. It is likely that many useful models may be ® t using this

software. Model assessment and selection are also important considerations in any

application. Classical methods such as AIC (e.g. Burnham & Anderson, 1998) are

simple to apply and widely understood among biologists, whereas most Bayesian

methods are not (on either count). Nevertheless, there are many Bayesian methods

that aid in such activities. Some of these, including DIC, and Bayesian p-values,

are relatively straightforward to implement within an MCMC framework, and

should facilitate adoption of Bayesian methods.
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