French Research Institute for Exploitation of the Sea

Ifremer

Mapping & modelling of winter ichthyoplankton distribution in the Channel & Southern North Sea Method of work & Preliminary results

Elvire Antajan, Caroline Warembourg, Stéphanie Lelièvre, Sandrine Vaz IFREMER, BP 699, 62200 Boulogne sur Mer, France

Study area - Annual IBTS survey

IBTS 2008

The Channel: 25-31 January Southern North Sea: 1-22 February

International Bottom Trawl Survey

- fish abundance & distribution

Ifremer

recruitment indices

New objectives since 2006

The actual fragility of some exploited fish stock leads to consider marine spawning grounds as "sensitive habitats".

Objectives

- Identify the location of ichthyoplankton (fish eggs and larvae) areas
- Characterize the winter spawning & nursery habitats

 Specify the importance of the environmental and trophic conditions on the use of these habitats

Expected results:

Mapping spatial distribution of ichthyoplankton abundance for the main species

 Modelling their preferred and optimal habitat to help decision making and planning of human activities (Protected Marine Areas)

- Specify importance of zooplankton assemblages in these habitats

Continuous Underway Fish Egg Sampler (CUFES)

The CUFES operated continuously during the survey :

- sequential sampling interval: 30 min
- 1070 samples collected

CUFES: a pumping device to collect pelagic eggs of fish from a moving vessel

- water pumped at 5 m depth
- collector mesh size: 500 μm

Methot Isaac Kidd net (MIK)

MIK samples were collected at night:

- fish eggs and zooplankton also are collected
- 130 samples collected

MIK: a specialized net for collecting fish larvae

- ring diameter of 2 meters
- black conical net of 13 meter long
- mesh size: 1.6 mm; last meter 500 μm

Bongo nets

Bongo: a two WP2 nets coupled of 200 and 500 μ m mesh size for collecting zooplankton

- ring diameter of 2 meters
- 148 samples collected

Taxonomic identification and counting

	CUFES	MIK	Bongo
	samples	samples	samples
Microscope	Eggs (species level)	Clupeidae larvae (herring, sprat, sardine)	
Image analysis (ZooScan)	Eggs (species level)	Fish eggs and larvae & macro-zooplancton	Meso-zooplankton & fish eggs

Sample processing with ZooScan

WP2

http://www.zooscan.com

MIK

Validation of classifier performances on an independent Test set

8

Automated recognition of fish eggs

% of a class correctly classified % of correctly classified taxa in a predicted class

Automated recognition of fish larvae and associated zooplankton

Geostatistics: abundance data mapping

Principle: spatial auto-correlation described by the variogram

Mapping of cod spawning areas

Gadus morhua winter 2006

Gadus morhua winter 2007

Ifremer

Value

Low:0

High : 2.16

Modelling ichthyoplankton habitat

Habitat: set of environmental factors defining the conditions of presence, survival, growth and reproduction of a given species

Modelling of Cod spawning habitat

Generalized Linear Model (GLM):

Average response of a species \rightarrow preferred habitat

Predicted preferred cod spawning habitat

Quantile Regression (QR): Maximum response of a species \rightarrow suitable habitat

Predicted optimal cod spawning habitat

spatial distribution observed (interpolated)

Thank You for your attention ©

