Spatial Calibration and Flight Validation*

David R. Hearn

ALI Technology Transfer Forum

17 October 2001

50 years

*This work was sponsored by NASA/Goddard Space Flight Center under U.S. Air Force Contract number F19628-00-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Tech_Trans-1 DRH 10/19/01

- Spatial calibration ground support equipment
- Focal plane integration
 - Initial focus setting
 - End-to-end imaging test
- Laboratory spatial calibrations
 - Modulation Transfer Function (MTF) measurement
 - Line-of-sight (LOS) measurement
- On-orbit performance assessment
 - MTF
 - LOS
- Summary

- Imaging Collimator
- Control and data acquisition system
 - ALI Calibration Control Node (ACCN)
 Windows NT platform
 LabVIEW control software
 - Sun/Storage Concepts data acquisition workstation (EGSE1)
 - Silicon Graphics R10000 unix workstation to process and store data (Performance Assessment Machine)
 Large amount of RAM, RAID disk array, DLT archive
 IDL and ENVI software for processing
- Positioning and support systems
 - Flotron fixture, under class 1,000 hood
 - Azimuth positioner (± 1 arc sec), inside vacuum chamber
- Thermal vacuum system

Imaging Collimator

MIT Lincoln Laboratory

Tech_Trans -4 DRH 10/19/01

Imaging Collimator Layout

Installation of ALI in Vacuum Chamber

MIT Lincoln Laboratory

Tech_Trans -6 DRH 10/19/01

- Spectral Transmission
- Optical Figure
- Optical power induced by temperature gradients
- Measurement and compensation of optical power

Spectral Transmission of the Window

Optical Figure of the Window

Transmitted wavefront error = 0.05 ~ 0.08 waves peak-to-valley = 0.005 ~ 0.012 waves rms (@ 633 nm)

MIT Lincoln Laboratory

Tech_Trans -9 DRH 10/19/01

Window Temperature Distribution, Cold Chamber

Optical Measurement of Window

Compensation of Power with the Collimator

• If the window power $(1/f_w)$ is known, the test target in the collimator can be offset from the infinity focus by an amount Δz to compensate for the power of the window.

$$\Delta z = \frac{f_c^2}{I - f_c - f_w} \approx -\frac{f_c^2}{f_w}$$

- f_c = focal length of the collimator
- I = separation of window and collimator primary mirror
- The <u>collimator/window system</u> is thus correctly collimated.

- Spatial calibration ground support equipment
- Focal plane integration
 - Initial focus setting
 - End-to-end imaging test
 - Laboratory spatial calibrations
 - Modulation Transfer Function (MTF) measurement
 - Line-of-sight (LOS) measurement
 - On-orbit performance assessment
 - MTF
 - LOS
 - Summary

Focal Plane Integration Setup

- Measure edge-spread function (ESF) and compute a figureof-merit, such as peak edge slope
- Shift focus position of knife edge in collimator, and repeat ESF measurement
- Plot figures-of-merit vs. focus shift from true collimation, Δz
- Fit to find Δz_{opt} for best focus
- Modify focal plane shim according to

$$\Delta Z_{shim} = \left(\frac{f_{ALI}}{f_{coll}}\right)^2 \Delta Z_{opt}$$

• Repeat process until focus error is insignificant

End-to-End Imaging Test

- Spatial calibration ground support equipment
- Focal plane integration
 - Initial focus setting
 - End-to-end imaging test
- Laboratory spatial calibrations
 - Modulation Transfer Function (MTF) measurement
 - Line-of-sight (LOS) measurement
 - On-orbit performance assessment
 - MTF
 - LOS
 - Summary

- Scan knife edge slowly across pixel to obtain edge-spread function (ESF)
 - 127 μ m/s at FPA, 226 frames/s, 40 μ m pixels
 - 22.6 samples/pixel
- Differentiate ESF to obtain line-spread function (LSF)
 - Shift pixel ESF's to a common origin before averaging
 - Make use of diffraction cutoff frequency to smooth data
- Fourier transform LSF to obtain modulation transfer function (MTF)
 - Imaginary component of MTF represents asymmetry of LSF
 - Measured MTF is a one-dimensional slice through the twodimensional MTF
 - Horizontal and vertical knife edge scans were performed

Cross-track scan

Band 4, cross-track

- ALI wavefront error (WFE) measured by SSG with a LUPI, at 11 positions around focal plane
- WFE transmitted as a set of Zernike polynomial coefficients
- WFE expanded from 34 coefficients, with adjustable focus term
- Optical point-spread function (PSF) computed from WFE expansion, via Fourier Transform
- Optical MTF computed from PSF, via Fourier Transform
- Pixel MTF x optical MTF = static system MTF

Wavefront Error

MIT Lincoln Laboratory

Tech_Trans -25 DRH 10/19/01

Point-Spread Function, with Focus Error

Optical Transfer Function

MIT Lincoln Laboratory

Tech_Trans -27 DRH 10/19/01

System MTF, Pan Band

Pan MTF, Measured & Modeled

MIT Lincoln Laboratory

Tech_Trans -29 DRH 10/19/01

- Relative lines-of-sight fitted to static images of Ronchi ruling
 - LOS calibration file constructed from optical distortion and SCA position parameters
- Parameters:
 - Layout of Sensor Chip Assemblies (SCA's) FIXED
 - SCA positions (24)
 - Optical distortion cubic polynomial coefficients (32)
 - Effective focal length
- LOS calibration file
 - Computed from design and fitted parameters
 - Effective focal length, in mm
 - Apparent position of every detector on focal plane, in mm
- Angles between telescope axes and ALI reference cube estimated from theodolite sightings

Full 15° x 1.6° field of view:

Cubic polynomial fit: rms residual = 8.6 µm

Distortion and Detector Position Errors

Ruling frequency = 2.0 cycles/mm

Bullseye marks axis of collimator

Measured & Modeled Ronchi Image

MIT Lincoln Laboratory

Tech_Trans -34 DRH 10/19/01

Theodolite Measurement Setup

- Spatial calibration ground support equipment
- Focal plane integration
 - Initial focus setting
 - End-to-end imaging test
- Laboratory spatial calibrations
 - Modulation Transfer Function (MTF) measurement
 - Line-of-sight (LOS) measurement
- On-orbit performance assessment
 - MTF
 - LOS
 - Summary

- Read Level 1R HDF files (one per SCA)
- Restore original sample timing (odd/even pixel alignment)
- Assume image moves across focal plane at constant velocity
- Read LOS calibration file
- Estimate image speed and yaw from overlapping Pan pixels
- Resample detector readings in the in-track (X) direction
- Resample in the cross-track (Y) direction
- Resampled image is system corrected, not ground referenced
- Write Level 1G HDF files (one per SCA)
- Write JPEG files of full 3-color images

Tech_Trans -38 DRH 10/19/01

Lunar Calibration Scan

Lunar Limb Profile

Panchromatic Band

New York City, March 20, 2001

Bands 3, 2, 1

MIT Lincoln Laboratory

Tech_Trans -41 DRH 10/19/01

Bronx Whitestone Bridge

1998 photograph

ALI Pan image

Width = 23.5 m

Vega Image, SCA 4 PSF Fit

MIT Lincoln Laboratory

Tech_Trans -44 DRH 10/19/01

- Equipment and procedures were developed to perform laboratory system spatial calibrations of the ALI
 - Modulation Transfer Function
 - Detector Lines-of-Sight
- ALI spatial calibration files represent parameters fitted to both subsystem and full system measurements
- On-orbit spatial performance appears to validate the system design
 - MTF is at least as good as estimated before flight
 - No LOS errors are apparent from inspection of images
 - On-orbit spatial performance is in process of refinement
 Focus parameters
 Sub-pixel LOS errors