



## AMSD reaction structure

## cryo deformation test

Technology Days at NASA/MSFC May 22-23, 2002



Ron Eng NASA/MSFC 256-544-3603 ron.eng@msfc.nasa.gov







**AMSD** reaction structures

**Test objective** 

Definitions

**Test methods** 

Test plan

Photos

**Test results** 

Conclusions



#### **AMSD** reaction structures



|                                                            | Ball              | Goodrich            | Kodak            |  |  |  |  |
|------------------------------------------------------------|-------------------|---------------------|------------------|--|--|--|--|
| Spec: Out-of-plane<br>deformation for entire<br>temp range | < +/– 100 microns | < 50 microns rms    | < +/- 25 microns |  |  |  |  |
| Number of actuators                                        | 4                 | 37                  | 16               |  |  |  |  |
| total travel                                               | 10 micron fine    | 13 old, 87 microns  | +/- 1.25mm       |  |  |  |  |
|                                                            | 25 mm coarse      | 24 new, 100 microns |                  |  |  |  |  |
| Manufacturer                                               | COI               | ΑΤΚ                 | COI              |  |  |  |  |
| Material                                                   | Gr/Ep (M55J)      | Gr/Ep (M55J)        | Gr/Ep (M55J)     |  |  |  |  |
|                                                            |                   |                     |                  |  |  |  |  |



**Test objective** 



Measure out-of-plane and in-plane deformation from 290 to 25 and back to 290 deg. Kelvin.

Verify requirements and finite element model.

Unexpected reaction structure deformation could lead to lack of figure correctability (actuator stroke exceeded), actuator failure (side load exceeded), excessive stress in mirror, etc.

Reduce likelihood of surprises during AMSD cryo test.

Provide useful data to aid in separating mirror deformations from actuator, reaction structure, and test stand deformations.

Gain confidence in mission success.



### Definitions



- Out-of-plane distortion: reaction structure facesheet deforms with motion normal to optical axis; causing astigmatic distortion, using up actuator travel, and limiting ROC and figure corrections by the actuators.
- In-plane distortion: arms of the RS twisted or deformed laterally; inducing side load to actuators.





#### **Test methods**



|                         | Kaman gages                                                                                      | Theodolite                                            | Absolute distance<br>meter (ADM)                                      | Distance<br>measurement<br>interferometer<br>(DMI)                               |
|-------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Description             | Cryo compatible<br>Eddy current<br>sensors                                                       | e.g. T2                                               | Absolute distance;<br>1.5 to 50 meters                                | Relative distance                                                                |
| Accuracy                | 0.1 micron                                                                                       | 0.5 arc sec                                           | +/- 25 microns                                                        | 10 nm resolution,<br>5 nm possible                                               |
| Special<br>requirements | A low CTE<br>reference, 1.3 m<br>zerodur to mount<br>sensors for out of<br>plane<br>measurements | Targets mounted<br>to RS for in plane<br>measurements | Corner cubes<br>mounted to the RS<br>for out of plane<br>measurements | Cryo<br>interferometers<br>and corner cubes,<br>house laser head<br>inside a can |
| PRO                     | Cryo compatible,<br>sub micron<br>accuracy                                                       | Low cost                                              | Minimal cost                                                          | nm accuracy                                                                      |
| CON                     | 1.3 m zerodur bar<br>to mount sensors,<br>\$50000, 14 weeks                                      | Limited<br>illumination inside<br>the chamber         | New instrument                                                        | Retrofit off-the-<br>shelf items for<br>cryo; \$50000 +<br>retrofit cost         |





- Measure out-of-plane deformation with ADM.
- Measure in-plane deformation with theodolite.
- Cryo compatible corner cubes.
- Attach 10 corner cubes onto reaction structure.
- Attach temperature diode next to corner cube.
- Mount reaction structure onto test stand.
- Mount ADM and theodolite onto hexapod.
- Hexapod: 6 DOF stage with 1 micron resolution for x,y;
  0.5 for z; 1 arc sec for angular, 2x for repeatability.



**Goodrich reaction structure (front)** 







# Corner cube and temperature diode mounted onto invar disc (10 total)







#### **Corner cube installation**







## Installing Ti flexures







### Will it fit onto test stand, and will it survive 25 deg K.?







## everything fits!







#### **ADM** and theodolite









#### Goodrich AMSD reaction structure cryo deformation test



- 4/17 Install reaction structure onto chamber test stand.
- 4/19 Alignment and measurements in ambient condition. Chamber pumpdown starts. ADM measurements with chamber in partial vacuum.
- 4/20-21 Reaction structure in 290 degrees Kelvin / vacuum for Gr-Ep desorption.
- 4/22 290 deg. / vacuum ADM and theodolite measurements. Cooldown starts. 270 deg. ADM measurements.
- 4/23 162 and 127 deg. ADM measurements.
- 4/24 100 and 81 deg. ADM measurements.
- 4/25 44 deg. ADM measurements with 20 deg. gradient across reaction structure.
- 4/26 18 deg. ADM and theodolite measurements. Warmup to 290 deg. starts for 2<sup>nd</sup> cryo cycle.
- 4/27-28 Warmup to 290 deg.
- 4/29 ADM/theodolite measurement for 290 deg. Cooldown starts for 2<sup>nd</sup> cryo cycle. 270 deg. ADM measurements.
- 4/30 163 and 129 deg. ADM measurements.
- 5/1 67 and 46 deg. ADM measurements.
- 5/2 No measurements, 30 deg. with >12 deg. gradient across reaction structure.
- 5/3 25 deg. ADM/theodolite measurements. Warmup to 290 deg. starts. 40 deg. ADM measurements during warmup.
- 5/4-5/5 Warmup to 290 deg. Theodolite and ADM measurements. Backfill chamber.
- 5/6 Ambient temp/pressure ADM/theodolite measurements.



#### Location of corner cubes viewed from front of reaction structure







#### Preliminary data: deformation in microns (piston removed) Cryo cycle 1



|                  | 4/22am             | 4/22pm      | 4/23am      | 4/23pm      | 4/24am     | 4/24pm     | 4/25am     | 4/26am     | 4/29am       |  |
|------------------|--------------------|-------------|-------------|-------------|------------|------------|------------|------------|--------------|--|
| Temp<br>(Kelvin) | 290-<br>part. vac. | 270-<br>290 | 162-<br>290 | 127-<br>290 | 99-<br>290 | 81-<br>290 | 44-<br>290 | 18-<br>290 | 290a-<br>290 |  |
| Pressure         | 10e-5              | 10e-5       | 10e-5       | 10e-5       | 10e-5      | 10e-5      | 10e-5      | 10e-5      | 10e-5        |  |
| cc1              | 0                  | 26          | -96         | -156        | -172       | -221       | -243       | -249       | -33          |  |
| 2                | -1                 | 6           | -21         | 32          | 2          | -34        | -19        | -37        | -51          |  |
| 3                | -9                 | 4           | 158         | 192         | 191        | 185        | 234        | 221        | -22          |  |
| 4                | -12                | -1          | 212         | 248         | 237        | 252        | 294        | 308        | -47          |  |
| 5                | 13                 | 2           | 23          | 34          | 20         | 20         | 31         | 34         | 29           |  |
| 6                | 0                  | 0           | 0           | 0           | 0          | 0          | 0          | 0          | 0            |  |
| 7                | -5                 | 42          | 102         | 110         | 103        | 106        | 123        | 139        | 98           |  |
| 8                | 6                  | 15          | 54          | 66          | 60         | 57         | 66         | 77         | 53           |  |
| 9                | -2                 | 49          | -67         | -94         | -2373      | -141       | -162       | -152       | 42           |  |
| 10               | 2                  | 30          | -55         | -84         | -86        | -119       | -135       | -132       | 14           |  |
| U                | 0                  | 123         | -66         | -155        |            |            | - 483      | -501       | -54          |  |
| L                | 0                  | 0           | 47          | -16         | -73        | -99        | -112       | -139       | 71           |  |



#### Preliminary data: deformation in microns (piston removed) Cryo cycle 2



|                              | 4/29am        | 4/29pm                | 4/30am                | 4/30pm                | 5/1am                | 5/1pm                | 5/3am                | 5/3am                | 5/5am                 | 5/5am                  | 5/6am               |
|------------------------------|---------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------|-----------------------|------------------------|---------------------|
| Temp<br>(Kelvin)<br>Pressure | 290a<br>10e-5 | 270-<br>290a<br>10e-5 | 163-<br>290a<br>10e-5 | 129-<br>290a<br>10e-5 | 67-<br>290a<br>10e-5 | 46-<br>290a<br>10e-5 | 25-<br>290a<br>10e-5 | 40-<br>290a<br>10e-4 | 291-<br>290a<br>10e-6 | 291a-<br>290a<br>10e-6 | 291-<br>290a<br>751 |
| cc1                          | -             | 50                    | -160                  | -166                  | -183                 | -236                 | -233                 | -212                 | 21                    | 6                      | -13                 |
| 2                            | -             | 48                    | -42                   | 0                     | 21                   | 7                    | -10                  | 13                   | 37                    | 26                     | -11                 |
| 3                            | -             | 19                    | 134                   | 201                   | 240                  | 251                  | 251                  | 288                  | 17                    | 1                      | 5                   |
| 4                            | -             | -10                   | 204                   | 254                   | 269                  | 281                  | 310                  | 333                  | -17                   | -31                    | 20                  |
| 5                            | -             | -2                    | 21                    | 32                    | 15                   | 11                   | 26                   | 24                   | -12                   | -23                    | 5                   |
| 6                            | -             | 0                     | 0                     | 0                     | 0                    | 0                    | 0                    | 0                    | 0                     | 0                      | 0                   |
| 7                            | -             | -17                   | 81                    | 84                    | 68                   | 50                   | 86                   | 93                   | -33                   | -43                    | 19                  |
| 8                            | -             | -16                   | 50                    | 51                    | 43                   | 27                   | 52                   | 58                   | -24                   | -34                    | 11                  |
| 9                            | -             | 6                     | -90                   | -114                  | -147                 | -200                 | -175                 | -148                 | -22                   | -36                    | -3                  |
| 10                           | -             | 31                    | -83                   | -83                   | -98                  | -151                 | -142                 | -102                 | 4                     | -11                    | -6                  |
| U                            | -             | 133                   | -27                   | -127                  | -304                 | -452                 | -471                 | -450                 | -1                    | -6                     | 0                   |
| L                            | -             | -7                    | -7                    | -27                   | -98                  | -117                 | -146                 | -98                  | -36                   | -54                    | 32                  |



#### Preliminary data: deformation in microns for cryo cycle 1 & 2



|      | 4/22          | 4/22        | 4/23        | 4/23        | 4/24           | 4/24       | 4/25       | 4/26       | 4/29         | 4/29         | 4/30         | 4/30         | 5/1         | 5/1         | 5/3         | 5/3         | 5/5          | 5/5           | Nas          |
|------|---------------|-------------|-------------|-------------|----------------|------------|------------|------------|--------------|--------------|--------------|--------------|-------------|-------------|-------------|-------------|--------------|---------------|--------------|
|      | am            | pm          | am          | pm          | am             | pm         | am         | am         | am           | pm           | am           | pm           | am          | pm          | am          | am          | am           | am            | am           |
| Temp | 290-<br>p.vac | 270-<br>290 | 162-<br>290 | 127-<br>290 | 99-<br>290     | 81-<br>290 | 44-<br>290 | 18-<br>290 | 290a-<br>290 | 270-<br>290a | 163-<br>290a | 129-<br>290a | 67-<br>290a | 46-<br>290a | 25-<br>290a | 40-<br>290a | 291-<br>290a | 291a-<br>290a | 291-<br>290a |
| Pres | 10e-5         | 10e-5       | 10e-5       | 10e-5       | 10e-5          | 10e-5      | 10e-5      | 10e-5      | 10e-5        | 10e-5        | 10e-5        | 10e-5        | 10e-5       | 10e-5       | 10e-5       | 10e-4       | 10e-6        | 10e-6         | 751 T        |
| cc1  | 0             | 26          | -96         | -156        | -172           | -221       | -243       | -249       | -133         | 50           | -160         | -166         | -183        | -236        | -233        | -212        | 21           | 6             | -13          |
| 2    | -1            | 6           | -21         | 32          | 2              | -34        | -19        | -37        | -51          | 48           | -42          | 0            | 21          | 7           | -10         | 13          | 37           | 26            | -11          |
| 3    | -9            | 4           | 158         | 192         | 191            | 185        | 234        | 221        | -22          | 19           | 134          | 201          | 240         | 251         | 251         | 288         | 17           | 1             | 5            |
| 4    | -12           | -1          | 212         | 248         | 237            | 252        | 294        | 308        | 47           | -10          | 204          | 254          | 269         | 281         | 310         | 333         | -17          | -31           | 20           |
| 5    | 13            | 2           | 23          | 34          | 20             | 20         | 31         | 34         | 29           | -2           | 21           | 32           | 15          | 11          | 26          | 24          | -12          | -23           | 5            |
| 6    | 0             | 0           | 0           | 0           | 0              | 0          | 0          | 0          | 0            | 0            | 0            | 0            | 0           | 0           | 0           | 0           | 0            | 0             | 0            |
| 7    | -5            | 42          | 102         | 110         | 103            | 106        | 123        | 139        | 98           | -17          | 81           | 84           | 68          | 50          | 86          | 93          | -33          | -43           | 19           |
| 8    | 6             | 15          | 54          | 66          | 60             | 57         | 66         | 77         | 53           | -16          | 50           | 51           | 43          | 27          | 52          | 58          | -24          | -34           | 11           |
| 9    | -2            | 49          | -67         | -94         | -2373<br>error | -141       | -162       | -152       | 42           | 6            | -90          | -114         | -147        | -200        | -175        | -148        | -22          | -36           | -3           |
| 10   | 2             | 30          | -55         | -84         | -86            | -119       | -135       | -132       | 14           | 31           | -83          | -83          | -98         | -151        | -142        | -102        | 4            | -11           | -6           |
| U    | 0             | 123         | -66         | -155        |                |            | - 483      | -501       | -54          | 133          | -27          | -127         | -304        | -452        | -471        | -450        | -1           | -6            | 0            |
| L    | 0             | 0           | 47          | -16         | -73            | -99        | -112       | -139       | 71           | -7           | -7           | -27          | -98         | -117        | -146        | -98         | -36          | -54           | 32           |

19



#### Preliminary data: deformation in microns for cryo cycle 1 & 2 (piston + tilt removed)



|      | 4/22  | 4/22  | 4/23  | 4/23  | 4/24  | 4/24  | 4/25  | 4/26  | 4/29  | 4/29  | 4/30  | 4/30  | 5/1  | 5/1   | 5/3   | 5/3   | 5/5   | 5/5       | 5/6   |
|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-----------|-------|
|      | am    | pm    | am    | pm    | am    | pm    | am    | am    | am    | pm    | am    | pm    | am   | pm    | am    | am    | am    | am        | am    |
| Temp | 290-  | 270-  | 162-  | 127-  | 99-   | 81-   | 44-   | 18-   | 290a- | 270-  | 163-  | 129-  | 67-  | 46-   | 25-   | 40-   | 291-  | 291a      | 291-  |
| _    | p.vac | 290   | 290   | 290   | 290   | 290   | 290   | 290   | 290   | 290a  | 290a  | 290a  | 290a | 290a  | 290a  | 290a  | 290a  | -<br>200a | 290a  |
| Pres | 10e-5 | 10e5 | 10e-5 | 10e-5 | 10e-4 | 10e-6 | 100       | 751 T |
|      |       |       |       |       |       |       |       |       |       |       |       |       |      |       |       |       |       | 6         |       |
| cc1  | -4    | 9     | 60    | 33    | 22    | 8     | 19    | 21    | -84   | 15    | 16    | 32    | 31   | 17    | 33    | 42    | 1     | -12       | 4     |
| 2    | 3     | 13    | 28    | 73    | 45    | 29    | 44    | 44    | 25    | 12    | 19    | 42    | 42   | 28    | 39    | 51    | 0     | -12       | 3     |
| 3    | -1    | 29    | 51    | 44    | 40    | 19    | 35    | 32    | 5     | 18    | 19    | 45    | 48   | 20    | 33    | 71    | 0     | -19       | 1     |
| 4    | -8    | 16    | 56    | 59    | 43    | 23    | 32    | 38    | -2    | 25    | 28    | 56    | 55   | 28    | 44    | 79    | 3     | -13       | 3     |
| 5    | 12    | -1    | 7     | 20    | 6     | -1    | 10    | 7     | 4     | 10    | 1     | 18    | 8    | 4     | 10    | 11    | 0     | -10       | 0     |
| 6    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0     | 0     | 0     | 0     | 0         | 0     |
| 7    | -9    | 35    | 53    | 69    | 60    | 43    | 60    | 58    | 22    | 19    | 20    | 42    | 47   | 29    | 37    | 55    | 4     | -5        | 5     |
| 8    | 4     | 10    | 21    | 39    | 31    | 15    | 24    | 23    | 3     | 8     | 9     | 23    | 29   | 13    | 19    | 33    | 1     | -9        | 2     |
| 9    | -10   | 24    | 40    | 54    | 37    | 25    | 37    | 37    | 15    | 7     | 25    | 42    | 45   | 31    | 43    | 69    | -5    | -16       | 1     |
| 10   | -2    | 16    | 33    | 28    | 29    | 13    | 19    | 21    | 22    | 20    | 14    | 35    | 37   | 10    | 19    | 55    | 3     | -10       | 1     |
| rms  | 7     | 19    | 40    | 47    | 36    | 22    | 32    | 33    | 30    | 15    | 18    | 37    | 38   | 20    | 31    | 53    | 2     | 12        | 3     |



NGST



NGST













-1.9193

-0.3606







## Conclusions



Goodrich's AMSD reaction structure met out-of-plane deformation specification.

- Vendor specification: out-of-plane deformation < 50 microns rms for entire temperature range.
- Gr-Ep reaction structure desorption at ambient temperature and vacuum showed little deformation.
- Reaction structure deformation seems repeatable for both cryo cycles.
- 10 corner cubes mounted to the reaction structure performed well in cryo. Before and after cryo cycles Zygo measurements of the corner cubes showed small permanent changes.
- ADM measurements appear to be accurate and repeatable.



Acknowledgements



Mark Baker, Lisa Blackwell, Barry Hale, Harlan Haight, Jim Mankoski, Jeff McCracken, Harry Rutledge, Richard Siler, Martin Smithers, Gary Thornton, John Tucker, Ernie Wright.

Tom Alesi, Mark Furber, Enrique Garcia of Goodrich.