# % Beta-cell model with I_crac. % for bi-phasic, start with cer = 0.5 and gkatp=5000; then step gkatp to 150. % for muscarinic bursting, set ip3=0.6 (be patient - the pattern develops % slowly) % for chaotic muscarinic bursting, set ip3=0.8 % Ref: Bertram et al., Biophys. J. 68:2323-2332 1995 % % jm = 1 - j % init v=-61,n=0.0005,jm=0.12,c=0.11,cer=9 params gi=810.0,gs=510.0,gk=3900.0,gcrac=75.0,gkca=1200.0,gkatp=150.0 params gleak=0.0,vca=100.0,vk=-70.0 params ip3=0.0,gamma=.000003606,cm=6157.521,lambda=1.85,f=0.01,kca=0.07 params lambdaer=250.0,perl=0.02,sigmaer=5.0,verp=0.24,kerp=0.1,nerp=2.0 params caerbar=3,vcrac=0.0,kdkca=0.55,hil=5 params dact=0.1,dip3=0.2,dinh=0.4 % current functions sinf = 1.0/(1.0+exp((-16.0-v)/10.0)) minf = 1.0/(1.0+exp((-20.0-v)/7.5)) ninf = 1.0/(1.0+exp((-15.0-v)/6.0)) # jminf = 1.0 - 1.0/(1.0+exp((v+53.0)/2.0)) jminf = 1.0/(1.0+exp(-(v+53.0)/2.0)) cinf = 1.0/(1.0+exp(cer-caerbar)) taun = 9.09/(1.0+exp((v+15.0)/6.0)) tauj = 50000.0/(exp((v+53.0)/4.0)+exp((-53.0-v)/4.0))+1500.0 % currents iin = gi*minf*(v-vca) is = gs*sinf*(1.0-jm)*(v-vca) icrac = gcrac*cinf*(v-vcrac) ik = gk*n*(v-vk) ikatp = gkatp*(v-vk) ica = iin+is ileak = gleak*(v-vcrac) ikca = gkca/(1 + (kdkca/c)^hil)*(v-vk) % ER functions ainf = 1/(1 + dact/c) binf = ip3/(ip3 + dip3) hinfer = 1/(1 + c/dinh) # Note error in paper: exponent 3 is missing o = (ainf*binf*hinfer)^3 % Ca fluxes jerp = verp/(1 + (kerp/c)^nerp) jmemtot = -f*(gamma*ica + kca*c) jerleak = perl*(cer-c) jerip3 = o*(cer-c) jertot = jerleak + jerip3 - jerp # ODEs variables v' = -(ica + icrac + ik + ikatp + ileak + ikca)/cm n' = lambda*(ninf-n)/taun jm' = (jminf-jm)/tauj c' = (jertot/lambdaer) + jmemtot cer' = -jertot/(lambdaer*sigmaer) @ meth=gear, dt=10.0, total=20000, maxstor=20000 @ xp=t, yp=v @ xlo=0, xhi=20000, ylo=-70, yhi=-10 done