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ABSTRACT

Modeling extended lactations for the US Holsteins is
useful because a majority (>55%) of the cows in the
present population produce lactations longer than 305
d. In this study, 9 empirical and mechanistic models
were compared for their suitability for modeling 305-d
and 999-d lactations of US Holsteins. A pooled data
set of 4,266,597 test-day yields from 427,657 (305-d
complete) lactation records from the AIPL-USDA data-
base was used for model fitting. The empirical models
included Wood (WD), Wilmink (WIL), Rook (RK), mono-
phasic (MONO), diphasic (DIPH), and lactation persis-
tency (LPM) functions; Dijkstra (DJ), Pollott (POL), and
new-multiphasic (MULT) models comprised the mecha-
nistic counterparts. Each model was separately tested
on 305-d (>280 days in milk) and 999-d (>800 days in
milk) lactations for cows in first parity and those in
third and greater parities. All models were found to
produce a significant fit for all 4 scenarios (2 parity
groups and 2 lactation lengths). However, the resulting
parameter estimates for the 4 scenarios were different.
All models except MONO, DIPH, and LPM yielded re-
siduals with absolute values smaller than 2 kg for the
entire period of the 305-d lactations. For the extended
lactations, the prediction errors were larger. However,
the RK, DJ, POL, and MULT models were able to pre-
dict daily yield within a ±3 kg range for the entire 999-
d period. The POL and MULT models (having 6 and
12 parameters, respectively) produced the lowest mean
square error and Bayesian information criteria values,
although the differences from the other models were
small. Conversely, POL and MULT were often associ-
ated with poor convergence and highly correlated, unre-
liable, or biologically atypical parameter estimates.
Considering the computational problems of large mech-
anistic models and the relative predictive ability of the
other models, smaller models such as RK, DJ, and WD
were recommended as sufficient for modeling extended
lactations unless mechanistic details on the extended
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curves are needed. The recommended models were also
satisfactory in describing fat and protein yields of 305-
d and 999-d lactations of all parities.
Key words: dairy cow, Holsteins, lactation curve,
modeling

INTRODUCTION

Lactation curves are a valuable tool in designing suit-
able breeding and management strategies for cattle
(Papajcsik and Bodero, 1988; Beever et al., 1991; Pieter-
sma et al., 2001) as well as other species (Gipson and
Grossman, 1990; Ruiz et al., 2000). Population- and
time-specific lactation models help genetic selection
(Dekkers et al., 1996; VanRaden et al., 2006), predict
yield from incomplete data, analyze yield responses to
management and environmental changes, diagnose
problems, and identify opportunities for increased net
merit effectively (Scott et al., 1996; Pietersma et al.,
2001; Val-Arreola et al., 2004).

Presently in a number of countries, many cows have
lactations extended beyond 305 d (Vargas et al., 2000).
Lactation length has increased by about 30 d over the
last decade in some populations (Gonzalez-Recio et al.,
2004). Recent studies show that over 55% of US Hol-
stein cows record lactations longer than 305 d (Tsuruta
et al., 2005; VanRaden et al., 2006). The undesirable
trend that exists with loss of fertility and reproductive
failures in dairy cattle (Butler, 1998; Silvia, 2003) is a
well-known contributor to extended lactations. How-
ever, extended lactations could be a part of manage-
ment strategy (Tarazon-Herrera et al., 2000; Gonzalez-
Recio et al., 2006). Almost all validations and uses of
the lactation models reported in literature have been
for 305-d or shorter lactations, with rare exceptions
(Vargas et al., 2000; Grossman and Koops, 2003) in
which lactations extending up to 18 mo have been exam-
ined. Papajcsik and Bodero (1988) cited a list of 20
different empirical formulas developed since 1923. The
incomplete gamma function (WD) proposed by Wood
(1967) was the earliest popular model conceived for
the whole lactation, although inverse polynomial (IP;
Nelder, 1966) is still a favorite choice for modeling (Ba-
tra, 1986; Scott et al., 1996). Subsequent attempts to
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Table 1. Number of records, average 15th day and peak milk yields (kg), and peak day in milk for 305-d
(>280 DIM) and 999-d (>800 DIM) lactations for first and third and greater parities

Lactation Lactation Test-day d 15 Peak Peak
Parity length (d) records, n records, n yield yield DIM

First 305 235,241 2,128,015 26.4 33.1 94
999 1,692 38,495 25.4 35.0 98

Third and greater 305 237,416 2,138,582 38.0 44.3 51
999 1,012 22,487 35.2 45.6 70

improve WD with respect to its functional form, mathe-
matical properties, and forecasting ability were re-
viewed by Beever et al. (1991). Wilmink’s exponential
(WIL) function (Wilmink, 1987) has an advantage over
WD and IP because the initial yield is not forced to
zero. Rook et al. (1993) showed that their Mitscherich
× exponential and Michaelis-Menten × exponential
functions, which described the lactation curve as a prod-
uct of growth and death processes of mammary cells,
fit better than the WD model. Val-Arreola et al. (2004)
found that the Michaelis-Menten × exponential func-
tion (RK) is the most superior model of Rook et al.
(1993). Grossman and Koops (1988) showed that both
WD and IP overpredict yield during early lactation and
underpredict the peak, and produce autocorrelated re-
siduals. Alternatively, they proposed a multiphasic
curve using sums of logistic functions to overcome those
problems. Their monophasic (MONO) and diphasic
(DIPH) variants (with 3 and 6 parameters, respec-
tively) were supposed to be the optimal versions (Gipson
and Grossman, 1990). However, many have criticized
the multiphasic model for its lack of a biological basis
(Beever et al., 1991; Rook et al., 1993). Grossman et al.
(1999) also proposed a model to measure persistency

Figure 1. Observed daily mean yields from 305-d and 999-d lacta-
tions of cows in the 2 parity groups. First-305-d and first-999-d =
first-parity cows with >280 DIM and >800 DIM, respectively; third-
305-d and third-999-d = cows in third and greater parities with >280
DIM and >800 DIM, respectively.
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of lactation. The proposed lactation persistency model
(LPM) assumes a constant yield in mid lactation, and
the length of this period is the measure of lactation per-
sistency.

Alternatively, several mechanistic models have been
developed to simulate the metabolic response of the
whole animal with each term of the model having a
biological interpretation (Beever et al., 1991). The ini-
tial mechanistic model of Neal and Thornley (1983) was
based on mammary cell differentiation and pro-
grammed cell death (apoptosis), but had limited practi-
cal use due to nonavailability of information on inputs
required. Subsequently, Dijkstra et al. (1997) developed
a 4-parameter model that describes the mammary
growth pattern (cell proliferation and apoptosis) of
mammals during pregnancy and lactation. The Dijkstra
model (DJ) was found to fit well for lactations of dairy
cows (Dijkstra et al., 1997; Val-Arreola et al., 2004).
Pollott (2000) proposed a model that mimics 3 processes
including mammary cell differentiation, apoptosis, and
milk secretion rate per cell. The basic Pollott model
(POL) contained 6 parameters, with an additional pa-
rameter for each new factor (secondary growth, preg-
nancy, etc.). An alternative mechanistic version of the
multiphasic model was proposed by Grossman and
Koops (2003). This new multiphasic model (MULT) con-
tained 13 parameters that could be interpreted with
respect to the shape of the curve. Such large models
are expected to have better predictive ability but could
be computationally demanding.

Alternative models have been compared with respect
to their ability to fit individual lactation curves of vari-
ous shapes (Macciotta et al., 2005; Silvestre et al., 2006).
Alternatively, the models have been used to describe
average lactation curves of various groups such as pari-
ties and lactation lengths (Tozer and Huffaker, 1999;
Vargas et al., 2000; VanRaden et al., 2006). Group-
average lactation curves are useful in design of optimi-
zation models, simulations, reproductive and manage-
ment strategies (Freeze and Richards, 1992; Vargas et
al., 2000; Pietersma et al., 2001), and breeding (VanRa-
den et al., 2006).

Until recently, lack of sufficiently large datasets on
extended lactations has been a hindrance to modeling
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Table 2. Lactation formulas used to model 305-d and extended lactations

Lactation model Code Functional form1 Reference

Wood WD Yt = a tbe−ct Wood (1967)
Wilmink WIL Yt = a − bt − ce−dt Wilmink (1987)
Rook RK Yt = a{1/[1 + b/(c + t)]}e−dt Rook et al. (1993)
Dijkstra DJ Yt = a exp[b(1 − e−ct)/c − dt] Dijkstra et al. (1997)
Pollott POL Yt = a{1/[1 + ((1 − b)/b) e−ct] Pollott (2000)

− 1/[1 + ((1 − d)/d) e−gt]}(1 − e−ht)
Grossman models
Monophasic MONO Yt = ab[1 − tanh2(b(t − c))] Grossman and Koops (1988)
Diphasic DIPH Yt = ab[1 − tanh2(b(t − c))] Grossman and Koops (1988)

+ dg[1 − tanh2(g(t − h))]
New multiphasic MULT Yt = a{1/[1 + e−(t − c)/b] Grossman and Koops (2003)

− p/[1 + (0.5e−(t − g)/d)2] − q/[1 + e−(t − i)/h]
− (1 − p − q)/[1 + (0.5e−(t − k)/j)2]}

Persistency LPM Yt = (a/b)(t − Ln[(et+ eb)/(1 + eb)]) Grossman et al. (1999)
− c Ln[(et + e(b + d))/(1 + e(b + d))]

1Yt is milk yield (kg/d), t is the time of lactation (d), and a, b, c, d, g, h, i, j and k are parameters that
define the individual curves.

extended lactations. The expansions made in 1997 in
the AIPL-USDA database to store lactation records up
to 999 d in length now allow extensive examination of
the characteristics of lactation curves of US Holsteins
and other breeds beyond 305 DIM. Subsequently, the
productive life trait has been redefined in the US ge-
netic evaluations to give credit to lactations extending
up to 999 d (VanRaden et al., 2006). At present, the
credits are based on a modified version of the DJ model
fitted to average 999-d/extended lactation curves of
first, second, and greater parity groups.

The objective of this study was to compare the widely
used empirical and mechanistic formulas with respect
to their suitability for modeling the average (305-d) and
extended (999-d) lactation curves of different parities
of the present US Holstein population. The average
lactation curves, representing the 305-d and 999-d lac-
tations of first vs. third and greater parities, were sepa-
rately modeled.

MATERIALS AND METHODS

Data Sources

Test-day data of 152,734 Holstein cows with calvings
between 1997 and 2003 were obtained from the AIPL-
USDA database. Test days varied from 7 to 999 d in
lactation with about 0.1% of cows having 999 DIM (max-
imum 35 test-days per cow). The first test day was
required to be ≤60 DIM. Only cows that had at least
280 and 800 DIM in a lactation were considered for
the 305-d and 999-d subsets (lactation length groups),
respectively. After edits there were 4,266,597 test-day
records of 427,657 complete 305-d lactations (Table 1).
Records of first parity and third and greater parities
were used separately to fit the alternative models be-
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cause those 2 parity groups showed 2 very different
shapes of lactation curve (Figure 1). The second-parity
curve had an intermediate shape. Thus, comparisons
of models of second-parity data were not included in
this article. Each lactation model was fitted once to test-
day data of all cows within a parity–lactation length
subgroup to obtain a single set of parameter estimates
for the average lactation curve of each of the 4 sub-
groups.

Selection of Lactation Models

A wide range of empirical and mechanistic models
available in literature were initially tested on mean
yields (kg/d) of each 30-d interval of the lactations, and
9 of the best-fit models (WD, WIL, RK, DJ, POL, MONO,
DIPH, MULT, and LPM) were selected for further anal-
ysis (Table 2), based on lowest mean square error
(MSE). The IP and Cobby and Le Du (1978) functions
did not provide low MSE values consistently for all
subgroups and were excluded from further consider-
ation. Legendre polynomials are often used in random
regression models to model individual lactation curves
(Schaeffer, 2004). However, the orthogonal Legendre
polynomials of degree 2, 3, and 4, when tested in this
study, did not fit the extended lactations as closely as
the nonlinear functions. Individual test-day yields of
the 305-d and 999-d subsets were fitted for the selected
models within parity using a nonlinear regression pro-
cedure (PROC NLIN; SAS Institute, 2000). Initial
search grid was specified covering the parameter
bounds of each model. Convergence criterion was de-
fined as the error sum of squares between successive
iterations and was set to 10−6. The Marquardt method
was used as the primary iteration method, but other
available methods were also used with various step



MODELING EXTENDED LACTATIONS OF HOLSTEINS 3927

sizes (SSIZE = halve, golden, and cubic) when models
failed to converge. Sum of squares of error (SSE),
square root of MSE (root MSE), adjusted R-square
(ADJRSQ), and asymptotic standard errors of the pa-
rameters were recorded. Some authors have used mean
square prediction error (= SSE/no. of observations) to
measure error variation because MSE is influenced by
the number of parameters (Val-Arreola et al., 2004).
However, in this study both prediction error variance
and MSE were very similar due to the large number of
observations present. The Durbin-Watson test (Durbin,
1970) was conducted on the residuals of each model
and parity group (using mean daily yields of each day
of lactation) to test for possible first-order autocorrela-
tions among residuals. The autoregressive procedure in
SAS (PROC AUTOREG with dw=1 and dwprob options)
provided the Durbin-Watson statistic, autocorrelation
coefficient, and the associated probabilities. Model se-
lection criteria included SSE, root MSE, ADJRSQ, con-
vergence properties, standard errors of estimates, posi-
tive autocorrelation of errors, and Bayesian information
criteria (BIC; Leonard and Hsu, 2001). The BIC are
parsimony based model-order selection criteria that pe-
nalize the model for inclusion of additional parameters
while rewarding for improved fit, as follows:

BIC = −2 log (L) + K log (N),

where L, K, and N represent the maximum likelihood,
number of independent parameters in the model, and
sample size, respectively (Leonard and Hsu, 2001; Val-
Arreola et al., 2004). Consequently, the best model was
selected based on the smallest numerical value of BIC.
The nonlinear mixed procedure (PROC NLMIXED; SAS
Institute, 2000) was used to obtain BIC for each model.

The preliminary analysis also included fitting the
selected models on test-day fat and protein yields
within parity–lactation sub groups. All 9 models satis-
factorily described the fat and protein yields of extended
lactations. Wood’s model, having the fewest parameters
and wide applicability, was chosen to report the respec-
tive parameter estimates for fat and protein lactation
curves of all 3 parity groups.

RESULTS AND DISCUSSION

Observed Lactation Curves

The average 15th day and peak yields of each parity–
lactation length subgroup are given in Table 1. Peak
day was considered as the DIM on which daily average
milk yield of the subgroup was highest. Table 1 shows
that the long lactating cows (>800 DIM) in the data
(999-d group) tended to reach a higher peak (on aver-
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Figure 2. Mean milk yield of a given DIM (Obs), and 3 example
curves [MONO = Grossman monophasic (poor fit); DJ = Dijkstra
(average fit); and MULT = Grossman new multiphasic (better fit)]
fitted to all test-day yields of third and greater parities; a) 305-d and
b) 999-d lactations.

age) at a later DIM although they started slower than
the entire group of cows that reached 280 DIM (305-d
group). Clear differences can also be seen between the
lactation curves of first parity and the 3+ parity group,
with the mature cows (3+ group) reaching a higher peak
earlier than the maturing heifers. Generally, there can
be many reasons for cows to be allowed to continue for
extended lactations. However, in this study, the 999-d
group was more persistent than the 305-d group (Figure
1). Because of the differences in shapes of lactation
curves, the parameter estimates were expected to differ
depending on parity or lactation length.

Fits of Lactation Models

The F-values associated with the model sum of
squares showed that all 9 models in general provided
highly significant fits (P < 0.01) for all 4 parity–lactation
length subgroups. Most models provided similar lacta-
tion curves that described the data accurately. The
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Table 3. Comparison of lactation models fitted on test-day yields of 305-d complete lactations of first-parity cows1

Lactation model2

Parameter WD WIL RK DJ POL MONO DIPH MULT3 LPM

a 15.6862 37.348 43.799 21.764 33.6398 11,223.9 819.1 192.4 32.1985
(0.0311) (0.030) (0.089) (0.042) (0.022) (15.303) (47.1) (216.8) (0.006)

b 0.2081 0.030 17.16 0.0176 0.5876 0.003 0.0128 16.6364 13.564
(0.0006) (0.0001) (0.206) (0.0001) (0.0016) (4.5E–6) (0.0002) (0.994) (0.022)

c 0.002 16.433 12.459 0.032 0.0639 140.6 50.461 −40.954 0.043
(5.1E–6) (0.044) (0.204) (0.0002) (0.0004) (0.122) (0.472) (22.148) (0.0003)

d 0.030 0.0013 0.00095 0.0045 7,736.6 −180.8 180.0
(0.0002) (5.9E–6) (4.1E–6) (0.0002) (117.1) (91.16) (0.42)

g 0.0132 0.004 733.0
(1.2E–4) (5.1E–5) (315.5)

h 0.99 204.7 13.7831
(0.0) (1.793) (3.7875)

Peak yield 33.35 33.55 33.41 33.59 33.08 33.11 33.49 33.08 32.20
Peak day 102 93 95 91 86 140 83 96 27–184
Selection criteria4

SSE (× 108) 1.096 1.097 1.096 1.098 1.094 1.115 1.098 1.094 1.125
Root MSE 7.175 7.181 7.177 7.184 7.171 7.239 7.184 7.170 7.264
ADJRSQ 0.076 0.074 0.075 0.073 0.077 0.059 0.074 0.077 0.053
BIC × 107 1.44 1.44 1.44 1.44 1.44 1.45 1.44 1.44 1.45
DW 0.474 0.185 0.327 0.135 0.8966 0.023 0.087 2.0838 0.0618
P < DW 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.7502 0.0001
ρ 0.60 0.92 0.82 0.92 0.085 0.95 0.92 0.085 −0.844
Hs P P NP P P NP NP NP P

1Standard errors of estimates are within parentheses.
2WD = Wood; WIL = Wilmink; RK = Rook; DJ = Dijkstra; POL = Pollott; MONO = monophasic; DIPH = diphasic; MULT = multiphasic;

LPM = persistency model. MONO, DIPH, MULT, and LPM are Grossman models.
3Other estimates of multiphasic model: i = 273.3 (5.12); j = 103.6 (12.337); and k = 272.3 (26.428); P = 0.8414 (0.1719); q = 0.0124 (0.0165).
4SSE = error sum of squares; root MSE = square root of mean square error; ADJRSQ = adjusted R2; BIC = Bayesian information criterion;

DW = Durbin-Watson statistic; P < DW = P-value for testing positive autocorrelation; ρ = autocorrelation of errors; Hs = singularity of
Hessian matrix (P = positive definite and NP = nonpositive definite).

MONO and LPM models were exceptions for some sub-
groups. Figure 2 (a and b) was included to provide a
visual representation of the fits of several curves. The
curves produced by the MONO, DJ, and MULT models
for 305-d and 999-d lactations of cows in third and
greater parities exemplify poor, average, and better fits,
respectively. For a 999-d lactation of the third and
greater parity group, MONO produced a monotonically
decreasing curve (Figure 2b).

305-d Lactations

Table 3 shows the parameter estimates and selection
criteria for the various models fitted on 305-d (>280
DIM) lactations of first-parity cows. Figure 3 shows
that, for the US Holsteins considered, all models pre-
dicted the average yield with respect to each DIM of
305-d first lactations with an absolute error margin of
<2 kg, except the MONO, DIPH, and LPM models,
which had relatively larger prediction errors at early
stages of lactations. The WIL and RK models predicted
the peak day most accurately (±1 d margin) although
DJ and MULT were very close. The widely used WD
model had its peak 8 d later than the actual peak. The
LPM model predicted a plateau of peak yield persisting
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for about 180 d starting from wk 4 of lactation, which
is unrealistic, and resulted in the poorest fit. Having
more than 5 parameters, the POL and MULT models
recorded the lowest SSE and the highest ADJRSQ val-
ues, with the WD and RK models also providing very
close estimates. The ADJRSQ was less than 8% for all
models. In this study, the models were fitted to the
parity–lactation length subgroups instead of on lacta-
tions of individual cows. The substantial variation in
the test-day yields of cows at each DIM caused the
very low ADJRSQ values. The Durbin-Watson statistic
showed that all models except MULT had significantly
positive autocorrelation of residuals. Positive autocor-
relations occur when adjacent values of residuals tend
to share the same sign (positive or negative) more than
randomly possible. Figure 3a clearly shows a typical
positively autocorrelated pattern of residuals in WD,
WIL, RK, and DJ models. The above results were com-
parable with those reported by Pollott (2000) and Gross-
man and Koops (2003). The MULT model was slightly
superior to POL with respect to root MSE. However,
MULT resulted in highly correlated parameter esti-
mates that made the respective Hessian matrix nonpos-
itive definite. This has also caused some parameter
estimates to have large standard errors, making them
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Figure 3. Residuals for first-parity 305-d complete lactation. a)
Wood (WD), Wilmink (WIL), Rook (RK), Dijkstra (DJ), and Pollott
(POL) models; b) Grossman monophasic (MONO), diphasic (DIPH),
multiphasic (MULT), and lactation persistency (LPM) models.

nonsignificant or unreliable. Although the parameters
of MULT are claimed to be biologically meaningful
(Grossman and Koops, 2003), estimates falling beyond
the reasonable bounds (with large standard errors)
have made them less useful in explaining the underly-
ing biology. Among the models with <5 parameters, WD
was the best with respect to root MSE and ADJRSQ.

Similar performance of the models can be seen in the
305-d lactations of cows in third and greater parities,
with POL and MULT recording the lowest SSE and the
highest ADJRSQ values (Table 4). The BIC values of
POL and MULT were also comparable with the esti-
mates of the models with fewer parameters, implying
that those 2 models produce likelihood estimates large
enough to overcome the penalty assigned by the BIC
for having more parameters. However, MULT was mar-
ginally better than POL with respect to root MSE, as
experienced by Pollott (2000). The MULT model also
predicted the peak day exactly whereas WIL, RK, DJ,
and POL had predictions within a 7-d absolute error
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margin. However, MULT again resulted in a singular
Hessian matrix with strong correlations among param-
eter estimates indicating a possible overparameteriza-
tion of the model. The estimates of MULT such as a
(asymptotic value of milk secretion potential, kg/d) and
h (relative rate of change in secretion rate) are clearly
out of the expected range, and some parameters are
nonsignificant (P > 0.05). However, the estimates of
POL were within the bounds imposed by the mechanics
of the model and were readily interpretable. For exam-
ple, parameter a represents the maximum potential
daily milk production of the udder if all parenchyma
cells were differentiated at the same time and were
operating at the highest secretion rate (Pollott, 2000).
Because it is almost unlikely that all parenchyma cells
become differentiated and operate at the highest rate at
exactly the same time, observed peak yields are almost
always less than the maximum potential production (a).
The model estimates show that the maximum potential
daily milk production was 33.6 kg for heifers and 53.5
kg for the older parity group. These average estimates
for the population seem reasonable given that the ob-
served peaks were 33 and 44 kg, respectively (Table 1).
Among the simpler models, WIL showed the best fit
although the differences among them were marginal.
The DIPH model (with 6 parameters) performed better
than the MONO model (as expected) although its per-
formance relative to the models with fewer parameters
was not satisfactory (contrary to the findings of Vargas
et al., 2000). Figure 4 shows that the residual distribu-
tion of the models for cows in third and greater parities
was somewhat similar to those of the heifers, except
that the overprediction by several models during the
first few weeks of lactation was higher for older cows.
Autocorrelations of residuals were also significant for
all models. The root MSE values in Table 4 are higher
than the respective values in Table 3, indicating the
higher yield variability within older cows compared
with within first-parity cows. However, the respective
ADJRSQ values were also higher in Table 4 due to the
higher model sum of squares generated by the shape
of lactation curve of older cows with higher peak.

Extended Lactations

Figure 4 shows that all models described the ex-
tended lactations of first parity reasonably well up to
999 d, except MONO, DIPH, and LPM, which had large
absolute prediction errors (>4 kg) at early stages of
lactation (contrary to the findings of Grossman and
Koops, 1988). For extended lactations of first-parity
cows, the MULT, POL, and RK models produced the
lowest prediction errors, with MULT being marginally
the best (Table 5). The BIC values showed that the RK
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Table 4. Comparison of lactation models fitted on test-day yields of 305-d complete lactations of cows in third and greater parities1

Lactation model2

Parameter WD WIL RK DJ POL MONO DIPH MULT3 LPM

a 23.0892 50.4670 62.9955 30.7791 53.5278 12999 911.9 153,606 42.8484
(0.0439) (0.0247) (0.1204) (0.0636) (0.1568) (18.545) (43.177) (80,685) (0.012)

b 0.2094 0.0811 14.6000 0.0215 0.6251 0.0033 0.0152 16.7972 10.476
(0.0005) (0.0001) (0.1684) (0.0002) (0.007) (4.6E–6) (0.0002) (0.4571) (0.021)

c 0.00357 23.1904 10.0377 0.0378 0.0796 65.1667 43.63 −147.8 0.082
(5.5E–9) (0.0885) (0.1718) (0.0002) (0.0007) (0.2421) (0.4371) (12.169) (0.0001)

d 0.0487 0.0027 0.0023 0.1217 8660.4 173.0 84.5845
(0.0003) (6.1E–6) (4.2E–6) (0.0018) (114.5) (105.4) (0.2472)

g 0.0069 0.00417 137.4
(4.7E–5) (3.8E–5) (20.695)

h 0.99 148.8 20764.9
(0.0) (2.1035) (3583)

Peak yield 43.93 44.42 44.28 44.49 44.19 42.25 44.62 44.68 42.85
Peak day 59 54 56 58 49 65 59 51 27–82
Selection criteria4

SSE (× 106) 1.882 1.880 1.882 1.886 1.878 1.917 1.884 1.878 1.905
Root MSE 9.380 9.376 9.381 9.390 9.372 9.467 9.386 9.371 9.438
ADJRSQ 0.270 0.271 0.270 0.268 0.271 0.256 0.269 0.271 0.261
BIC (× 107) 1.56 1.56 1.56 1.56 1.56 1.57 1.56 1.56 1.63
DW 0.250 0.264 0.183 0.091 0.903 0.022 0.069 1.226 0.142
P < DW 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
ρ 0.860 0.826 0.896 0.910 0.217 0.910 0.852 0.33 0.851
Hs P P P P P NP NP NP NP

1Standard errors of estimates are within parentheses.
2WD = Wood; WIL = Wilmink; RK = Rook; DJ = Dijkstra; POL = Pollott; MONO = monophasic; DIPH = diphasic; MULT = multiphasic;

LPM = persistency model. MONO, DIPH, MULT, and LPM are Grossman models.
3Other estimates of multiphasic model: i = −195606 (6.579); j = 26.0595 (6.579); and k = 260.5 (6.203); P = 0.000274 (2.5E−5); q = 0.9997

(0.00).
4SSE = error sum of squares; root MSE = square root of mean square error; ADJRSQ = adjusted R2; BIC = Bayesian information criterion;

DW = Durbin-Watson statistic; P < DW = P-value for testing positive autocorrelation; ρ = autocorrelation of errors; Hs = singularity of
Hessian matrix (P = positive definite and NP = nonpositive definite).

model (having fewer parameters) was superior to the
other 2 models. All models (except LPM with a plateau
of peak yield) predicted peak day to be later than actual,
with POL having the lowest error. Again, the Grossman
models (except LPM) had singular Hessian matrices
and atypical values for some parameters. The LPM
model, although computationally less problematic (due
to few parameters), did not provide a satisfactory fit for
any stage of lactation contrary to the results on ex-
tended lactations by Vargas et al. (2000). The plateau
of yield expected by the LPM model during mid lacta-
tion (the duration of which is the intended measure of
persistency) seems unrealistic for 305-d as well as 999-
d lactations of US Holsteins.

For the third and greater parities, the MULT model
again had the lowest root MSE and BIC values, followed
by DJ and POL (Table 6). The MULT model also had
the closest prediction of peak day. The MONO model
produced a continuously decreasing curve atypically
peaking at the onset of lactation. Here, POL resulted
in a singular Hessian matrix with an inexplicably large
estimate for the highest potential yield (a). Attempts
to lower the upper bound for parameter a to reasonable

Journal of Dairy Science Vol. 90 No. 8, 2007

values resulted in lack of convergence. Val-Arreola et
al. (2004) experienced the same problem when POL
was used on lactations of less than 400 DIM. The LPM
model, with its long plateau of yield, once again pro-
duced the poorest fit.

Residual variation was higher in mature cows (Figure
6) than in heifers (Figure 5) for all models. This is
also related to the larger root MSE values in Table 6
compared with those in Table 5. This is partly because
the higher parity group included records from the third
to ninth lactation. However, all models were able to
predict daily yield within an error margin of ±2 kg
for over 90% of the extended lactations. Because the
prediction errors are less than 10% of the magnitude
of daily yield (which includes measurement errors), it
is evident that even the 3-parameter models can be used
to model extended lactations with reasonable accuracy.

Fat and Protein Yields

The performances of alternative models with respect
to describing fat and protein yields of extended lacta-
tions were similar to those for milk yield. Because all
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Figure 4. Residuals for 305-d complete lactation of third and
greater parities. a) Wood (WD), Wilmink (WIL), Rook (RK), Dijkstra
(DJ), and Pollott (POL) models; b) Grossman monophasic (MONO),
diphasic (DIPH), multiphasic (MULT), and lactation persistency
(LPM) models.

models provided highly significant fits (P < 0.001), only
the parameter estimates of WD model (having the few-
est parameters) are given in Table 7. The measure of
persistency [c−(b+1)] of the WD model (Wood, 1967) in
Table 7 showed that the older cows were less persistent
than the heifers with respect to producing fat and pro-
tein. In addition, the cows with extended lactations
showed high persistency compared with their 305-d
counterparts with respect to fat and protein yields, in
spite of changes taking place in milk composition dur-
ing lactation.

Biological Implications

The physiological processes of extended lactations
seem somewhat different from those of 305-d lactations.
Longer lactating cows enjoy longer periods of days open
without the effects of pregnancy and associated physio-
logical changes taking place. Thus, lactation phases

Journal of Dairy Science Vol. 90 No. 8, 2007

of extended lactations are less affected by pregnancy.
Mechanistic models help analyze possible underlying
reasons for the differences in lactation curves of various
genetic or nongenetic groups. For example, in the DJ
model, parameters a and b represent theoretical initial
milk production and specific rate of parenchyma cell
proliferation, respectively. Consequently, the higher es-
timates of a and b for the ≥3 parities (Tables 3 vs. 4,
and 5 vs. 6) are comparable with their initial higher
daily yields than heifers. On the other hand, within-
parity comparisons (Tables 3 vs. 5, and 4 vs. 6) show
that parameters c (decay parameter) and d (specific
rate of cell death) were smaller for extended lactations,
indicating their higher persistency compared with their
shorter counterparts. Accordingly for POL model, pa-
rameters a (asymptotic value of milk secretion poten-
tial) and b (proportion of parenchyma cells differenti-
ated at parturition) were higher for the older group
(≥3 parities) following their high yield. Moreover, the
smaller within-parity estimates for g (relative death
rate of cells) for the long lactating cows again partially
explained their higher persistency than those with
shorter lactations. Alternatively, persistency measures
of the empirical models (e.g., c−(b+1) of WD, parameter
d of LPM) also show higher values for long lactating
cows, although they do not provide a causative expla-
nation.

The parameter estimates reported in the present
study describe the current situation of the US Holstein
population. However, use of those estimates for extrap-
olation to the future yield of cows that are in their mid
lactations could be misleading. One reason is that not
every cow in the present population (or the data set)
was given an equal opportunity to produce extended
lactations. The present findings allow accurate model-
ing of milk yield only of cows that had the opportunity
for extended lactations. However, parameter estimates
of this study document the sustained yields of a sub-
stantial part of the present US Holstein population.

Convergence Properties

The models with fewer parameters (WD, WIL, RK,
DJ, MONO, and LPM) reached convergence consis-
tently and quickly regardless of the prior estimates
or the iterative method used in NLIN and NLMIXED
procedures, similar to the findings reported by Vargas
et al. (2000) and Val-Arreola et al. (2004). When the
NLIN procedure (least squares approach) was used, the
steepest descent iterative method had a slower rate of
convergence compared with Gauss-Newton, Newton, or
Marquardt methods, but was sometimes useful when
priors were poor. The Marquardt method, which follows
an intermediate path between Gauss-Newton (Taylor
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Figure 5. Residuals for first-parity 999-d complete lactation. a)
Wood (WD), Wilmink (WIL), Rook (RK), Dijkstra (DJ), and Pollott
(POL) models; b) Grossman monophasic (MONO), diphasic (DIPH),
multiphasic (MULT), and lactation persistency (LPM) models.

series-based) and Newton (second-derivative based)
methods (SAS Institute, 2000), was often found to be
better in reaching convergence when the parameter
estimates were highly correlated. The Marquardt
method also provided estimates with smaller MSE than
PROC NLMIXED, which uses a maximum likelihood
approach and dual quasi-Newton algorithm by default.
The models with more than 5 parameters were very
sensitive to the priors because unsuitable priors often
resulted in lack of convergence or reached a local mini-
mum. In some cases, lack of convergence could be
avoided by changing the iterative procedure or step-size
option (halve, golden, or cubic). Occasionally, a better
convergence (lowest SSE and MSE) could be reached
with parameter estimates falling beyond the acceptable
bounds that were initially specified by the large models;
however, this made the parameters uninterpretable.
When the possible computational problems associated
with larger mechanistic models are weighed against
the satisfactory predictive ability of smaller empirical
models, the smaller models (such as WD, RK, and DJ)
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Figure 6. Residuals for 999-d complete lactation of third and
greater parities. a) Wood (WD), Wilmink (WIL), Rook (RK), Dijkstra
(DJ), and Pollott (POL) models; b) Grossman monophasic (MONO),
diphasic (DIPH), multiphasic (MULT), and lactation persistency
(LPM) models.

can be favored for modeling extended lactations, unless
investigation of underlying lactation physiology is in-
tended. Being a smaller mechanistic model, the DJ
model seemed to be a good choice if biological interpreta-
tion of parameters is required.

CONCLUSIONS

Longer lactating cows on average are also high pro-
ducers with greater peaks and persistency. Conse-
quently, within-parity parameter estimates of 305-d
lactation curves were different from those of extended
lactations. Parameter estimates of lactation models
used for designing management and breeding strate-
gies and developing software packages for any other
purpose based on 305-d lactations may not be entirely
appropriate for the cows with longer lactations. Al-
though complicated mechanistic models with 6 parame-
ters or more, if converged properly, could reveal the
details underlying extended lactations more precisely,
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Table 7. Parameter estimates of the Wood’s function for fat and protein components of 305-d and 999-d
lactations of various parity groups1

Parameters

Yield 305-d 999-d
trait

Parity (kg) a b c Pers2 a b c Pers

First Fat 0.7131 0.1743 0.00183 1,639.5 0.7632 0.1473 0.00103 2,674.1
Protein 0.5209 0.1818 0.00190 1,644.3 0.5538 0.1493 0.00104 2,681.2

Second Milk 24.1895 0.1783 0.00308 910.4 33.4298 0.0624 0.00113 1,351.5
Fat 1.0558 0.1456 0.00283 830.3 1.3613 0.0517 0.00110 1,292.9
Protein 0.8257 0.1464 0.00283 834.2 1.0696 0.0487 0.00108 1,291.4

Third or greater Fat 1.0503 0.1728 0.00329 816.3 1.4489 0.0516 0.00125 1,129.5
Protein 0.7918 0.1724 0.00329 814.4 1.0863 0.0497 0.00124 1,124.7

1Parameter estimates for milk yield of first and third or greater parities are given in Tables 3, 4, 5 and
6.

2Pers = Wood’s measure of persistency = c−(b + 1).

their computational complexities often make their use
infeasible or impractical. Simpler models such as Rook
or Wood can be recommended for most instances in
which precise information on underlying mammary
mechanisms are not of primary interest. The Dijkstra
model can be recommended if a mechanistic interpreta-
tion is required.
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