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The evolution of systems in contact with thermal, chaotic, or turbulent surroundings—often modeled with
stochastic equations of motion—can be particularly complex when these equations of motion are nonautono-
mous, that is, when external parameters of the surroundings are varied with time. In this paper we establish a
rigorous equality relating the nonautonomous behavior of such a system, to solutions of the corresponding
autonomous equations of motion, for arbitrary initial conditions. If the system is initially in thermal equilib-
rium, we recover previously known results relating nonequilibrium work values to equilibrium probability
distributions. We discuss specific examples of our result, and suggest an experimental setting in which it might
be verified.
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Consider a system that is coupled to both a heat bath at
temperatureT=b−1, and an externally controlled work pa-
rameterm, and imagine that we subject this system to a pro-
cess during which the work parameter is varied in time. For
such a process the following equality holdsfRef. f1g, Eq.
s18dg:

kdfxstd − xgexpf− bwstdgl =
1

Z0
expf− bHsmstd,xdg, s1d

where wstd;e0
t dt8ṁst8d]mH(mst8d ,xst8d) is the work per-

formed on the system, up to timet, by the variation of the
parameterm. Here Hsm ,xd is the microscopic Hamiltonian
for the system of interest, expressed as a function of the
system’s microstatex and the work parameterm; mst8d speci-
fies the externally imposed schedule for varying this param-
etersandṁ=dm /dt8d; andxst8d gives the microscopic evolu-
tion of the system during a single realization of this process.
The angular brackets denote an average over all possible
trajectoriesxst8d—equivalently, an average over realizations
of the thermal noise generated by the heat bath—and the
independent variablex appearing on both sides of the equa-
tion is an arbitrary point in the phase space of the system.
Finally, Z0=edxexpf−bH(ms0d ,x)g is the partition function
for the equilibrium state associated with the initial value of
the work parameter. In Ref.f1g it was assumed thatsad the
noise driving the system is thermal in origin, generated by a
heat bath at equilibrium, andsbd at the initial timet8=0 the
system is in equilibrium with the bath, and therefore de-
scribed statistically by the Boltzmann-Gibbs distribution.

The left side of Eq.s1d is aweighted distribution function
sWDFd, which is analogous to an ordinaryprobability distri-
bution functionsPDFd, except that each realization in the
ensemble carries a time-dependent statistical weight,
expf−bwstdg. sIf we picture the ensemble of realizations as a
swarm of particles evolving inx space, and imagine that each
particle has a time-dependent “mass” expf−bwstdg, then the
WDF is analogous to a mass density, whereas the PDF is like
a number densityf1g.d Equations1d tells us that the WDF
evolves in a very simple manner: apart from normalization, it

is identical to the equilibrium distribution corresponding to
the current value of the work parameterfright side of Eq.
s1dg. This remains true even ifm is varied rapidly and vio-
lently, so that the system gets driven substantially out of
equilibrium during a typical realization of the process. Hum-
mer and Szabof2g have drawn attention to a close connec-
tion between Eq.s1d and the Feynman-Kac theorem.

By integrating both sides of Eq.s1d with respect tox, one
arrives at an equality relating nonequilibrium work values
and equilibrium free energy differencesf1–6g. These results
are closely related to a class offluctuation theoremsfor en-
tropy production, which can be formulated either for non-
equilibrium steady statesf7–12g, or for systems driven away
from an initial state of equilibriumf13–16g. Moreover, it has
been shownf16–19g that the results of Refs.f1–6g can be
generalized to apply to situations in which the thermal bath
is replaced by another source of noise, such as a stochastic
bath that drives the system to a nonequilibrium steady state
swhenm is held fixedd, or a chaotic or turbulent bathf20g. In
recent years, a number of optical micromanipulation experi-
ments have provided confirmation of a number of these the-
oretical predictionsf21–25g.

Equations1d establishes a relationship between the behav-
ior of the system when the parameterm is varied with time
fon the left-hand sideslhsdg and the equilibrium distribution
at fixedm fon the right-hand sidesrhsdg. In effect, this result
asserts that equilibrium information is encoded in the
nonequilibrium dynamics of the system. The quantity
expf−bwstdg provides the key to decoding this information;
by endowing each nonequilibrium realization with a statisti-
cal weight expf−bwstdg, we recover the equilibrium distribu-
tion. More formally, Eq.s1d relates thenonautonomousevo-
lution of the system, to stationary solutions of corresponding
autonomousequations of motionf26g, provided the system
begins in a stationary state.

It is natural to wonder whether Eq.s1d can be generalized
by relaxing either or both of the two conditions mentioned
above. The investigations initiated by Hatano and Sasa’s re-
searchf16–19g represent a relaxation of conditionsad. In this
Rapid Communication we relax conditionsbd, and show that
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Eq. s1d can be generalized to accommodate arbitrary distri-
butions of initial conditions. Our central results then relate
the system’s nonautonomous evolutionflhs, Eqs.s7d ands9dg
to general solutions—e.g., Green functions—of the autono-
mous evolutionfrhs, Eqs.s7d and s9dg. In other words, we
establish a link between the evolution of the system when the
parameterm is held fixed, and its response to arbitrary varia-
tions of that parameter. As with Eq.s1d, the crucial element
of this link is a statistical reweighting procedure: by assign-
ing a weight of the form expf−Astdg to each nonautonomous
realization, we reconstruct the autonomous evolution.

As in Ref.f1g, we assume that the dynamics of our system
are described by a Markov process,

ẋ = zsx,md,

wherezsx,md generally includes both deterministic and sto-
chastic terms, the latter generated by a heat bath or other
source of noise. Note that the work parameterm appears in
the equations of motion as a control parameter. We will be
interested in a process during which the system evolves in
time asm is varied externally, according to some arbitrary
snot necessarily quasistaticd schedule fmg;hmst8d ,0ø t8
ø tj. Under these assumptions, the probability distribution
function sPDFd Psx,td=kdfx−xstdgl, describing a statistical
ensemble of realizations of this process, evolves under a
master equation,

]tP = L̂mstdP,

where the transition operatorL̂m specifies the parameter-
dependent stochastic dynamics.

Let us define the Green functionGsx,t ux0,fmgd to be the
probability of observing the system in microstatex at timet,
given an initial microstatex0 at time 0

]tG − L̂mstdG = dstddsx − x0d.

Note the explicit dependence ofG on the schedulefmg. We

next introduce an autonomous Green function,Ḡ salong with

a related functionw;−ln Ḡd, describing the evolution of the
system whenm is held fixed

Ḡsx,tux0,md = expf− wsx,tux0,mdg = expsL̂mtddsx − x0d.

s2d

Now returning to the general case of an arbitrary schedule
fmg, let us define an observable

Astd ; E
0

t

dt8ṁst8d]mw„xst8dux0,t;mst8d…. s3d

We can think ofA as an auxiliary variable, analogous towstd
in Eq. s1d, evolving under the equation of motionȦ=ṁ]mw.
sNote that information about the autonomous evolution en-
ters the definition ofA, through the functionw.d Now con-
sider a joint Green functionGsx,A,t ux0,fmgd, which is the
probability for reaching a microstatex and a specific valueA
at time t, given initial conditionsxs0d=x0 andAs0d=0. This
function satisfies the master equation

]tG − L̂mstdG + ṁ
]w

]m

]G
]A

= dstddsAddsx − x0d, s4d

where the last term on the left side is simply a continuity
term accounting for the evolution ofAstd. Let us finally in-
troduce the convolution of exps−Ad with the joint Green
function:

Qsx,tux0,fmgd ; E dAexpf− AgGsx,A,tux0,fmgd

= kd„xstd − x…expf− Astdglx0, s5d

wherek¯lx0 indicates an average over realizations launched
from initial conditionsx0. The functionQ that we have con-
structed is a WDF, in which each realization carries a statis-
tical weight expf−Astdg. From Eqs.s4d and s5d we get an
evolution equation forQ after a single integration by parts

]tQ − L̂mstdQ + ṁ
]w

]m
Q = dstddsx − x0d. s6d

For an arbitrary schedulefmg the solution of Eq.s6d is given
by Q=expf−w(x,t ux0,mstd)g. This can be verified by direct
substitution, using the fact that for constantm the solution of
Eq. s6d is given by Eq.s2d. We thus finally arrive at

kd„xstd − x…expf− Astdglx0 = Ḡ„x,tux0,mstd…, s7d

with no restrictions on the time dependence ofmstd.
While Eq. s7d pertains to ad-function distribution of ini-

tial conditions, we can easily generalize this result. Consider
a parameter-dependent family of distributions,rsx,md, and

now defineḠ andw by

Ḡsx,tufrg,md = exph− wsx,tufrg,mdj = expsL̂mtdrsx,md,

s8d

analogous to Eq.s2d. Then by following exactly the same
procedure as led to Eq.s7d, we arrive at

kd„xstd − x…expf− Astdglfrg = Ḡ„x,tufrg,mstd…, s9d

wherek¯lfrg denotes an average over an ensemble of real-
izations with initial conditions sampled fromrfx,ms0dg, and
Astd is defined as in Eq.s3d, but with frg rather thanx0

appearing as the argument of]mw. For the special choice
rsx,md=dsx−x0d, we recover Eq.s7d. On the other hand, if
we takersx,md=rSsx,md, whererS is the stationary distribu-

tion corresponding to a fixed value ofm si.e., L̂mrS=0d, then

we getḠsx,t u frg ,md=rSsx,md, which is the situation consid-
ered in Refs.f1,2,14–19g.

Equations7d and its generalization, Eq.s9d, constitute the
central results of this paper. As mentioned earlier, the left
side in each case pertains to nonautonomous equations of
motion; the average is defined over trajectories evolving asm
is varied with time. By contrast, the right side pertains to

autonomous equations of motion;Ḡ describes evolution with
m held fixed. Equationss7d and s9d show that, by assigning
an evolving weight expf−Astdg to every member of the non-
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autonomous ensemble, we recover the autonomous solution.
These results can be generalized further, as follows. Let

us refer toṁ]mw as thegeneratorof the statistical weight
expf−Astdg appearing in Eqs.s7d and s9d, i.e., ṁ]mw is the
quantity whose time integral determines the weight assigned
to a trajectory by Eq.s3d. Now consider a WDF constructed
with a differentsas yet unspecifiedd generator,Vsx,td

Psx,td = kdfxstd − xgexpf− Bstdgl, s10d

Bstd ; B0 +E
0

t

dt8Vfxst8d,t8g,

whereB0=−ln edxPsx,0d simply allows for an arbitrary ini-
tial normalization ofP. Futhermore, suppose we wantPsx,td
to evolve according to the equation

Psx,td = expf− csx,tdg, s11d

for a particularsbut arbitraryd functionc. We now show how
we can chooseV so that Eq.s11d is satisfied. The WDF
defined by Eq.s10d evolves according to

]P
]t

= sL̂m − VdP. s12d

fThis result can be obtained by following the steps that led to
Eq. s6d.g Since we want Eq.s11d to solve this equation, we
replaceP with exps−cd in Eq. s12d, then rearrange terms to
get

Vsx,td =
]c

]t
+ ecL̂me−c. s13d

This result gives a prescription for choosing a generator
Vsx,td, such that the corresponding WDFfgiven by Eq.
s10dg has the desired time dependence,P=exps−cd, Eq.s11d.

It is easy to reproduce Eqs.s7d and s9d within the frame-
work of the previous paragraph. For instance, if we choose
csx,td=wfx,t ux0,mstdg then Eq.s13d becomes

V =
]w

]t
+ ṁ

]w

]m
+ ewL̂me−w = ṁ

]w

]m
, s14d

which leads immediatelyfvia Eq. s10dg to Eq. s7d. Similarly
the choicecsx,td=w(x,t u frg ,mstd) leads to Eq.s9d. We now
briefly discuss two further examples within this framework,
which lead to generalizations of Eq.s1d.

Example 1. Given a HamiltonianHsm ,xd, Markovian dy-

namics L̂m, and a particular schedulefmg for varying the
work parameter, suppose we want to construct a WDF that
evolves as an unnormalized Boltzmann-Gibbs distribution,
Psx,td=expf−bH(mstd ,x)g, that is, csx,td=bH(mstd ,x).
Equations13d then gives us the generator

Vsx,td = bṁ
]H

]m
+ ebHL̂me−bH. s15d

Hence,

Bstd = − ln Z0 + bwstd +E
0

t

dt8h„xst8d,t8…, s16d

where wstd and Z0 are defined as for Eq.s1d, and h

=ebHL̂me−bH. Combining these results gives us

kdfxstd − xgexpf− bwstd +E
0

t

dt8hgl =
expf− bH„mstd,x…g

Z0
.

s17d

Note that if the autonomoussi.e., fixed md dynamics are
balanced—that is, if they preserve the canonical distribution

sL̂me−bH=0d—then h=0 and we recover Eq.s1d. fIndeed,
Eq. s1d was derived in Ref.f1g under the explicit assumption
sad that this condition is satisfied.g With this in mind, we can
view Eq.s17d as a stronger version of Eq.s1d, which reveals
how to construct equilibrium distributions from averages
over nonequilibrium trajectories, even when the autonomous

dynamics are not balanced,L̂me−bHÞ0. By integrating both
sides with respect tox, we obtain

kexpf− bwstd +E
0

t

dt8hgl = expf− bDFstdg, s18d

where DFstd=Fmstd−Fms0d is the free-energy difference be-
tween the equilibrium states corresponding to parameter val-
uesms0d and mstd. This is a generalization of the nonequi-
librium work theorem,ke−bwl=e−bDF, derived previously for
the case when the autonomous dynamics are balancedf1–6g.

Example 2. Suppose that we have some dynamicsẋ

=z0sx,md that are balanced, i.e.,L̂m
0 expf−bHsm ,xdg=0.

Now suppose that whenm is varied with time, the system
obeys the following dynamics:

ẋ = zsx,m,ṁd = z0sx,md + ṁvsx,md, s19d

i.e.,
]P

]t
= L̂mP = L̂m

0P − ṁ
]

]x
fvsx,mdPg,

where vsx,md is an arbitrary vector field. Under these dy-
namics, every infinitesimal changedm in the external param-
eter induces a changedx=vsx,mddm in the microstate of the
system, in addition to the autonomous dynamicsz0. Now
imagine an ensemble evolving under these equations of mo-
tion, and suppose that we want to construct a WDF that
evolves according toPsx,td=expf−bH(mstd ,x)g sas in Ex-
ample 1d. Equations13d then gives us

Vsx,td = bṁ
]H

]m
+ ebHL̂me−bH = ṁSb

]H

]m
+ bv ¹ H − ¹ vD ,

where¹=] /]x. This result shows us how to extend Eq.s1d to
dynamics of the sort given by Eq.s19d, and is applicable to
numerical simulations in which nonphysical “metric scaling”
terms of the formṁvsx,md are added to the equations of
motion so as to keep the system close to thermal equilibrium
f27g.

Finally, our central result can be illustrated by the follow-
ing gedanken experiment. Consider a single polymer mol-
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ecule attached to two micron-sized beads, immersed in a
statistically steady chaotic and/or turbulent flow. Further-
more, imagine that the beads are initiallyst,0d held in place
with micropipettes and/or tightly focused optical tweezers,
so that the initial bead-to-bead distance takes on a fixed
value,x0. Now at t=0 we release one of the beads and we
monitor its subsequent dynamics, which will be driven by a
combination of thermal fluctuations and chaotic flow. By
repeating such a measurement many times, we can, in
principle, determine the autonomous Green function
Ḡsx,t ux0,md to a desired level of accuracy, simply by con-
structing a histogram of the observed bead-to-bead distance
at a time t after the release of the bead. Herem is some
external parametersperhaps the temperature or mean flow of
the turbulent fluid, or the strength of an externally applied
electric or magnetic field that acts on the released beadd that
is held constant during the above “calibration” procedure.
Now imagine that we repeat this calibration for a number of

fixed values ofm, thus obtainingḠsx,t ux0,md over a range of
parameter values. With this information under our belt, we

now imagine a measurement during which:sad we vary the
parameterm after releasing the bead,sbd we monitor the
bead-to-bead distancexstd, andscd we construct the quantity

Astd from Eq. s3d, using the tabulated functionḠ obtained
from the calibration runs. We repeat this measurement many
times, always following the same protocol for varying the
parameterm, and at the end we construct the weighted his-
togramkdfxstd−xgexpf−Astdglx0, at some timet. According to
Eq. s7d this weighted histogram should coincide with the
previously tabulated Green functionGmstdsxux0,td, where
mstd denotes the values of the external parameter at timet
during the protocol. In view of single-molecule pulling ex-
periments such as those of Refs.f21,25g an experiment along
the lines outlined above might well be feasible, and would
provide a direct test of our predictions.

V.C. acknowledges the support of Wayne State University.
M.C. and C.J. acknowledge support by the Department of
Energy, under Contract No. W-7405-ENG-36.

f1g C. Jarzynski, Phys. Rev. E56, 5018s1997d.
f2g G. Hummer and A. Szabo, Proc. Natl. Acad. Sci. U.S.A.98,

3658 s2001d.
f3g C. Jarzynski, Phys. Rev. Lett.78, 2690s1997d.
f4g G. E. Crooks, J. Stat. Phys.90, 1481s1998d.
f5g A. Yukawa, J. Phys. Soc. Jpn.69, 2367s2000d.
f6g S. Mukamel, Phys. Rev. Lett.90, 170604s2003d.
f7g D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev.

Lett. 71, 2401s1993d.
f8g G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett.74, 2694

s1995d.
f9g J. Kurchan, J. Phys. A31, 3719s1998d.

f10g J. L. Lebowitz and H. Spohn, J. Stat. Phys.95, 333 s1999d.
f11g C. Maes, J. Stat. Phys.95, 367 s1999d.
f12g D. Ruelle, J. Stat. Phys.95, 393 s1999d.
f13g D. J. Evans and D. J. Searles, Phys. Rev. E52, 5839s1995d.
f14g G. E. Crooks, Phys. Rev. E60, 2721s1999d.
f15g G. E. Crooks, Phys. Rev. E61, 2361s2000d.
f16g V. Chernyak, M. Chertkov, and C. Jarzynskisunpublishedd.
f17g T. Hatano, Phys. Rev. E60, R5017s1999d.
f18g T. Hatano, S. I. Sasa, Phys. Rev. Lett.86, 3463s2001d.
f19g C. Jarzynski, inLecture Notes in Physics, edited by P. Garbac-

zewski and R. OlkiewiczsSpringer-Verlag, Berlin, 2002d, Vol.

597.
f20g In these situations, conditionsbd is reformulated: it is assumed

that the system is initially in thestationary statecorresponding
to a fixed parameter valuems0d.

f21g J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco, and C. Busta-
mante, Science296, 1832s2002d.

f22g G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles, and D. J.
Evans, Phys. Rev. Lett.89, 050601s2002d.

f23g D. M. Carberry, J. C. Reid, G. M. Wang, E. M. Sevick, D. J.
Searles, and D. J. Evans, Phys. Rev. Lett.92, 140601s2004d.

f24g E. Trepagnier, C. Jarzynski, F. Ritort, G. E. Crooks, C. J. Bus-
tamante, and J. Liphardt, Proc. Natl. Acad. Sci. U.S.A.101,
15038s2004d.

f25g D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco, Jr.,
and C. Bustamantesunpublishedd.

f26g The termnonautonomousdescribes evolution under equations
of motion that themselves are made time dependent through
the variation of some parameterse.g.,m, in our cased. Autono-
mousevolution, by contrast, corresponds to time-independent
equations of motionse.g., withm fixedd.

f27g M. A. Miller and W. P. Reinhardt, J. Chem. Phys.113, 7035
s2000d.

CHERNYAK, CHERTKOV, AND JARZYNSKI PHYSICAL REVIEW E71, 025102sRd s2005d

RAPID COMMUNICATIONS

025102-4


