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ABSTRACT

We show with computer simulations that a rich variety of static and dynamical colloidal phases can be realized
for colloids interacting with two-dimensional periodic substrates. For the static case a new type of colloidal state
that we term colloidal molecular crystals occurs when there is an integer number of colloids per substrate minima.
Here there is a novel orientational ordering in addition to the positional ordering of the colloids. The colloidal
molecular crystals exhibit a multi-step melting in which the orientational ordering is lost first, followed by the
positional ordering. This multi-step melting phenomenon agrees well with recent experiments. Additionally we
show that at fillings where the number of colloids is an incommensurate fraction of the number of substrate
minima, as a function of temperature there is a transition to a state in which local incommensurations become
thermally activated. With an applied drive we find that a remarkable number of distinct dynamical phases can
be realized, including ordered and disordered flows. We also illustrate flow phases in which the colloidal motion
locks to a symmetry direction of the underlying lattice.
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1. INTRODUCTION

There are a wide variety of systems which can effectively be modeled as an assembly of particles interacting with
some form of two-dimensional (2D) periodic substrate. Specific examples include atoms or molecules deposited
on 2D films,1 charge density wave systems,2 vortices in superconductors interacting with periodic arrays of
pinning sites3–6 or magnetic dots,7–9 and vortices in Bose-Einstein condensates with periodic optical trap arrays.
In general, these systems show a rich variety of commensurability phenomena which occur when the number of
particles is an integer or rational fraction of the number of substrate sites.3, 4, 6–8, 10 At these commensurate
densities the particles can form highly ordered crystalline structures and exhibit enhanced melting temperatures
or enhanced pinning thresholds. At incommensurate fillings the system may be filled with grain boundaries
dividing the sample into different regions that are commensurate with the substrate.6 If the system is close to
a strongly commensurate filling, such as near an integer filling, there may be well defined species of interstitials
or vacancies in commensurate configurations.11 Under an applied drive these systems also show a wealth of
dynamical phenomena.11–13 For instance, in sliding charge density wave systems, intricate switching behavior
may arise.2 If an additional ac drive is superimposed with an applied dc drive, a rich phase-locking phenomenon
can occur where the intrinsic frequency of the particle velocity moving over the periodic substrate locks with the
applied ac frequency.2, 13 In atom-on-atom problems, transitions from ordered flows to highly disordered flows
are possible.1 For vortices in superconductors with periodic pinning arrays, a series of dynamical phases from
ordered soliton flows to strongly fluctuating flows occur as the drive is increased.11 Additionally it is possible
to observe symmetry locking effects as the angle of drive is varied with respect to the symmetry direction of the
underlying crystal12; here, the particles preferentially flow along the stronger symmetry direction. In most of the
experimentally realizable systems of these types, the microscopics of the individual particle motions or positions
can not be accessed accessed directly, and instead changes are observed in bulk measurements such as critical
current, magnetization, or the friction coefficient.

Recently, another type of system of interacting particles on a 2D periodic substrate has been realized exper-
imentally in the form of colloidal particles on periodic optical traps.15–23 A particular advantage of this system
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over those mentioned above is that, due to the micron size scale of the colloids, it is possible to directly visualize
the individual particles using video-microscopy. The colloidal particles are ideal as a model condensed matter
system, and in addition, there are a number of potential applications for colloids on periodic substrates. The
ability to make tailored ordered colloidal crystals in an efficient manner can be very valuable for the creation of
photonic band gap materials. Additionally, it has been proposed that by driving colloids over periodic substrates,
new types of sorting devices can be made in which one species of colloid moves along a symmetry direction of
the periodic substrate while other species do not, so that over time the colloid species are separated laterally in
space.18, 20, 21

2. SIMULATION

We consider a two-dimensional system with periodic boundary conditions in the x and y directions. We model
Nc colloids interacting with a repulsive screened Coulomb interaction, and we add thermal noise to our system.
There is a periodic substrate with square or triangular symmetry and Np potential minima, giving a filling
fraction of Nc/Np. The equation of motion for a single colloid is

ηv = fi = −
Nv∑

j �=i

∇iU(rij) + fs
i + fT

i . (1)

Here η = 1 is the damping constant and

U(rij) = −
(

q

|ri − rj |
)

exp(−κ|ri − rj |) (2)

is the colloid-colloid interaction potential. The screening length is 1/κ = 3, q is the charge of the colloids, and
ri(j) is the position of particle i(j). Distances are measured in units of the substrate lattice constant a0. The
force from a triangular substrate of strength A is given by

fs
i =

3∑

k=1

A sin
(

2πpk

a0

)
[cos(θk)x̂ − sin(θk)ŷ] (3)

where pk = x cos(θk) − y sin(θk) + a0/2, θ1 = π/6, θ2 = π/2, and θ3 = 5π/6. The force from a square substrate
is given by

fs
i = A sin

(
2πx

a0

)
x̂ + A sin

(
2πy

a0

)
ŷ. (4)

The thermal noise fT
i arises from random Langevin kicks with < fT (t) >= 0 and < fT

i (t)fT
j (t′) >= 2ηkBTδijδ(t−

t′). We measure temperature in units of the temperature Tm at which the bulk system melts in the absence of
a substrate.

3. COLLOIDAL MOLECULAR CRYSTALS

We first consider the ground states that can be generated when the number of colloids equals an integer multiple
of the number of potential minima in the underlying substrate. To obtain these states, we start the system at
a high temperature such that the particles are diffusing randomly, and slowly cool to T = 0. We consider the
case where the periodicity and strength of the substrate is held fixed and the density of the colloids is varied. In
Fig. 1 we show the ground states for Nc/Np = 1, 2, 3, and 4 for the case of a triangular substrate. In Fig. 1(a)
each colloid sits in the center of the potential substrate minima forming a commensurate triangular lattice. In
Fig. 1(b) each minima now captures two colloids forming a dimer state. There is also a clear orientational
ordering of the dimers, with dimers in one row all aligned in the same direction and dimers in the adjacent
rows aligned in the other direction. This structure is very similar to the “herringbone” structures observed
for molecular dimers deposited on a triangular substrate.24–26 In Fig. 1(c), each substrate captures three
colloids and the colloids form an orientationally ordered trimer state with all the trimers aligned in the same
direction. Fig. 1(d) shows the case where four colloids are captured and an ordered diamond state appears. Since
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(a) (b)

(c) (d)

Figure 1. Colloidal positions (black dots) for a system with an underlying triangular substrate. (a) One colloid per
substrate minima, Nc/Np = 1. (b) Two colloids per substrate minima, Nc/Np = 2. (c) Three colloids per substrate
minima, Nc/Np = 3. (d) Four colloids per substrate minima, Nc/Np = 4.

these colloidal crystalline structures have many similarities with molecular crystals, we have termed these states
“colloidal molecular crystals.” We have also investigated the effect of an underlying square substrate. Here we
find orientationally ordered colloidal molecular crystal states, although the particular geometry of the crystals
is different.15 The reason that the dimer, trimer, and higher order states are orientationally ordered is that the
colloids in neighboring minima interact with each other through an effective multipole potential which produces
anisotropic interactions.

We next consider the melting of the colloidal molecular crystals. We measure both the orientational order of
the dimers and trimers as well as the diffusion of the individual particles. In general, we find that if the substrate
is sufficiently strong, there is a two-stage melting where the first melting transition is the loss of the orientational
ordering of the dimers or trimers. Here the dimers or trimers begin to rotate; however, the colloids remain
confined in the potential minima so there is no long time diffusion. For higher temperatures the second stage
of the melting occurs, as indicated by the onset of diffusion of individual colloids throughout the entire system.
In Fig. 2 we illustrate the melting process for the simplest colloidal molecular system which is the dimer state
on a square substrate. In Fig. 2(a), which shows the low temperature phase, the dimers remain orientationally
ordered. In Fig. 2(b) at a higher temperature, the orientational ordering of the dimers is lost and the dimers
rotate as seen by the lines marking the colloid trajectories. We call this phase a disordered solid. In Fig. 2(c)
at a still higher temperature, the individual colloids diffuse throughout the system, although the effect of the
substrate is still evident. We call this phase a modulated liquid.

By performing a series of simulations for varied substrate strength A and temperature T , we map the onset of
the different phases for the system with a square substrate at Nc/Np = 2.0. In Fig. 3 we show the phase diagram
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Figure 2. Colloidal positions (white dots) and trajectories (black lines) for increasing temperature in a system with a
square substrate and two colloids per minima. (a) Ordered solid; (b) disordered solid, (c) modulated liquid.

for this system. Here Tm is the temperature where the colloidal lattice melts in the absence of the substrate. We
do not show the phases seen for finite but very weak substrates, where a floating solid appears. For intermediate
substrate strengths A < 2, the orientationally ordered solid melts directly into the modulated liquid state. For
higher substrate strengths A ≥ 2, the intermediate disordered solid phase appears. The temperature at which the
disordered solid melts into the liquid increases with increasing substrate strength. Interestingly, the temperature
at which the ordered solid melts to the disordered solid decreases with increasing substrate strength. This effect
occurs because the orientational ordering of the colloids originates from the effective multipole moment of the
dimer interactions. The multipole moment is proportional to the distance d between the two colloids forming
the dimer. As the substrate strength increases, the colloids forming the dimer are forced closer to each other
and the strength of the multipole moment is reduced, thus reducing the temperature at which the ordering due
to the multipole interaction is lost.

The colloidal molecular crystal states illustrated in Fig. 1(c) were recently observed experimentally for a sys-
tem of colloids interacting with a triangular substrate.16 These experiments also showed that the orientationally
ordered colloidal molecular crystal changes to a disordered solid state as the substrate strength is increased, in
agreement with the predictions from the phase diagram in Fig. 3.15 More recently, a theoretical analysis22 of
the orientational ordering and disordering of the colloidal molecular crystals showed explicitly that it is the mul-
tipole moments of the dimers or trimers which give rise to the orientational ordering of the states. It was shown
analytically that the ordered solid to disordered solid transition temperature decreases with increasing substrate
strength as the distance between the colloids in the dimer or trimer states is reduced. Ref.22 also showed that the
dimer case can be mapped to an anti-ferromagnetic Ising model and that the disordering transition is Ising-like
in nature. By changing the anisotropy of the pinning, it should be possible to go from an anti-ferromagnetic
limit to a ferromagnetic limit, with interesting glassy states between.
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Figure 3. Phase diagram of temperature T vs substrate strength A for the dimer system illustrated in Fig. 2.

We next consider incommensuration effects that occur when the number of colloids is not an integer multiple
of the number of substrate minima. In Fig. 4 we show the colloidal states at Nc/Np = 1.5 for the square
and triangular substrates obtained by annealing from a high temperature. For the square substrate, shown in
Fig. 4(a), we find a checkerboard ordering where every other potential minima captures two colloids; however, the
long-range orientational ordering of the dimers is lost. This loss of dimer ordering may be due to the increased
distance between the dimers, which is now twice as large as it was for Nc/Np = 2.0, and the fact that the
multipole interaction strength decreases rapidly as a function of distance. For the triangular substrate shown
in Fig. 4(b), we find two types of disordering effects. Not only is there no orientational ordering of the dimers,
there is also no ordering of the minima that have captured one rather than two colloids. We note that for a
triangular lattice at half filling, the system is geometrically frustrated.

Near the integer matching we obtain localized incommensurations. In Fig. 5(a) we show a system with a
triangular substrate for Nc/Np = 2.04, just above the second filling commensurate case, and in Fig. 5(b) we show
a filling just below commensuration, Nc/Np = 1.96. In both cases we find clearly defined incommensurations
where there is a triply or singly occupied minima surrounded by the dimers. These defects cause a distortion in
the surrounding dimer ordering; however, further away from the defects the system maintains the Nc/Np = 2.0
herringbone ordering. In Fig. 5(b), the dimers surrounding the incommensurate singly-filled minima are oriented
with the dimer direction pointing toward the incommensurate site in a pinwheel configuration.27 Conversely,
in Fig. 5(a) the dimers surrounding the incommensurate trimers are oriented perpendicularly to the trimer. In
each case the dimers act to screen the incommensuration.

Next we consider the melting at fillings near the commensurate states. The simplest case occurs just above
the first filling at Nc/Np = 1.02. Here, most of the potential minima capture single colloids, while a few
minima which are on average far apart contain two colloids. At Nc/Np = 1.02 there is a well defined melting
transition to a liquid state, and a two stage melting occurs where the first stage is the thermal depinning of the
incommensurations. In Fig. 6 we show the colloids (white dots) and the trajectories (black lines) for the system
just above the first melting transition. Here clear hops of the incommensurations from one potential minimum
to an adjacent minimum occur while the commensurate colloids remain immobile. The onset of the diffusion of
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(a) (b)

Figure 4. Colloidal positions (black dots) for fillings of Nc/Np = 1.5 for (a) square substrate lattice and (b) triangular
substrate lattice. The circles are centered at the minima of the substrate.

(a) (b)

Figure 5. Colloidal positions (black dots) for a system with a triangular substrate at fillings of (a) Nc/Np = 2.04, (b)
Nc/Np = 1.96.
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Figure 6. Colloidal positions (white dots) and colloidal trajectories (black lines) for a system with a triangular substrate,
finite temperature, and a filling of Nc/Np = 1.02.

the incommensurations occurs when one of the colloids in a doubly occupied site gains enough thermal energy
to jump into an adjacent minimum. This is equivalent to the dimer state diffusing over the commensurate
substrate. This two stage melting is also consistent with the two stage depinning transition observed for these
fillings close to commensuration, which we discuss in the next section. As the filling is increased further from
commensuration, the two step melting transition becomes increasingly smeared.

We note that below the first commensuration at Nc/Np = 1, a similar two stage melting occurs, only here
the vacancies become mobile before the commensurate colloids do. The temperature difference between the two
melting stages is much smaller in this case than it is for fillings just above the first commensuration, since the
thermal depinning temperature for vacancies is much higher than that of the dimers. Also, near the second
commensurate filling, a similar type of two step melting occurs involving vacancies in the dimer lattice (singly
occupied sites) at fillings below the commensuration, or the diffusion of isolated trimers at fillings above the
commensuration.

4. DRIVEN DYNAMICS

We next consider the effect of an applied driving force fd in the positive x direction on the colloidal molecular
crystals. Experimentally this would correspond to an applied electric field. In the simulations, we slowly increase
fd from zero in small increments and measure the average colloidal velocity. In Fig. 7 we plot the velocity vs
force curves for (from bottom to top) Nc/Np = 1.0, 1.03, 1.09, 1.16, 1.3, and 1.57.

For the commensurate case Nc/Np = 1.0, there is a well defined sharp threshold where all colloids depin at
once. This corresponds to the maximum depinning threshold, since at the first commensurate filling all the forces
on a given colloid from the other colloids are exactly balanced due to the symmetry of the colloidal lattice, and
the depinning threshold equals the maximum pinning force from the substrate, A = 1. At the incommensurate
fillings the colloidal configurations are no longer completely symmetric; thus, some colloids experience a net
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Figure 7. Velocity Vx vs applied drive fd for a system with a triangular substrate at T = 0 for fillings Nc/Np = 1.0,
1.03, 1.09, 1.16, 1.3, and 1.57 (from bottom to top).

force from the surrounding colloids that is not balanced by symmetry, and the depinning threshold for these
colloids is lowered. For the fillings Nc/Np = 1.03, 1.09, and 1.16, there is a clear two stage depinning process.
The first depinning transition involves the incommensurate minima that have captured two colloids rather than
one. These dimer sites disturb the surrounding singly occupied minima. A single colloid to the right of a dimer
(“downstream” with respect to the applied driving force) experiences a repulsive force from the direction of the
dimer that is not counterbalanced by another dimer. As a result, the single colloid is shifted further to the right
with respect to the potential minimum than the other single colloids, and it depins before single particles would
at the commensurate case Nc/Np = 1.0. The second stage of the depinning transition at Nc/Np = 1.03, when
all of the remaining particles depin, occurs very close to the depinning transition at the commensurate case of
Nc/Np = 1.0. For higher fillings the two-step depinning process becomes increasingly smeared. At Nc/Np = 2.0
the depinning threshold is sharp and occurs in a single stage as all the colloids depin at once. This is again due
to the fact that the colloids form an ordered symmetrical crystal in which the colloid-colloid interactions cancel.
For fillings Nc/Np > 2.0 we also find a two stage depinning transition, where the initial depinning occurs for the
incommensurations that have three colloids per trap.

In Fig. 8(a) we plot the colloidal trajectories for the Nc/Np = 1.03 case above the first depinning transition.
Here the motion occurs in 1D paths along the rows that contain doubly occupied substrate sites. In the rows
which are fully commensurate, the colloids remain pinned. In Fig. 8(b), above the second depinning transition,
all the rows of colloids are moving and the colloids again follow 1D paths.

For higher filling fractions the initial depinning transition becomes increasingly disordered and the motion
is not confined in strictly 1D paths but shows considerable 2D wandering. In this disordered flow phase, the
colloids can still be trapped temporarily in the potential minima; however, over time, all colloids take part in the
flow. For higher drives there is a transition to a 1D ordered flow phase in which all the colloids align and form
a highly anisotropic smectic crystal. In Fig. 9(a) we show the colloidal positions at fd = 0.0 and Nc/Np = 1.7,
when a disordered colloidal molecular crystal forms. In Fig. 9(b) we illustrate a snapshot of the moving crystal
state at fd = 1.2 where the colloids align into 1D chains. The colloids have a smectic structure: all the colloids
are evenly spaced in the y-direction, but since each row contains a different number of colloids the colloids are
not aligned in the x-direction.
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(a) (b)

Figure 8. The colloid positions (black dots) and colloid trajectories (black lines) for the system in Fig. 7 for a filling
fraction of Nc/Np = 1.03 at (a) fd = 0.6 and (b) fd = 1.2.

(a) (b)

Figure 9. The colloid positions (black dots) for a filling fraction of Nc/Np = 1.7 at (a) fd = 0.0 and (b) fd = 1.2.
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As the filling fraction is increased further above Nc/Np = 2, the flow becomes increasingly disordered and
maintains its 2D character up to higher drives. For filling fractions above 2.5, the high drive flows again reorganize
into 1D flow paths which contain two rows of colloids flowing along each substrate row.

5. DYNAMICAL SYMMETRY LOCKING

We next consider the case of altering the net direction of drive with respect to the underlying periodic substrate.
Simulations for vortices in periodic pinning arrays have shown that the vortex motion locks to certain highly
symmetric directions of the underlying substrate.12 Along these directions, the motion is highly ordered and
forms 1D channels. Along the incommensurate angles, the vortex motion is more disordered. Recent experiments
with colloids have found similar locking effects.18, 20 Here we consider a system with a triangular substrate where
a fixed driving force is applied in the y direction and the drive in the x-direction is gradually increased. The
net applied force is then fd = ((fy

d )2 + (fx
d )2)1/2 . The angle of drive with respect to the substrate lattice is

θ = arctan(fd
y /fd

x ). In Fig. 10 we plot Vx vs fd
x for the case of Nc/Np = 0.185 (bottom curve), Nc/Np = 0.65

(middle curve) and Nc/Np = 1.57 (top curve). In the absence of a substrate, Vx increases linearly with fx
d . For

Nc/Np < 1.0, there is a clear step region centered around fx
d = 0.5 where dVx/dfx

d = 0.0. Additionally there are
some smaller step regions at higher fx

d . The large step corresponds to drives for which the colloids channel along
the 60◦ symmetry direction of the triangular substrate. In this locked phase, the colloids persistently move along
the symmetry direction of the substrate in spite of the fact that this is not the direction of the net applied force
over most of the step. The higher order steps correspond to a similar locking effect at other symmetry directions.
The width of the step is reduced for the Nc/Np = 0.65 case due to the increased colloid-colloid interactions which
introduce some disorder. For the case of Nc/Np = 1.57, the step region is replaced with a region of reduced but
nonzero slope, although there is still a small step where complete locking occurs. In the reduced slope portion
of the curves, incomplete locking of the colloids occurs. Here the colloids move for a period of time along the
symmetry direction, but this motion is broken by periods of more disordered flow. As the filling fraction is
increased further away from commensuration, the width of the locking regions is further reduced due to the fact
that the increased colloid-colloid interactions tend to reduce the effectiveness of the substrate symmetry. The
locking effects can be enhanced by increasing the strength of the substrate potential.

In Fig. 11(a) we show the colloid trajectories just before locking for the system with Nc/Np = 0.65. Here
some of the colloids channel along the 60◦ direction; however, there is still considerable motion in the positive
y-direction. In Fig. 11(b) along the complete locking step, the colloidal motion is in 1D channels along 60◦. As
the drive is further increased in the x-direction, the motion remains locked to the 60◦ symmetry direction. The
trajectories are again disordered when the system exits the locking region for higher drives in the x-direction.

We note that the devil’s staircase velocity-force curve structures seen in simulations for vortices and in
experiments for colloids were obtained on a different type of substrate than that considered here. In the previous
work the particles moved over a muffin-tin potential where the pinning sites had a radius rp which was smaller
than the periodicity of the substrate lattice a. In the case we consider here, there are no well defined individual
pinning sites; instead, the substrate takes the form of an egg-carton potential. The vortex simulations showed
that as rp increased toward a, fewer steps appeared on the velocity-force curves and the most prominent steps
grew in width, consistent with the results we observe here for the egg-carton potential.

6. CONCLUSION

We have investigated the statics and dynamics of colloids interacting with two-dimensional periodic substrates.
For the static case we find novel colloidal crystalline structures that we call colloidal molecular crystals, where
more than one colloid can be trapped at a single substrate potential minimum. In this case the colloids can act as
dimers, trimers, or quadrimers, and they have an orientational ordering as well as a positional ordering. We find
that colloidal molecular crystals exhibit a multi-step melting, where for large substrate strengths the orientational
ordering is lost while the colloids remain confined within the potential minima. For higher temperatures diffusion
of the individual colloids throughout the sample in a modulated liquid state occurs. We also find that the
transition temperature from the orientationally ordered colloidal molecular crystals to the disordered colloidal
molecular crystal decreases with increasing substrate strength, in agreement with experiment and recent theory.
Additionally we find that for incommensurate fillings that are not too far away from integer fillings, there is a
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Figure 10. The velocity in the x-direction vs applied drive in the x-direction fx
d for a system with a fixed force in the

y-direction. The underlying substrate is triangular. The different curves are for varied filling fraction. From bottom to
top, Nc/Ns = 0.185, 0.65 and 1.57.

(a) (b)

Figure 11. The colloidal positions (white dots) and trajectories (black lines) for the system in Fig. 10 at a filling fraction
of Nc/Np = 0.65. (a) Just before the main locking step at fx

d = 0.1. (b) Along the main locking step at fx
d = 0.5.
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transition temperature above which the incommensurations start to diffuse while the commensurate background
remains pinned. We also discuss how colloidal molecular crystal systems may be used as a realization of standard
canonical statistical mechanics models.

When the colloidal molecular crystals are driven with an applied uniform force, a series of dynamical phases
appear. For incommensurate fillings, a two-stage depinning transition occurs in which the incommensurations
depin first, followed by a transition to a disordered flow phase in which all of the particles move. At higher drives
the system organizes into a moving smectic state with all the colloids moving in well defined one-dimensional
channels which may contain different numbers of colloids. For fillings greater than two the smectic state does
not form. We find that the colloidal motion can lock to certain symmetries of the underlying substrates when
the direction of the drive is varied. For certain initial directions of drive there are two degenerate symmetry
directions and the colloidal motion exhibits a spontaneous symmetry breaking with the global flow following one
of the symmetry directions.
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