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Abstract. To ful�ll the needs of its deep space exploration program,

NASA is actively supporting research and development in autonomy soft-
ware. However, the reliable and cost-e�ective development and validation

of autonomy systems poses a tough challenge. Traditional scenario-based

testing methods fall short because of the combinatorial explosion of possi-
ble situations to be analyzed, and formal veri�cation techniques typically

require a tedious, manual modelling by formal method experts. This pa-
per presents the application of formal veri�cation techniques in the devel-

opment of autonomous controllers based on Livingstone, a model-based

health-monitoring system that can detect and diagnose anomalies and
suggest possible recovery actions. We present a translator that converts

the models used by Livingstone into speci�cations that can be veri�ed

with the SMV model checker. The translation frees the Livingstone de-
veloper from the tedious conversion of his design to SMV, and isolates

him from the technical details of the SMV program. We describe di�er-

ent aspects of the translation and briey discuss its application to several
NASA domains.

1 Introduction

As NASA's missions continue to explore Mars and beyond, the great distances

from Earth will require that they be able to perform many of their tasks with
an increasing amount of autonomy, including navigation, self-diagnosis, and on-
board science. For example, the Autonomous Controller for the In-Situ Propel-
lant Production facility, designed to produce spacecraft fuel on Mars, must oper-
ate with infrequent and severely limited human intervention to control complex,
real-time, and mission-critical processes over many months in poorly understood
environments [4].

While autonomy o�ers promises of improved capabilities at a reduced opera-
tional cost, there are concerns about being able to design, implement and verify
such autonomous systems in a reliable and cost-e�ective manner. Traditional
scenario-based testing methods fall short of providing the desired con�dence
level, because of the combinatorial explosion of possible situations to be ana-
lyzed.



Often, formal veri�cation techniques based on model checking1 are able to
e�ciently check all possible execution traces of a system in a fully automatic
way. However, the system typically has to be manually converted beforehand
into the syntax accepted by the model checker. This is a tedious and complex
process, that requires a good knowledge of the model chacker, and is therefore
usually carried externally by a formalmethods expert, rather than by the system
designer himself.

This paper presents the application of formal veri�cation techniques in the
development of autonomous controllers based on Livingstone, a model-based
health management and control system that helps to achieve this autonomy by
detecting and diagnosing anomalies and suggesting possible recovery actions. We
present a translator that converts the models used by Livingstone into speci�-
cations that can be veri�ed with the SMV model checker from Carnegie Mellon
University. The translator converts both the Livingstone model and the speci�-
cation to be veri�ed from Livingstone to SMV, and then converts any diagnostic
trace from SMV back to Livingstone. It thereby shields the Livingstone applica-
tion designer from the technicalities of the SMV model checker.

Sections 2 and 3 respectively present the Livingstone health management
system and the SMV model checker. Section 4 introduces our translator and
describes its di�erent parts. Section 5 discusses its application to several NASA
projects, Section 6 develops some comments on the nature of the veri�cation
problem for autonomy model, and Section 7 draws �nal conclusions.

2 Livingstone

Livingstone is a model-based health monitoring system developed at NASA
Ames [9]. It uses a symbolic, qualitative model of equipment to infer its state
and diagnose failures. Livingstone is one of the three parts of the Remote Agent
(RA), an autonomous spacecraft controller developed by NASA Ames Research
Center conjointly with the Jet Propulsion Laboratory. The two other compo-
nents are the Planner/Scheduler, which generates exible sequences of tasks for
achieving mission-level goals, and the Smart Executive, which commands space-
craft systems to achieve those tasks. Remote Agent was demonstrated in ight
on the Deep Space One mission (DS-1) in May 1999, marking the �rst control of
an operational spacecraft by AI software [6]. Livingstone is also used in other ap-
plications such as the control of a propellant production plant for Mars missions
and the monitoring of a mobile robot.

The functioning of Livingstone is depicted in Fig. 1. The Mode Identi�cation

module (MI) estimates the current state of the system by tracking the commands
issued to the device. It then compares the predicted state of the device against
observations received from the actual sensors. If a discrepancy is noticed, Liv-
ingstone performs a diagnosis by searching for the most likely set of component

1 As opposed to those based on theorem proving, which can provide even more general
results but require an even more involved and skilled guidance.
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Fig. 1. Livingstone mode identi�cation (MI) amd mode recovery (MR)

mode assignments that are consistent with the observations. Using this diagno-
sis, the Mode Recovery module (MR) can compute a path to recover to a given
goal con�guration.

The model used by Livingstone describes the normal and abnormal functional
modes of each component in the system. Livingstone describes components us-
ing a declarative formalism called Model Programming Language (MPL), which
has a Lisp-like syntax. Components are parameterized and are described using
variables taking qualitative, discrete values. For each component, a set of modes
is de�ned identifying both its nominal and failure modes. Each mode speci�es
constraints on the values that variables may take when the component is in
that mode, and how the component can switch to other modes (by de�nition,
spontaneous transition to any failure mode can happen from any mode). The
Livingstone model thus represents a combination of concurrent �nite-state tran-
sition systems. For example, Fig. 2 presents a simple MPL model for a valve,
with a variable flow ranging over foff, low, nominal, highg. It has two nominal
modes open and closed and two failure modes stuck-open and stuck-closed.
The closed mode enforces flow=off and allows a transition do-open to the
open mode, triggered when the cmd variable has value open.

3 Symbolic Model Checking and SMV

Model checking is a veri�cation technology based on the exhaustive exploration
of a system's achievable states. Given a model of a concurrent system and an
expected property of that system, a model checker will run through all possi-
ble executions of that system, including all possible interleavings of concurrent
threads, and report any execution that leads to a property violation.

Classical, explicit-state model checkers such as SPIN [5] do this by generating
and exploring every single state. In contrast, symbolic model checking manipu-
lates whole sets of states at once, implicitly represented as the logical conditions



(defvalues flow (off low nominal high))

(defvalues valve-cmd (open close no-cmd))

(defcomponent valve (?name)

(:inputs (cmd :type valve-cmd))

(:attributes ((flow ?name) :type flow) ...)

(closed :type ok-mode :model (off (flow ?name))

:transitions ((do-open :when (open cmd) :next open) ...))

(open :type ok-mode ...)

(stuck-closed :type fault-mode ...)

(stuck-open :type fault-mode ...))

Fig. 2. A simple MPL Model of a valve

that those states satisfy. These conditions are encoded into data structures called
Binary Decision Diagrams (BDDs) [1], that provide a compact representation
and support very e�cient manipulations. Typically, a BDD of the current set
of states is combined with a BDD of the transition relation to obtain a BDD
of the next set of reachable states. Symbolic model checking can address much
larger systems than explicit state model checkers, but does not work well for all
systems: the complexity of the BDDs can outweigh the bene�ts of symbolic com-
putations, and BDDs are still exponential in the size of the system in the worst
case. While symbolic model checking has traditionally been applied to hardware
systems, it is increasingly being used to verify software systems, as well.

SMV, from Carnegie-Mellon University (CMU) [2], is one of the most pop-
ular symbolic model checkers. An SMV speci�cation uses variables with �nite
types, grouped into a hierarchy of module declarations. Each module states its
local variables, their initial value and how they change from one state to the
next. Properties to be veri�ed can be added to any module. The properties are
expressed in CTL (Computation Tree Logic). CTL is a branching-time tempo-
ral logic, which means that it supports reasoning over both the breadth and
the depth of the tree of possible executions. For example, the CTL formula
AG flow=high states that Always (for all executions) Globally (all along each

execution), the ow is high.

4 Veri�cation of Livingstone Models

The Livingstone engine performs complex computations using large-size data
structures capturing its knowledge about the model. In order to apply model
checking to the autonomous controller as a whole, we would need an SMV spec-
i�cation of the Livingstone engine and its data structures, including the Living-
stone model. Producing such a speci�cation would be an arduous and error-prone
task. Furthermore, the size of the data structures involved would severely limit
the tractability of model checking.

Alternatively, the autonomymodel can be considered as a high-level program
that is \executed", in a somewhat unusual way, by Livingstone. The Livingstone
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Fig. 3. Three kinds of translation between MPL and SMV

program itself is a more complex, but also more stable and better understood
part, built around well-documented algorithms. Since it remains basically un-
changed between applications, the veri�cation of its correctness can be done once
and for all by its designers and is not addressed here. From the point of view of
its users, Livingstone is viewed as a stable, trustable part, just as C programmers
trust their C compiler.

Therefore, the focus of this article is on the veri�cation of a Livingstone model
with respect to the real system that this model represents. This can be addressed
by turning this model into a representation suitable for model checking. Since
this model is speci�c to the application that it is used for, it is indeed where the
correctness issues are most likely to occur.

In many previous experiences in model checking of software, this translation
has been done by hand. This is usually the most complex and time-consuming
part, typically taking weeks or months, whereas the running the veri�cation is a
matter of minutes or hours thanks to the processing power of today's computers.
The net result is that software model checking is currently mostly performed o�-
track by formal methods experts, rather than by �eld engineers as part of the
development process.

Our goal is to allow Livingstone application developers to use model checking
to assist them in designing and correcting their models, as part of their usual
development environment. To achieve that, we have developed a translator to
automate the conversion between MPL and SMV. To completely isolate the
Livingstone developer from the syntax and technical details of the SMV version
of his model, we need to address three kinds of translation, as shown in Fig. 3:

{ The MPL model needs to be translated into an SMV model amenable to
model checking.

{ The speci�cations to be veri�ed against this model need to be expressible in
terms of the MPL model and similarly translated.

{ Finally, the diagnostic traces produced by SMV need to be converted back
in terms of the MPL model.



MODULE valve

VAR mode: {open,closed,stuck-open,stuck-closed};

cmd: {open,close,no-cmd};

flow: {off,low,nominal,high};

DEFINE faults:={stuck-open,stuck-closed};

INVAR mode=closed -> flow=off

TRANS (mode=closed & cmd=open) ->

(next(mode)=open | next(mode) in faults)

Fig. 4. SMV Model of a Valve

These three aspects are covered by our translator and are detailed in the
following sub-sections. The translator program has been written in Lisp2 and is
about 4000 lines long.

4.1 Translation of Models

The translation of MPL models to SMV is facilitated by the strong similarities
between Livingstone models and SMV speci�cations. In particular, both have
synchronous concurrency semantics. The main di�culty in performing the trans-
lation comes from discrepancies in variable naming rules between the at name
space of Livingstone and the hierarchical name space of SMV. Each MPL variable
reference, such as (flow valve-1), needs to be converted into a SMV quali�ed
variable reference w.r.t. the module hierarchy, e.g. ispp.inlet.valve-1.flow.
To optimize this process, the translator builds a lexicon of all variables declared
in the MPL model with their SMV counterpart, and then uses it in all three parts
of the translation. Figure 4 presents the SMV translation of the MPL model in
Figure 2.

4.2 Translation of Speci�cations

The speci�cations to be veri�ed with SMV are added to the MPL model using
a new defverify declaration3. The defverify declaration also de�nes the top-
level module to be veri�ed. The properties to be veri�ed are expressed in a Lisp-
like style that is consistent with the rest of the MPL syntax; their translation
function is an extension of the one used for MPL's logic formulae. For example,
the declaration in Fig. 5 speci�es a CTL property to be veri�ed on module ispp.
Without entering into details of CTL, the speci�cation says that, from any non-
failure state, a high ow in valve 1 can eventually be reached. Fig. 6 shows the
top-level SMV module that is produced from that declaration.

In SMV, speci�cations use the powerful temporal logic CTL. CTL is very
expressive but requires a lot of caution and expertise to be used correctly. To

2 Lisp was a natural choice considering the Lisp-style syntax of the MPL language.
3 This is speci�c to the translator and rejected by Livingstone; an added empty Lisp
macro de�nition easily �xes this problem.



(defverify

(:structure (ispp))

(:specification

(always (globally (implies

(not (broken))

(exists (eventually (high (flow valve-1)))))))

Fig. 5. Speci�cation for veri�cation in MPL

MODULE main

VAR ispp : ispp;

SPEC AG ((!broken) ->

EF (ispp.inlet.valve-1.flow = high))

Fig. 6. Speci�cation for veri�cation in SMV

alleviate this problem, the translator supports several alternative ways of ex-
pressing model properties.

Plain CTL | CTL operators are supported in MPL's Lisp-like syntax, as illus-
trated in Fig. 5.

Speci�cation Patterns | Common properties such as reachability of given com-
ponent modes can be concisely expressed using pre-de�ned speci�cation patterns
such as (:reachability (valve valve-1)).

Consistency and completeness are a prime source of trouble for de-
signers of Livingstone models. For example, for all transition statements
(name :when <cond> :next <mode>) associated to the same mode, it is re-
quired that exactly one of the conditions <cond> hold at each step. If two tran-
sitions are enabled simultaneously, then two next modes are enforced at the
same time, resulting in inconsistency. To catch these problems, the speci�cation
pattern (:disjointness <comp>) extracts the guards of all transitions of com-
ponent <comp> in the model and generates, for each mode, a mutual exclusion
property among its transitions. A peer pattern (:completeness <comp>) checks
that at least one guard is always ful�lled.

Auxiliary Functions | The translator supports some auxiliary functions that
can be used in CTL formulas to concisely capture Livingstone concepts such as
occurrence of failures, activation of commands or probability of failures. Table 1
gives a representative sample. Some functions are translated solely in terms of
SMV logic expressions, while others, such as failed, require the introduction of
new variables4.

4 The latter are omitted by default, since the new variables can cause a big penalty
on the performance of SMV.



Table 1. Some auxiliary functions for MPL model speci�cations

(broken heater)= Heater is in a failed state.

(failed heater)= On last transition, heater failed.

(multicommand 2) = At least two commands are activated.
(brokenproba 3) = Combined probability of currently

failed components is at most of order 3.

The probability analysis opens an interesting perspective. Failure probabili-
ties are mapped to small integer order-of-magnitude values (e.g. p = 10�3 maps
to 3), so that the value for multiple failures can be computed by integer addition,
which is supported by SMV's BDD-based analysis. One should note, however,
that this is an approximate method, which �ts well with the qualitative nature
of Livingstone models but is no substitute for a precise approach such as Markov
chain analysis.

Observers | The translator allows the de�nition of observer automata, which
are cross-breeds between modules (in that they can refer to other components or
modules) and components (in that they can have modes). An observer, however,
can have no internal variables, other than keeping track of mode. Observers are
useful in some situations where the CTL speci�cation language is inadequate for
representing the speci�cations that one wants to verify.

4.3 Translation of Traces

When a violated speci�cation is found, SMV reports a diagnostic trace, consist-
ing of a sequence of states leading to the violation. This trace is essential for
diagnosing the nature of the violation.

The states in the trace, however, show variables by their SMV names. To
make sense to the Livingstone developer, it is translated back in terms of the
variables of the originalMPL model. This is achieved using the lexicon generated
for the model translation in the reverse direction.

A more arduous di�culty is that the diagnostic trace merely indicates the
states that led to the violation but gives no indication of what, within those
states, is really responsible. Two approaches to this diagnosis problem are cur-
rently being investigated. One is based on using visualization tools to expose
the trace, the other one uses a truth maintenance system to produce causal
explanations [8].

5 Applications

5.1 Deep Space One

Livingstone was originally developed to provide model-based diagnosis and re-
covery for the Remote Agent architecture on the DS1 spacecraft. The full Liv-
ingstone model for the spacecraft runs to several thousand lines of MPL code.



Using the translator, we have automatically constructed SMV models and veri-
�ed several important properties, including consistency and completeness of the
mode transition relations, and reachability of each mode. We are also developing
specialized declarations to enable us to verify path reachability properties, such
as the ability of the system to transition from a fault mode to a known \safe"
mode. Using the translator, we were able to identify several (minor) bugs in
the DS1 models (this was after the models had been extensively tested by more
traditional means) [7].

5.2 ISPP

The translator is being used at NASA Kennedy Space Center by the developers
of a Livingstone model for the In-Situ Propellant Production (ISPP), a system
that will produce spacecraft propellant using the atmosphere of Mars [3]. First
experiments have shown that SMV can easily process the ISPP model and verify
useful properties such as reachability of normal operating conditions or recover-
ability from failures. The current version of the ISPP model, with 1050 states, can
still be processed in less than a minute using SMV optimizations (re-ordering of
variables). The Livingstone model of ISPP features a huge state space but little
depth (all states can be reached within at most three transitions), for which the
symbolic processing of SMV is very appropriate.

6 Lessons Learned

Concrete applications have shown that the nature of the veri�cation problem for
Livingstone models is quite distinct from the veri�cation of a more conventional
concurrent application. A typical concurrent system is a collection of active
entities, each following a well scoped algorithm. In contrast, a typical Livingstone
module describes a passive component such as a tank, valve or sensor; it states
how this component reacts to external commands but hardly ever imposes any
kind of order of operations in the component itself. On top of that, failures
amount to unrestricted spontaneous transitions in every component that allows
them.

This results in state spaces that have a very peculiar shape: a huge branching
factor, due to all the command variables that can be set and all the failures that
can occur at any given step, but a very low depth, due to the very little inherent
sequential constraints in the model. In other words, a typical reachability tree
for an MPL model is very broad but very shallow, with every state reachable
from the initial one within a few transitions.

This also a�ects the kind of properties that are useful to verify. Looking
for deadlocks makes no sense in the presence of spontaneous failure transitions,
though more focused reachability properties can reveal inconsistencies in the
model. More typically, though, one is interested in consistency and completeness
properties, because the declarative nature of MPL makes it very easy to come
up with an over- or under-constrained model.



7 Conclusions

Our MPL to SMV translator allows the Livingstone-based application developers
to take their MPL model, specify desired properties in a natural extension of
their familiar MPL syntax, use SMV to check them and get the results in terms
of their MPL model, without reading or writing a single line of SMV code. This
kind of separation is an important step towards a wider adoption of veri�cation
methods and tools by the software design community.

SMV seems to be very appropriate for certifying Livingstone models for sev-
eral reasons. First of all, the Livingstone and SMV execution models have a lot
in common; they are both based on conditions on �nite-range variables and syn-
chronous transitions. Second, the BDD-based symbolic model checking is very
e�cient for such synchronous systems and appears to �t well to the loosely
constrained behaviors captured by Livingstone models. Due to this good match
and to the high level of abstraction already achieved by the Livingstone models
themselves, it is possible to perform an exhaustive analysis of a direct translation
of those models, even for fairly complex models. In contrast, more conventional
software model checking applications almost always require some abstraction
and simpli�cation stage to make the model amenable to model checking.

This work shows that veri�cation of Livingstone models can be a useful tool
for improving the development of Livingstone-based applications. It is, however,
only one piece in the larger problem of building and validating autonomous
applications. It cannot establish that the Livingstone mode identi�cation will
properly identify a situation (though it can establish that there is not enough
information to do it). Neither does it address the interaction of Livingstone
with other parts of the system, including real hardware with hard timing is-
sues. Other complementary approaches are needed. In this line of work, we are
currently prototyping an analytic testing approach based on a controlled execu-
sion of an instrumented version of the real Livingstone program in a simulated
environment.
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