
Towards a New Generic Approach for Web Access to Control Data

F.Momal
LHC Division, CERN, 1211 Geneva 23, Switzerland

Abstract

For more than two years, we have offered Web remote
access to the data from our supervisory and control
systems. All the computing for accessing and presenting
the data was previously done on the Web server. During
the past two years, Internet/Intranet technologies have
greatly evolved. At the same time, more and more
industrial control and supervisory systems now offer
Internet interfaces.

The structure of our remote access system has conjointly
evolved. We aim to install specialized servers that will
offer access to different kinds of data. Whenever possible,
we use the new Internet components offered by the
installed industrial products. In the other cases,
developments have been made. On the client side, we use
new technologies, such as Java.

1 Towards a new approach

Our group is involved in the control and software
supervision of the LHC superconducting magnets tests.
For more than two years, we have offered Web remote
access to the data from our supervisory and control
systems[1]. In a simple and unique way, users can access
real-time data, process alarms and archived data. They use
the Web access system from home or from the office to
follow the tests, to do post-mortem analysis, etc. This
service has encountered great success and is now seen as a
mandatory part of the supervisory systems.

The first system based on the technologies available at
that time intensively used the Web server to access data
and to dynamically build the presentation pages (trend
curves, graphical synoptics, alarms lists, etc.). The
software gateway installed on the server had
responsibilities for both acquiring the data from the field
and creating the graphical presentation of it. The generic
approach of the gateway enabled it to reuse all the
different programs available to access the control data.

During the past two years, Internet/Intranet technologies
have greatly evolved. The client side (Web browser) is no
longer just a displaying tool but it has also acquired the
capacity to run many kinds of programs. The Java pro-
gramming language is now available and the most
common desktop software can access Web data. How can
these new features help us, and are there any
disadvantages?

By bringing the computing power on the client side of
the Web, it is now possible to distribute the system. The
client is now able to acquire the necessary control data
himself, and present it in sophisticated ways.

Fig. 1 The old system.

Thus specialized data servers may be installed near the
controlled processes. Their goal being limited to transfer
the value of some variables, they are lighter and simpler.
But to do so can create some problems:
1) Security features are harder to manage due to the fact

that more machines are involved.
2) Standardization problems appear for the data transfer

between the client and the distributed servers.
Depending on the accessed system, different
programs may be needed on the client side1 .

Such a system is less prone to errors. Because the data
exchanges do not go through a unique gateway, an
important bottleneck disappears.

The network load is lowered, because only the value of
the control variables is transferred (the only moment when
the network traffic is heavy is when the user opens the
Web page where the program can be found). In the
previous system, complete images were transferred
continuously. Obviously, a gain in speed could also be
acquired.

The central Web server would no longer be involved in
control data acquisition and presentation, but would just
contain software and related information. Thus, the load
on this server would be greatly reduced and it would result
in less waiting time.
The most obvious interest is of course in program
interactivity. The user has now the ability to modify the
data presentation without interacting with any server. It is
also now possible to take actions on the client side such as

1 Programs refer, on the Web client side, to Java applets or
ActiveX components.

sounding an alarm when an error occurs, etc.
From what precedes we see that there are many

advantages in the new approach. But the cost for moving
from a 100% server approach to a more client oriented one
is not low. Programs have to be rewritten. The client
machines must be more powerful and they must be able to
use the new technologies involved (Java, etc.). One has
also to take into account the possibility of having different
versions of browsers on the different client machines.

In any case if one wants to adopt the forthcoming
Internet solutions offered by the SCADA industry, one has
to move towards a more client side approach.

2 The Internet solutions offered by the SCADA indus-
try

Logically wishing to integrate Intranet/Internet
technolo-gy, SCADA systems vendors are starting to offer
extensions compliant with the standards involved. But
each has its own approach and the result is a rather
anarchic offer. We have noticed the following approaches:
1) The first and simplest one is to transfer "screen

images" across the network. A Web server, closely
tied to the supervisory software converts on demand
the graphical output of it into bitmap images and
sends them back to the Web client (ex: Labviewtm).
This solution can be very convenient and is very easy
to set up. But it is a closed solution. One can
visualize the data but can't do anything else with it. It
is also demanding in terms of computing resources
and can dangerously overload the machine on which
the server and supervisory software is installed.

2) At the other end, one of the products we saw offers
total control of the SCADA system via ActiveX
(FactoryLinktm from USDATA[2]). It ports the
operator console in a Web browser. This can also be
very convenient in some cases. It can be seen as the
Windows equivalent to an Xterminal running the
SCADA system in the Unix environment. But this
option doesn't really respond to our needs. We don't
want to offer a very limited number of people full
control of the system (a license is in that case needed
for each client) but rather a more synthesized view to
a large group of people. It is also a closed solution
and doesn't offer programmatic interface.

3) Some vendors intend to propose "light clients" using
ActiveX. These clients offer the users limited
functions. For example, an ActiveX object could be
dedicated to viewing the alarms or the data stored in
the archives of the SCADA system. This is effectively
a lighter solution but, like all ActiveX solutions, it is
dedicated to a unique platform.

4) Rarely, some products offer an open Java based
interface which allows simple integration.

5) Of course the "old solution" of a classic TCP/IP
server using the sockets can be easily integrated as
long as the protocol is known. Java applets can access
the server.

Some of these approaches are more open than others.
The first three can't be integrated in a global system. They
lack a programmatic interface. But, on the other hand, it is
an off the shelf solution which can be used immediately.
The diversity is certainly due to the immaturity of these
technologies. We can hope that one day a standard will be
adopted by a majority of vendors (for example CORBA to
communicate between distributed objects)

3 An attempt at a generic and distributed system

Our system must address the process experts as well as
physicists, managers or system experts. Thus we need to
access, in a similar way, data coming from a broad range
of systems such as supervisory systems, archived files,
databases, etc. The formatting of the data is also diverse to
reflect the different needs: it can be trend curves,
operators' console like graphical views of the process,
tables to be inserted in Excel, etc. To cope with this
diversity, we must have a generic approach.

3.1 The structure of our system

Our system is composed of a central server and a set of
decentralized data servers. The central Web server has
three main functions:
1) It stores the HTML pages and the Java programs.
2) It acts as a location server: it keeps information on the

locations of the data servers.
3) It stores information concerning data visualization.

So, for example, for a particular process it keeps on one
side the name of the data server which handles the real-
time data related to that process, and on the other side the
description of the way the data has to be graphically
represented.

Local data servers are attached to a process. We have
defined three types of data servers (see fig.2): real-time
data servers, alarms data servers and archives data servers.
These servers collect the data which is to be published on
the Web. They manage all security features and control the
load on the control machines themselves. The three
servers may of course coexist physically on the same
machine.

3.2 Standardizing access to the data servers

Whenever possible, we try to standardize the access to
the different data servers. When integrating closed
solutions offered from the SCADA vendors, this is not
possible and we only integrate them in the HTML pages.
In other cases, standardization may be achieved on the
server or on the client side. For the archived data servers,
because we use our own software, this is done on the
server side. By doing so, we allow unique access to this
server from any software, linked to the Web or not.

For the other servers, we minimize as much as possible
the number of protocols used. We currently accept two
protocols:
1) A simple protocol based on httpd. It is not the most

efficient but it is very easy to implement with any
kind of supervisory software. Real-time values are
returned as a simple list of names and values.

2) A socket based protocol defined by the vendor of a
product we have purchased (MD2Stm). This program,
which runs on the data servers, gathers data in a real-
time database. It offers local and remote programma-
tic interfaces (Java classes, C++ library, Excel
interface, etc.).

On the client side, a Java interface related to data access
has been defined. It hides the diversity beneath.

3.3 An applet to visualize control data

On top of the client side Java interface, an applet to

visualize control data has been developed. The user can
interactively define the data he is interested in and how he
wishes to view it. He may then save the defined
configurations on the central server to retrieve them later
from any computer. This applet is also able to interpret the
graphical language used by the previous system to animate
supervisory displays (see an example on fig.3). This
language tells to the graphical engine of the applet how to
go about viewing the data. With a simple text editor, any
user may easily describe the way he wants to view the
data. Putting this description on the server allows
everyone to immediately use it. The applet can load the
description from the server and animate it after connecting
to the proper data server. Because the access protocol to
this data server has been hidden beneath a Java interface,
the same description may be applied to any kind of data
server.

3 Conclusion

The diversity of the solutions offered by the SCADA
industry is too wide today to allow easy installation of a
generic system. Important developments have still to be
made. But standards are on their way and we can hope
that their adoption by many will once again simplify our
work like the Web did.

[1] F.Momal, C. Pinto-Pereira, "Using World-Wide-Web

for Control Systems", ICALEPCS'95,
http://wwwlhc.cern.ch/ICALEPCS95/icalep95.htm

[2] http://www.usdata.com/

Fig. 2 The structure of the our new system.

Fig. 3 An applet to visualize control data.

