Subsolidus Phase Equilibria and Crystal Chemistry in the System BaO-TiO₂-Ta₂O₅

T.A. Vanderah, R.S. Roth, T. Siegrist[†], W. Febo, J.M. Loezos, and W. Wong-Ng

National Institute of Standards and Technology Materials Science and Engineering Laboratory, Ceramics Division Gaithersburg, MD 20899

> [†]Bell Laboratories, Lucent Technologies 600 Mountain Avenue Murray Hill, NJ 07974

Abstract

Subsolidus phase relations have been determined for the BaO:TiO₂:Ta₂O₅ system by X-ray diffraction analysis of ~100 specimens prepared in air at temperatures near but below the solidus (1275°C to 1500°C). For the BaO:Ta₂O₅ subsystem, the formation of all three polymorphs of $BaTa_2O_6$ (orthorhombic, tetragonal, and hexagonal) was confirmed. The present study found no stable phases forming between Ba5Ta4O15 and BaO. In the ternary system, along the line BaTiO₃-Ba₅Ta₄O₁₅, the previously reported 8L and 10L hexagonal perovskite derivatives were confirmed, albeit with somewhat wider homogeneity ranges; $BaTiO_3$ dissolves Ta^{5+} up to BaTi_{0.64}Ta_{0.29}O₃, which contains 7% B-cation vacancies and exhibits a dilated cubic unit cell (a=4.0505(2) Å). The formation of Ba₃Ti₄Ta₄O₂₁, a member of the hexagonal A₃M₈O₂₁-type ternary oxides, was confirmed as well as its solid solution, for which a different mechanism of formation is suggested. Several new compounds have been found, including four members of the orthorhombic (space group Cmcm) "rutile-slab" homologous series, BaTi_nTa₄O_{11+2n}, with nvalues 3,5,7,9; the unit cells for these compounds are given. Three ternary phases with closepacked [Ba,O] layer structures related to that of 6L Ba₄Ti₁₃O₃₀ were found: 13L $Ba_{18}Ti_{53}Ta_2O_{129}$, 7L $Ba_{10}Ti_{27}Ta_2O_{69}$, and 8L $Ba_6Ti_{14}Ta_2O_{39}$. The crystal structures of the 13L and 7L phases were determined by single-crystal X-ray diffraction (13L Ba₁₈Ti₅₃Ta₂O₁₂₉: *cchcchcchc*, C2/m, a=9.859(2) Å, b=17.067(5) Å, c=30.618(8) Å, $\beta=96.11(2)^{\circ}$, Z=2; 7L **Ba₁₀Ti₂₇Ta₂O₆₉:** cchcchc, C2/m, a=9.855(3) Å, b=17.081(7) Å, c=16.719(7) Å, $\beta=101.18(3)^{\circ}$; Z=2), and are described and compared with those of the 6L and 8L members of this family. Phases with tetragonal tungsten bronze (TTB) related structures occur over large compositional ranges in the BaO:TiO2:Ta2O5 system, both within the ternary (Ba6-xTi2-2xTa8+2xO30, x=0 \rightarrow 0.723), and along the BaO-Ta₂O₅ binary (from 43 to 26 mol% BaO), which in turn dissolves up to ~12 mol% TiO₂ to form extensive single-phase fields with different TTB superstructures. X-ray powder diffraction data are given for three binary BaO:Ta₂O₅ compounds exhibiting the TTB structure and two superstructures. The large compositional ranges of the TTB-type phases are accompanied by only small changes in specific volume. The TTB-type regions within the ternary and those emanating from the BaO-Ta₂O₅ binary do not co-exist in equilibrium, which likely reflects fundamental differences in the structural mechanisms that accommodate the variable stoichiometries. The similarities and differences between the BaO:TiO₂:Ta₂O₅ and BaO:TiO₂:Nb₂O₅ systems are described.

Keywords:

 $BaO:TiO_2:Ta_2O_5, BaO:Ta_2O_5, barium titanium tantalates, tetragonal tungsten bronze, BaTi_{0.64}Ta_{0.29}O_3, Ba_3Ti_4Ta_4O_{21}, BaTi_nTa_4O_{11+2n}, Ba_{18}Ti_{53}Ta_2O_{129}, Ba_{10}Ti_{27}Ta_2O_{69}, Ba_6Ti_{14}Ta_2O_{39}.$

Introduction

Complex titanates, tantalates, and niobates display important dielectric properties that are exploitable, for example, in wireless communications applications [1-5]. As part of a continuing program to elucidate phase relations, crystal chemistry, and the occurrence of new compounds in this class of ceramic oxides, the first systematic study of the BaO-TiO₂-Ta₂O₅ system has been carried out and is described here.

Review of Previous Work

Studies of the phase equilibrium relationships of the $TiO_2-Ta_2O_5$ system [6-8] indicate that TiO_2 dissolves up to ~10 mol% Ta_2O_5 , and that the compound $TiTa_2O_7$ forms with a structure analogous to that of $TiNb_2O_7$. In this arrangement, the metal ions are disordered in vertex-sharing octahedra arranged in blocks of the ReO₃ structure interlinked by edge-sharing [9,10]. At temperatures above ~1200°C, a solid solution of the high-temperature form of Ta_2O_5 forms with up to 10-15 mol% TiO_2 .

The BaO-TiO₂ subsystem has been well studied [8,11-17]. At temperatures above 1200°C, four compounds referred to as barium polytitanates occur between TiO₂ and the well-known Ba-TiO₃; namely, Ba₂Ti₉O₂₀, BaTi₄O₉, Ba₄Ti₁₃O₃₀, and Ba₆Ti₁₇O₄₀. The first two compounds are technically important in dielectric resonator ceramics [4,5]. The crystal chemistry of the barium polytitanate phases has been described in considerable detail [18,19]. With the exception of BaTi₄O₉, which adopts a framework-type structure built from zig-zag chains of edge-sharing [TiO₆] octahedra, the polytitanate phases exhibit close-packed [Ba,O] layer structures with Ti occupying octahedral interstices. Between perovskite-type BaTiO₃ and BaO, the compound Ba₂TiO₄ forms with a β -K₂SO₄-type structure containing discrete tetrahedral [TiO₄] units [20].

A single report is available describing a systematic study of phase relations in the BaO-Ta₂O₅ system [8,21]. Six binary phases were reported to form at 6:1, 4:1, 3:1, 5:2, 1:1, and 1:2 BaO:Ta₂O₅ molar ratios. The three latter compounds are well-established: Ba₅Ta₄O₁₅ [22] is isostructural with Ba₅Nb₄O₁₅ and exhibits a five-layer hexagonal structure derived from perovskite. BaTa₂O₆ exhibits three polymorphs [23,24]: a low-temperature orthorhombic form

isostructural with BaNb₂O₆, an intermediate form with a tetragonal tungsten bronze type structure, and a high temperature hexagonal form; all of the structrures are of the framework type with octahedrally coordinated Ta⁵⁺ and channels accommodating barium. BaTa₄O₁₁ occurs with a tetragonal tungsten bronze related structure [25]. The occurrence and crystal chemistry of the higher-BaO compounds at 3:1, 4:1, and 6:1 BaO:Ta₂O₅ have not been well established; however, Ba₄Ta₂O₉ has been reported to exist in polymorphic forms with perovskite-related structures [26,27].

Although phase equilibria relations in the BaO:TiO₂:Ta₂O₅ have not been reported, several ternary compounds have been documented. These include 8-layer (8*L*) Ba₈Ti₃Ta₄O₂₄ [28,29] and *10L* Ba₁₀Ta_{7.04}Ti_{1.2}O₃₀ [29], both of which are hexagonal perovskite derivatives that form as solid solutions along the composition line between BaTiO₃ and 5*L* hexagonal Ba₅Ta₄O₁₅. In addition, the solid solution Ba₃Ti_{4+5x}Ta_{4-4x}O₂₁ with 0≤x≤0.3 [30] was reported as a member of the family of hexagonal framework-type A₃M₈O₂₁ ternary oxides [31-33], which share some structural similarities with the tetragonal and hexagonal bronzes [30].

Experimental Methods

Approximately 100 polycrystalline specimens (3-4 g each) were prepared by solid-state reaction of BaCO₃ (99.99% or 99.999%), TiO₂ (phosphate-free), and Ta₂O₅ (optical grade). Prior to each heat treatment, samples were ground with an agate mortar and pestle for 15 min, pelletized, and placed on sacrificial powder of the same composition in a Pt-foil-lined alumina combustion boat. After an initial overnight calcine at 950°C, multiple 2-5 d heatings (with intermediate grinding and re-pelletizing) were carried out at temperatures below but near the solidus, ranging from 1275 to 1500°C. Samples were furnace-cooled to ~700°C and then air-quenched on the bench-top. Typically, four to seven heatings were required to attain equilibrium, which was presumed when no further changes could be detected in the weakest peaks observed in the X-ray powder diffraction patterns. Reaction temperatures for the various compositions were chosen by considering the results of melting point experiments, and qualitative extrapolation of the reported solidus temperatures along the three binaries into the ternary system. The minimum solidus temperatures observed in the ternary system were ~1300°C, near the barium polytitanates (~30:64:6 BaO:TiO₂:Ta₂O₅). Crystals of Ba₁₀Ti₂₇Ta₂O₆₉ and Ba₁₈Ti₅₃Ta₂O₁₂₉ were grown from slightly off-stoichiometric partial melts (25.64:71.80:2.56 BaO:TiO₂:Ta₂O₅ and 24.66:73.97:1.37 BaO:TiO₂:Ta₂O₅, respectively) in open platinum capsules (2.6 mm i.d.) that were soaked at 1450°C for 24 h, cooled at 3°C/h to 1325°, furnace-cooled to 700°C, and finally quenched on the bench-top. The crystals were colorless, transparent, birefringent in polarized light, and mostly prismatic fragments of random size rather than with specifiable crystal faces.

Phase assemblages were ascertained from X-ray powder diffraction data, which were obtained with a Philips¹ diffractometer equipped with incident Soller slits, theta-compensating slit and a graphite monochromator, and a scintillation detector. Samples were mounted in welled glass slides. Patterns were collected at ambient temperatures using CuK α radiation with a 0.02° 2 θ step size and a 2 s count time. Intensity data measured as relative peak heights above background of hand-picked peaks were obtained using the Siemens DIFFRAC5000 second derivative peak locate program. The observed 2 θ line positions reported here have been corrected using SRM 660, LaB₆ [34] as an external calibrant. Lattice parameters were refined using the corrected powder diffraction data (2 θ values, CuK α_1 = 1.540562 Å) with the least-squares program CELLSVD [35]. Powder patterns were calculated using the GSAS package [36].

Single crystals of $Ba_{18}Ti_{53}Ta_2O_{129}$ and $Ba_{10}Ti_{27}Ta_2O_{69}$ were characterized by the precession camera method (Zr-filtered Mo K α radiation) to assess quality, space group, and approximate cell parameters. Single-crystal X-ray diffraction data were obtained with an Enraf-Nonius CAD-4 diffractometer using graphite-monochromatized Mo K α radiation. A Gaussian integration absorption correction was applied to all measured intensities. Calculations were carried out using the NRCVAX [37] suite of programs. The structure was solved using Patterson and Fourier methods. Transition metal sites were initially assumed to be randomly occupied by a mixture of Ta⁵⁺ and Ti⁴⁺. The contrast between Ta and Ti by X-ray diffraction is sufficient to allow direct refinement of relative occupancies assuming mixed-atom sites containing xTi + (1-x)Ta. The

¹ Certain commercial equipment is identified in order to adequately specify the experimental procedure; recommendation or endorsement by the National Institute of Standards and Technology is not therein implied.

overall stoichiometries were then deduced by simultaneous consideration of the refined occupancies and charge-balance in the presence of pentavalent tantalum and tetravalent titanium.

Results and Discussion

The subsolidus phase equilibria relations found in the present study are presented in Figure 1. The results found in each region of the system will be discussed in the following sections.

1. Binary BaO:Ta₂O₅ System

a. Tetragonal Tungsten Bronze (TTB) Related Phases from 43 to 26 mol% BaO

Although TTB-type BaTa₄O₁₁ (33 mol% BaO) was previously reported as a line compound [21], the present study found an extensive solid solution in this region of the binary system. This solid solution is similar to that found in the BaO:Nb₂O₅ system [38], and again demonstrates the remarkable stability of tetragonal tungsten bronze related structures over a wide range of stoichiometry. In the region (Fig. 1) from 43 to 39 mol% BaO, no superstructure formation was observed and powder patterns could be indexed on the basis of tetragonal 12 Å x 4 Å TTB-type unit cells [39]. Although the formula for the solid solution in this region can be written with oxygen-deficiency as Ba_{5-y}Ta₁₀O_{30-y}, with $1.2 \le y \le 1.8$, there is no logical crystal chemical model to account for the possible oxygen vacancies. Alternatively, and preferably, if one assumes that the strongly bonded octahedral framework (denoted in the following by square brackets) remains intact, the formula for the TTB-type solid solution from 43 to 39 mol% BaO can be expressed as Ba_xTa_{(10-2x)/5}[Ta₁₀O₃₀], with x=3.93 to 3.40. In this model, Ba and the excess Ta occupy disordered sites within the channels, with Ta⁵⁺ lowering its coordination number by moving from the centers of the channels.

In the region from 38 to 31 mol% BaO, superstructures formed with *a*- and *b*-parameters related to those of the TTB structure by a factor of $\sqrt{2}$, yielding tetragonal or orthorhombic supercells similar to those observed in a number of other systems [40,41]. If one assumes that the formation of a supercell with a doubled unit-cell volume is caused by the ordering of 2 [TaO]

units per supercell in sites within the pentagonal channels, in a manner analogous to the formation of tripled superstructures in TTB-related Nb₈W₉O₄₇ [42,38], Sr₂Nb₁₀O₂₇, and SrTa₄O₁₁ [43], then a possible general formula for the $\sqrt{2}$ -type solid solution from 38 to 31 mol% BaO is Ba_xTa_{(14-2x)/5}[Ta₂₂O₆₂], with x = 6.77 to 5.11, respectively. This model would not require the formation of oxygen vacancies; Ba and excess Ta not associated with the framework would occupy disordered sites within the channels.

In the region from 30 to 26 mol% BaO, tripling of the TTB *b*-parameter was observed, resulting in a unit cell with a tripled cell volume. As in Nb₈W₉O₄₇ [42,38], the formula for the framework of the tripled TTB structure is [M₃₄O₉₄], which includes the 4 [MO] units occupying ordered pentagonal channel sites. Therefore, a possible general formula for the tripled-cell-type solid solution from 30 to 26 mol% BaO is $Ba_xTa_{(18-2x)/5}[Ta_{34}O_{94}]$, with x = 7.42 to 6.17, respectively. As above, this model does not require the formation of oxygen vacancies, and Ba and excess Ta not associated with the [M₃₄O₉₄] framework would occupy disordered sites within the channels. Detailed structural determinations have not yet been carried out to confirm these suggested mechanisms accommodating the variable stoichiometry and leading to the formation of the different superstructures.

Tables 1-4 give refined unit cells and indexed powder diffraction data for binary compounds in each of the TTB-type solid solution regions. Interestingly, as seen in Table 1, and as also observed in the BaO-Nb₂O₅ system [38], the TTB-type framework maintains a nearly constant specific volume, within ~0.5%, despite the large range in BaO-content. As seen in Fig. 1, the three TTB-type regions extend into the ternary system, dissolving up to ~12 mol% TiO₂. The superstructures are preserved upon substitution of Ti, with slight (~1%) but systematic increases in unit cell volumes.

b. $BaTa_2O_6$

The polymorphism of $BaTa_2O_6$ has been described by Layden [23,24]. Below about 1150°C a modification isostructural with orthorhombic $BaNb_2O_6$ forms, between ~ 1150°C and 1300°C a tetragonal tungsten bronze type structure forms, and above 1300°C a hexagonal modification oc-

curs. For the latter form, a structural model was proposed that was consistent with X-ray powder diffraction data (*P6/mmm*; *a*=21.14 Å, *c*=3.917 Å; Z=12) [24]. In the BaO-Nb₂O₅ system, the same hexagonal structure was found to form at the composition $Ba_{0.9}Nb_2O_{5.9}$ [38]. In the present work, single crystals of all three forms of $BaTa_2O_6$ were obtained using a BaO:V₂O₅ flux. Complete structural refinements are in progress for the tetragonal and hexagonal polymorphs and will be described elsewhere. Preliminary results indicate that: 1) for the hexagonal structure, one of the Ba sites originally placed at z=0 [24] is actually at z=0.28, changing the coordination number from an unlikely 18 to a more reasonable 12; and 2) the tetragonal form crystallizes in the nonpolar space group *P4b2* rather than the more commonly found *P4bm* [44].

Mixtures prepared along the $BaTa_2O_6-Ba_5Ta_4O_{15}$ join and annealed at temperatures above 1300°C (e.g. 1550°C) were found to contain the tetragonal tungsten bronze type form of $BaTa_2O_6$, indicating that this polymorph is kinetically stablilized in this region.

c. Between $Ba_5Ta_4O_{15}$ and BaO

The X-ray powder diffraction patterns of specimens in this region, prepared by either slowcooling or quenching, were not reproducible, most likely because of reaction with moisture and/or CO₂. No evidence of the formation of the compounds $Ba_6Ta_2O_{11}$ or $Ba_3Ta_2O_8$ [21] was observed. Although some specimens contained a hexagonal phase with a unit cell (a=5.926 Å, c=4.234 Å) analogous to that reported for $Ba_4Ta_2O_9$ [21,26,27], in the present study this phase was found to decompose upon further heat treatment at 1100°C.

1. Ternary BaO:TiO₂:Ta₂O₅ System

a. The Rutile-Slab Series, $BaTi_nTa_4O_{11+2n}$, n=3,5,7,9

A new family of compounds $BaTi_3Ta_4O_{17}$, $BaTi_5Ta_4O_{21}$, $BaTi_7Ta_4O_{25}$, and $BaTi_9Ta_4O_{29}$ was observed to form in the $BaO:TiO_2:Ta_2O_5$ system. According to X-ray powder diffraction data, these phases are isostructural with the orthorhombic "chemically twinned rutile" homologous series observed in the (K,Na)_2O:TiO_2:(Nb,Ta)_2O_5 [45,46], BaO:TiO_2:Nb_2O_5 [47], and

SrO:TiO₂:Nb₂O₅ [48] systems. The structures, crystallizing in space group *Cmcm*, feature slabs of the rutile structure joined together by vertex-sharing [MO₆] octahedra such that pseudohexagonal tunnels are formed for the larger 7-coordinated A-cations [48]. Adjacent rutile slabs are related by a mirror plane containing the alkali or alkaline-earth cation, hence the designation "chemically twinned rutile". Successive members of the series are generated by adding 2TiO₂ to the width of the rutile slabs, thus increasing the *c*-axis by ~4.4 Å per member, whereas the *a*- and *b*-axes remain relatively constant. The refined unit cell parameters for the n=3,5,7, and 9 members that form in the BaO:TiO₂:Ta₂O₅ system are given in Table 5. Members with n-values larger than 9 may also form, as they do in the SrO:TiO₂:Nb₂O₅ system [48], but were not investigated in the present study.

b. Ba₃Ti₄Ta₄O₂₁ Solid Solution

This phase belongs to the family of hexagonal A3M8O21 ternary oxides initially described by Groult, et al. [31,32], with Ba or K as the A-cation, and Nb as the M-cation which in turn could be partially substituted by a variety of metals including Ti, Cr, Fe, Ni, Mg, and Zn ($P6_{2}/mcm; a \sim$ 9 Å, $c \sim 12$ Å; Z=2). The framework-type structure is built from [MO₆] octahedra sharing vertices and edges, and shares similarities with the tetragonal tungsten bronze arrangement [30]. The compound Ba3LiM3Ti5O21 (M=Nb,Ta,Sb) was also reported to form with the A3M8O21-type structure [49], and it was suggested that the extra Li cations were accommodated in interstitial sites in the framework. The same mechanism was suggested for the A3M8O21-type solid solutions $Ba_3M_{4-4x}Ti_{4+5x}O_{21}$ (M=Nb,Ta) with 0≤x≤0.3 [30,33], which were studied by Rietveld analysis using X-ray powder diffraction data. For this series the total B-cation count is 8+x. The authors state that the extra Nb/Ta (=x) beyond the 8 needed to form the octahedral framework occupy tricapped trigonal prismatic sites formed by [M₆O₂₄] units of 2x3 edge- and corner-According to this study then the structure forms for compositions sharing octahedra. $Ba_{3}Ti_{4}Ta_{4}O_{21}$ (=3:4:2) through $Ba_{3}Ti_{5.5}Ta_{2.5}(Ta_{0.3})O_{21}$ (=3:5.5:1.4), with 0.3 Ta in 9-coordinated tricapped trigonal prismatic (Wyckoff 2a) sites. A similar solid-solution limit was reported for the analogous system with Nb instead of Ta in a study of the BaO-TiO₂-Nb₂O₅ phase diagram [47].

In the present study of the BaO–TiO₂–Ta₂O₅ system, the A₃M₈O₂₁-type phase exhibited a hexagonal unit cell in agreement with the previous work [30]; with increasing x-value, the *a*-parameter decreases slightly while the opposite trend is observed for the *c*-parameter, resulting in a nearly constant unit cell volume for the solid solution. However, the Ba₃Ti_{4+5x}Ta_{4-4x}O₂₁ specimen with x=0.3 contained traces of secondary phases. X-ray diffraction studies are in progress of single crystals of the solid solution grown from an off-stoichiometric (6:14:1 BaO:TiO₂:Ta₂O₅) melt. Preliminary refinement results have confirmed the expected space group and unit cell (*P6₃/mcm*; *a* ~ 9.99 Å, *c* ~ 11.85 Å), with metal occupancies yielding the stoichiometry Ba₃Ta_{2.70(3)}Ti_{5.30(3)}O_{20.35}; however, no electron density was observed in the tricapped trigonal prismatic (Wyckoff 2a) sites. The extra cations are likely located elsewhere. However, an alternative mechanism for the solid solution might be the formation of oxygen vacancies; i.e., Ba₃Ti_{4+y}Ta_{4-y}O_{21-y/2}, with 0≤y≤1.3. This possible alternative formula would shift the line along which the solid solution forms to slightly higher Ba content, as shown in Fig. 1 and 2, with the end-member occurring at 3:5.3:1.35 BaO:TiO₂:Ta₂O₅ instead of 3:5.5:1.4, as reported previously [30]. Further structural analysis is needed and will be reported elsewhere.

c. The $Ba_4Ti_{13}O_{30}$ Structural Family: $Ba_{18}Ti_{53}Ta_2O_{129}$, $Ba_{10}Ti_{27}Ta_2O_{69}$, and $Ba_6Ti_{14}Ta_2O_{39}$

The compounds forming in this region of the phase diagram are structurally similar to those found in analogous regions of the BaO:TiO₂:Nb₂O₅ system [50], and form on a line between Ba₄Ti₁₃O₃₀ and Ba₆Ti₁₄Ta₂O₃₉, as shown in Fig. 2. All of the phases exhibit structures built from similar close-packed (*cp*) [O,Ba] layers, with octahedral interstices occupied by Ti/Ta. As found in the barium polytitanates [19] and other [O,Ba] layer structures [51], the *cp* layers are distorted and defective wherein some of the Ba ions occur in pairs which substitute for three oxygens in a row, thus leaving a vacant *cp* site between them, and lowering the Ba coordination number from 12 to 11. The Ba pairs occur in regular patterns that result in two types of polyhedral layers, one with strings of three distorted edge-sharing [(Ti/Ta)O₆] octahedra, and another with groups of five similarly distorted edge-sharing [(Ti/Ta)O₆] octahedra. The structures of Ba₄Ti₁₃O₃₀, Ba₁₈Ti₅₃Ta₂O₁₂₉, Ba₁₀Ti₂₇Ta₂O₆₉, and Ba₆Ti₁₄Ta₂O₃₉ are all built from these two types of layers, which are illustrated in Fig. 3 for six-layer (*6L*) Ba₄Ti₁₃O₃₀ [53,12]. The stacking sequence of the cp layers in Ba₄Ti₁₃O₃₀ is $(chc)_2$, and results in an orthorhombic structure (*Cmca*; a=17.063 Å, b=9.864 Å, c=14.053 Å; Z=4) [53].

Although the compounds $Ba_{18}Ti_{53}Ta_2O_{129}$ and $Ba_{10}Ti_{27}Ta_2O_{69}$ were difficult to purify in polycrystalline form, single crystals were readily grown from off-stoichiometric partial melts. The details of the single-crystal X-ray diffraction studies of these two phases are given in Table 6. The refined structural parameters for $Ba_{18}Ti_{53}Ta_2O_{129}$ are given in Table 7. This compound crystallizes with a monoclinic *13L* structure having the stacking sequence *cchcchcchcchc*; the thirteen polyhedral layers are illustrated in Fig. 4 and are seen to consist of the same two types as in *6L* $Ba_4Ti_{13}O_{30}$ (Fig. 3). Oxygen vacancies in the *cp* layers that occur between pairs of Ba ions lower the coordination numbers of Ba 1, Ba 4, and Ba 5 from 12 to 11. The Ti/Ta octahedra are somewhat distorted, with bond distances ranging from 1.780 Å to 2.160 Å. $Ba_{18}Ti_{53}Ta_2O_{129}$ is most likely isostructural with the *13L* monoclinic phase reported earlier [50] with a similar unit cell, and with the approximate composition $Ba_{18}Ti_{54}Nb_2O_{131}$, as derived from structural principles and X-ray powder diffraction data [50].

 $Ba_{10}Ti_{27}Ta_2O_{69}$ crystallizes with a monoclinic 7*L* structure having the stacking sequence *cchcchc*; the refined structural parameters are given in Table 8. The seven polyhedral layers are illustrated in Fig. 5, and consist of the same two types as in 6*L* $Ba_4Ti_{13}O_{30}$ (Fig. 3) and *13L* $Ba_{18}Ti_{53}Ta_2O_{129}$ (Fig. 4). Oxygen vacancies in the *cp* layers between pairs of Ba ions lower the coordination numbers of Ba 1 and Ba 3 from 12 to 11. Similar to $Ba_{18}Ti_{53}Ta_2O_{129}$, the Ti/Ta octahedra are somewhat distorted, with bond distances ranging from 1.741 Å to 2.146 Å. $Ba_{10}Ti_{27}Ta_2O_{69}$ is most likely isostructural with the 7*L* monoclinic phase found in the BaO:TiO₂:Nb₂O₅ system [50] with a similar unit cell, and reported to occur with the approximate formula $Ba_{10}Ti_{28}Nb_2O_{71}$, which was derived from structural principles and X-ray powder diffraction data. The formulas for both the 7*L* and *13L* phases were overestimated by one TiO₂ in the earlier study [50].

Single crystals of $Ba_6Ti_{14}Ta_2O_{39}$ were also obtained, and the results of a complete structural determination of this phase, as well as the previously reported Nb-analog $Ba_6Ti_{14}Nb_2O_{39}$, [50] will be described elsewhere. $Ba_6Ti_{14}Ta_2O_{39}$ crystallizes with an orthorhombic δL structure hav-

ing the stacking sequence $(hccc)_2$ (*Cmca*; $a \sim 17.1$ Å, $b \sim 9.86$ Å, $c \sim 18.7$ Å; Z=4). The preliminary refinement results for the Nb-analog were used to illustrate the eight polyhedral layers shown in Fig. 6. Once again the layers are seen to consist of the same two types (layers with strings of three edge-sharing octahedra and layers with groups of five edge-sharing octahedra) as for 6*L* Ba₄Ti₁₃O₃₀ (Fig. 3), *13L* Ba₁₈Ti₅₃Ta₂O₁₂₉ (Fig 4), and 7*L* Ba₁₀Ti₂₇Ta₂O₆₉ (Fig. 5).

The structures of all four members of the $Ba_4Ti_{13}O_{30}$ family are illustrated in Fig. 7, viewed parallel to the *cp* layers with the stacking direction vertical in the page. The *a*- and *b*- unit cell dimensions are similar for all four phases, with the *c*-dimensions reflecting the number of layers, which exhibit a common thickness of 2.34 Å per layer.

d. Tetragonal Tungsten Bronze (TTB) Type Solid Solution Ba_{6-x}Ti_{2-2x}Ta_{8+2x}O₃₀

As shown in Fig. 1, this solid solution forms along the line $Ba_6Ti_2Ta_8O_{30}$ – $BaTa_2O_6$, with a maximum x-value of 0.723. No evidence of superstructure formation was observed, and all observed lines in the X-ray powder diffraction patterns could be indexed with TTB-type [39] unit cells (Table 9). The x=0 endmember $Ba_6Ti_2Ta_8O_{30}$ forms at the ideal $A_6B_{10}O_{30}$ TTB stoichiometry, with all sites fully occupied. The solid solution forms by the coupled formation of Ba-site vacancies and substitution of Ta^{5+} for Ti^{4+} . As seen in Table 9, the unit cell volume decreases by only ~0.15% despite removal of 12 % of the Ba ions at the solid solution limit of x=0.723. Interestingly, despite strong similarities in crystal chemistry, no tie lines were found between this TTB solid solution and the extensive TTB-related phase fields occurring along the binary BaO-Ta₂O₅ system (Fig 1). The observation that these regions do not occur in equilibrium with each other may reflect fundamentally different structural mechanisms of solid-solution formation: whereas the $Ba_{6-x}Ti_{2-2x}Ta_{8+2x}O_{30}$ phases form by straightforward depletion of A-sites, the extensive TTB solid solutions along the binary, as discussed above, require a more complex mechanism with Ta probably occupying channel sites.

e. The Quasi-binary system $Ba_5Ta_4O_{15}$ -BaTi O_3

The crystal chemistry that arises when BaTiO₃ is added to Ba₅Ta₄O₁₅ features close-packed layer structures derived from perovskite by introducing B-cation vacancies and variable layer sequencing. Five-layer (*5L*) Ba₅Ta₄O₁₅ (*P3m1*; *a*=5.776 Å, *c*=11.82 Å; Z=1; packing sequence *cchhc*) [22] is isostructural with Ba₅Nb₄O₁₅ [38] (and also Sr₅Nb₄O₁₅), and is the n=5 member of the "perovskite-slab" series $A_nB_{n-1}O_{3n}$. These structures feature ordered layers of B-cation vacancies separating slabs of the perovskite structure that are four (= n-1) [BO₆] octahedra in thickness. The slabs extend parallel to the parent (111) perovskite planes, resulting in the tendency of the structures to crystallize with hexagonal symmetry. In the BaO:TiO₂:Nb₂O₅ system, the n=6 and n=8 members form [47,28], and in the SrO:TiO₂:Nb₂O₅ systems, the n=6 [54] and n=7 members form. Compounds in this series can form broad solid solutions for reasons which have not been fully explained by detailed structural investigations, but which most likely include both variations in vacancy-ordering (or disordering) as well as the formation of random and ordered intergrowths of different members of the series.

In the BaO:TiO₂:Ta₂O₅ system an 8-layer (Ba₈Ti₃Ta₄O₂₄) [28,29] and a 10-layer (Ba₁₀Ta_{7.04}Ti_{1.2}O₃₀) [29] phase have been reported to occur along the Ba₅Ta₄O₁₅–BaTiO₃ line. A study of polycrystalline samples using X-ray diffraction and high resolution electron microscopy [29] produced structural models for both which indicated that these two phases are not members of the perovskite-slab $A_nB_{n-1}O_{3n}$ series, in contrast to the BaO:TiO₂:Nb₂O₅ and SrO:TiO₂:Nb₂O₅ systems. Ba₈Ti₃Ta₄O₂₄ exhibited superstructure formation within the close-packed [BaO₃] layers, which were stacked with an *8L (cchc)*₂ sequence (*P6₃/mcm*; *a*=10.0314 Å, *c*=18.869 Å; Z=3). Ba₁₀Ta_{7.04}Ti_{1.2}O₃₀ exhibited a *10L (cchcc)*₂ close-packed layer sequence with some disorder (*P6₃/mmc*; *a*=5.7981 Å, *c*=23.755 Å; Z=1). The suggested structural models do not feature slabs of the perovskite structure as in the A_nB_{n-1}O_{3n} series; rather, the B-cation vacancies are distributed throughout the layers, resulting in a fully three-dimensional arrangement. Both the *8L* and *10L* phases were reported to exhibit wide stoichiometric ranges.

In the present study both of the previously reported 8L and 10L phases were confirmed; the unit cells and observed X-ray powder diffraction patterns were similar to those calculated from

the data provided in the earlier work [29]. Somewhat different homogeneity ranges were obtained, which likely results from differences in sample preparation temperatures. Using the notation (1-x)Ba₅Ta₄O₁₅:xBaTiO₃, the *10L* phase was observed here to form in the region $x = 0.20 \rightarrow 0.40$, as compared with $x = 0.24 \rightarrow 0.40$ indicated by the previously reported range of homogeneity [29]. In agreement with the earlier work [29], the cell parameters decrease with increasing Ti content or x-value. The *8L* phase was observed here to form in the range $x = 0.50 \rightarrow 0.80$ (note that the ideal composition Ba₈Ti₃Ta₄O₂₄ occurs at x=0.75), as compared to $x = 0.66 \rightarrow 0.75$ reported previously [29]; as for the *10L* phase, increasing Ti content or x-value causes a decrease in unit cell volume, in agreement with the earlier work [29]. Another solid solution from the end-member Ba₅Ta₄O₁₅ (x=0) to x=0.15, as shown in Fig. 1, was observed in the present study; however, the X-ray powder diffraction patterns of specimens in this region suggest that they may be complex intergrowths rather than true solid solutions, as found similarly in the BaO:TiO₂:Nb₂O₅ system [47].

BaTiO₃-type solid solution: From x=0.90 to x=1, (1-x)Ba₅Ta₄O₁₅:xBaTiO₃, a cubic perovskite-type solid solution occurs. As found in the BaO:TiO₂:Nb₂O₅ [47] and SrO:TiO₂:Nb₂O₅ systems, the solid solution forms by introduction of B-cation vacancies (\Box), according to the formula BaTi_{1-y}Ta_{4y/5} $\Box_{y/5}O_3$. The observed solid-solution limit for a specimen prepared at 1550°C corresponds to y=0.36, or BaTi_{0.64}Ta_{0.29}O₃, with 7 % of the B-cation sites vacant. Introduction of Ta⁵⁺ plus vacancies causes the lattice to dilate, with the cubic unit cell parameter varying from *a*~4.016 Å near y=0 to *a*=4.0505(2) Å at the limit of y=0.36.

f. High-BaO Region above the Line $Ba_5Ta_4O_{15}$ -BaTi O_3

The X-ray powder diffraction patterns of specimens in this region indicated the presence of hydrated BaO, plus the phases found in the quasi-binary system $Ba_5Ta_4O_{15}$ – $BaTiO_3$. None of the compounds previously reported to occur between $Ba_5Ta_4O_{15}$ and BaO [21,26,27] were detected.

g. Comparison with the BaO: TiO_2 : Nb_2O_5 system

Since Ta⁵⁺ and Nb⁵⁺ exhibit similar ionic radii [55] and crystal chemistries, similarities are expected between the BaO:TiO₂:Ta₂O₅ system and the Nb₂O₅ analog [47,50]. The rutile-slab compounds BaTi_n(Ta,Nb)₄O_{11+2n} are found in both systems, although the n=1 member forms in the Nb- but not the Ta-system. The monoclinic compound reported near the composition $3BaO:5TiO_2:3Nb_2O_5$ [47] is not observed for Ta. In the Nb-system, analogs of the $Ba_4Ti_{13}O_{30}$ related phases $- 13L Ba_{18}Ti_{53}Ta_2O_{129}$, 7L $Ba_{10}Ti_{27}Ta_2O_{69}$, and 8L $Ba_6Ti_{14}Ta_2O_{39}$ - are also found, but in addition a fourth, 20L orthorhombic member forms between the 13L and 7L phases, with the approximate stoichiometry $Ba_{14}Ti_{40}Nb_2O_{99}$ [50]. For both systems, the $A_3M_8O_{21}$ -type solid solution regions extending from Ba₃Ti₄(Nb,Ta)₄O₂₁ are essentially identical. The tetragonal tungsten bronze related phases are stable over considerably wider compositional ranges in the BaO:TiO₂:Ta₂O₅ system as compared to the Nb-system: the TTB regions along the BaO:Ta₂O₅ binary dissolve much more TiO₂, and the TTB solid solution within the ternary, Ba_{6-x}Ti₂₋ _{2x}Ta_{8+2x}O₃₀, extends to higher x-values (0.72 vs. 0.5) [50]. Finally, the crystal-chemistry along the quasi-binary system Ba₅Ta₄O₁₅–BaTiO₃ is quite different from that found in the Nb-system: BaTiO₃ dissolves approximately three times more Ta⁵⁺ than Nb⁵⁺. From the end of the BaTiO₃ solid solution to Ba₅Ta₄O₁₅, the behavior is very different from the Nb-system, although all of the phases that form in both systems are apparently hexagonal: The Ta-system features an extensive solid solution of an 8L phase, and two more solid solutions of a 10L phase and the 5L endmember Ba₅Ta₄O₁₅. In the Nb-system, an 8L phase also forms with a limited range of solid solution (and, apparently, a different crystal structure than in the Ta system), and a δL phase occurs. The 6L phase forms a "solid solution" to the endmember, 5L Ba₅Nb₄O₁₅, which actually consists of a complex series of intergrowths of the 5L and 6L structures rather than a true solid solution.

Conclusions

Subsolidus phase relations have been determined for the BaO:TiO₂:Ta₂O₅ system in air. For the binary BaO:Ta₂O₅ subsystem, the formation of all three polymorphs of BaTa₂O₆ (orthorhombic, tetragonal, and hexagonal) was confirmed. The present study found no stable phases form-

ing between Ba₅Ta₄O₁₅ and BaO. In the ternary system, along the line BaTiO₃-Ba₅Ta₄O₁₅, the occurrence of the previously reported 8L and 10L perovskite derivatives was confirmed, albeit with somewhat wider homogeneity ranges; $BaTiO_3\ dissolves\ a\ considerable\ amount\ of\ Ta^{5+}\ by$ forming up to 7% B-cation vacancies. The formation of Ba₃Ti₄Ta₄O₂₁, a member of the hexagonal A₃M₈O₂₁-type ternary oxides, was confirmed as well as its solid solution, for which a different mechanism of formation is suggested. Several new compounds have been found, including four members of the orthorhombic "rutile-slab" homologous series, BaTinTa4O11+2n, with nvalues 3,5,7,9. Three ternary phases with close-packed [Ba,O] layer structures related to that of 6L Ba₄Ti₁₃O₃₀ were found: 13L Ba₁₈Ti₅₃Ta₂O₁₂₉, 7L Ba₁₀Ti₂₇Ta₂O₆₉, and 8L Ba₆Ti₁₄Ta₂O₃₉. The crystal structures of the 13L and 7L phases were determined by single-crystal X-ray diffraction, and are described and compared with those of the 6L and 8L members of this family as well as analogs found previously in the BaO: TiO_2 :Nb₂O₅ system. Phases with tetragonal tungsten bronze related structures occur over large compositional ranges in the BaO:TiO₂:Ta₂O₅ system, both within the ternary ($Ba_{6-x}Ti_{2-2x}Ta_{8+2x}O_{30}$, x=0 \rightarrow 0.723), and along the BaO-Ta₂O₅ binary (from 43 to 26 mol% BaO), which in turn dissolves up to ~12 mol% TiO₂ to form extensive single-phase fields. The TTB-type regions within the ternary and those emanating from the BaO- Ta_2O_5 binary do not co-exist in equilibrium, which likely reflects fundamental differences in the structural mechanisms that accommodate the variable stoichiometries. The similarities and differences between the closely related BaO:TiO₂:Ta₂O₅ and BaO:TiO₂:Nb₂O₅ systems have been described.

Acknowledgements

W. Febo was supported in part by the National Science Foundation's Research Experience for Undergraduates (REU) program, Division of Materials Research. The authors appreciate the assistance of N. Swanson and P.K. Schenck in providing the phase diagram graphics.

References

- [1] W. Wersing in "Electronic Ceramics", B.C.H. Steele, ed., Elsevier Applied Science, NY, 1991, Chapter 4.
- [2] W. Wersing, Current Opinion in Solid State & Materials Science 1, 715 (1996).
- [3] T. Negas, G. Yeager, S. Bell, R. Amren in NIST Special Publication 804; eds. P.K. Davies and R.S. Roth; 1991; pp.21-38.
- [4] P.K. Davies, in "Materials and Processes for Wireless Communications", eds. T. Negas and H. Ling, American Ceramic Society, Westerville, Ohio, 1995, p. 137-151.
- [5] R.J. Cava, J. Mater. Chem. 11, 54 (2001).
- [6] J.L. Waring and R.S. Roth, J. Res. Nat. Bur. Stand. 72A(2), 177 (1968).
- [7] R.S. Roth and J.L. Waring, J. Res. Nat. Bur. Stand. 74A(4), 485 (1970).
- [8] "Phase Equilibria Diagrams" (formerly "Phase Diagrams for Ceramists"), The American Ceramic Society, Westerville, OH. Figs. 1:213, 2:2403, 3:4302, 3:4454, 4:5135, 11:9211-13, 92:002, and references cited therein.
- [9] A.D. Wadsley, Acta Crystallogr. 14, 660 (1961).
- [10] A.D. Wadsley, Acta Crystallogr. 14, 664 (1961).
- [11] D.E. Rase and R. Roy, J. Am. Ceram. Soc. 38, 102 (1955)
- [12] T. Negas, R.S. Roth, H.S. Parker, and D. Minor, J. Solid State Chem. 9, 297 (1974).
- [13] O'Bryan, Jr., J. Thomson, Jr., and J.K. Plourde, J. Am. Ceram. Soc. 57, 450 (1974).
- [14] H.M. O'Bryan, Jr. and J. Thomson, Jr., J. Am. Ceram. Soc. 57, 522 (1974).
- [15] J.J. Ritter, R.S. Roth, and J.E. Blendell, J. Am. Ceram. Soc. 62, 155 (1986).
- [16] R.S. Roth, J.J. Ritter, H.S. Parker, and D.B. Minor, J. Am. Ceram. Soc. 69, 858 (1986).
- [17] K.W. Kirby and B.A. Wechsler, J. Am. Ceram. Soc. 74, 1841 (1991).
- [18] E. Tillmanns, W. Hofmeister, and W.H. Baur, J. Solid State Chem. 58, 14 (1985).
- [19] R.S. Roth, C.J. Rawn, C.G. Lindsay, and W. Wong-Ng, J. Solid State Chem. 104, 99 (1993).
- [20] J.A. Bland, Acta Crystallogr. 14, 875 (1961).
- [21] L.M. Kovba, L.N. Lykova, M.V. Paromova, L.M. Lopato, and A.V. Shevchenko, *Russian J. Inorg. Chem.* 22(10), 1544 (1977).
- [22] J. Shannon and L. Katz, Acta Crystallogr. **B26**, 102 (1970).
- [23] G.K. Layden, Mater. Res. Bull. 2, 533 (1967).

- [24] G.K. Layden, Mater. Res. Bull. 3, 349 (1968).
- [25] M. Gasperin, Bull. Soc. fr. Minéral. Cristallogr. 90, 172 (1967).
- [26] S. Kemmler-Sack, I. Thumm, and M. Hermann, Z. anorg. allg. Chem. 479, 177 (1981).
- [27] S. Kemmler-Sack, Z. anorg. allg. Chem. 476, 109 (1981).
- [28] B. Mössner and S. Kemmler-Sack, J. Less-Common Metals 120, 203 (1986).
- [29] R.V. Shpanchenko, L. Nistor, G. Van Tendeloo, J. Van Landuyt, S. Amelinckx, A.M. Abakumov, E.V. Antipov, and L.M. Kovba, *J. Solid State Chem.* **114**, 560 (1995).
- [30] C. Mercey, D. Groult, and B. Raveau, Rev. Chim. Min. 16, 165 (1979).
- [31] D. Groult, J.M. Chailleux, J. Choisnet, and B. Raveau, J. Solid State Chem. 19, 235 (1976).
- [32] C. Saurel, D. Groult, and B. Raveau, Mater. Res. Bull. 12, 629 (1977).
- [33] D. Groult, J.M. Chailleux, B. Raveau, and A. Deschanvres, *Rev. Chim. Miner.* 14(1), 1 (1977).
- [34] C.R. Hubbard, Y. Zhang, and R.L. McKenzie, Certificate of Analysis, SRM 660, National Institute of Standards and Technology, Gaithersburg, MD, 20899 (1989).
- [35] Program CELLSVD by C.K. Lowe-Ma, Naval Air Warfare Center Weapons Division Technical Publication 8128, September 1993.
- [36] A.C. Larson and R.B. Von Dreele, GSAS General Structure Analysis System, 1994.
- [37] E.J. Gabe, Y. LePage, J.-P. Charland, F.L. Lee, P.S. White, J. App. Crystallogr. 22, 384 (1989).
- [38] T.A. Vanderah, T.R. Collins, W. Wong-Ng, R.S. Roth, and L. Farber, submitted to J. *Alloys Compounds*.
- [39] N.C. Stephenson, Acta Crystallogr. 18, 496 (1965).
- [40] T. Ikeda, T. Haraguchi, Y. Onodera, and T. Saito, Jpn. J. Appl. Phys. 10(8), 987 (1971).
- [41] T. Ikeda, K. Uno, K. Oyamada, A. Sagara, J. Kato, S. Takano, and H. Sato, *Jpn. J. Appl. Phys.* 17(2), 341 (1978).
- [42] D.C. Craig and N.C. Stephenson, Acta Crystallogr. B25, 2071 (1969).
- [43] Structural determinations of Sr₂Nb₁₀O₂₇ and SrTa₄O₁₁ by single-crystal X-ray and neutron powder diffraction, W. Wong-Ng, et al., manuscript in preparation.
- [44] G. Mumme, private communication.
- [45] B.M. Gatehouse and M.C. Nesbit, J. Solid State Chem. 33, 153-158 (1980).
- [46] D. Groult, and B. Raveau, Mater. Res. Bull. 18, 141-146 (1983)

- [47] J.M. Millet, R.S. Roth, L.D. Ettlinger, and H.S. Parker, J. Solid State Chem. 67, 259 (1987).
- [48] J.M. Loezos, T.A. Vanderah, A.R. Drews, and R.S. Roth, *Powder Diffraction* 12(2), 117 (1997).
- [49] C. Mercey, D. Groult, and B. Raveau, Mater. Res. Bull. 13, 797 (1978).
- [50] R.S. Roth, L.D. Ettlinger, and H.S. Parker, J. Solid State Chem. 68, 330 (1987).
- [51] T.A. Vanderah, W. Wong-Ng, Q. Huang, R.S. Roth, R.G. Geyer, and R.B. Goldfarb, J. *Phys. Chem. Solids* **58**(9), 1403 (1997).
- [52] ATOMS for Windows, a computer program to display atomic structures, E. Dowty, Shape Software, Kingsport, Tennessee (1999). (shape@compuserve.com)
- [53] E. Tillmanns, Inorg. Nucl. Chem. Lett. 7, 1169 (1971)
- [54] A.R. Drews, W. Wong-Ng, T.A. Vanderah, and R.S. Roth, J. Alloys Compounds 255, 243-247 (1997).
- [55] R.D. Shannon, Acta Crystallogr. A32, 751 (1976).

Figure Captions

- **Figure 1.** Subsolidus phase relations obtained for the BaO:TiO₂:Ta₂O₅ system from specimens prepared in air at 1275°C to 1500°C. Tetragonal tungsten bronze related phases occur along the BaO-Ta₂O₅ binary from 0.26 to 0.43 mol % BaO; the notations TTB, $\sqrt{2}$, and 3x refer to the superstructures observed (Table 1). Phases A \rightarrow D are the "rutile-slab" homologous compounds, BaTi_nTa₄O_{11+2n}, with n-values 3,5,7,9, respectively. E = Ba₃Ti₄Ta₄O₂₁, with solid solution up to 3:5.3:1.35 BaO:TiO₂:Ta₂O₅. F = Ba₆Ti₁₄Ta₂O₃₉ (6:14:1), the *8L* member of the Ba₄Ti₁₃O₃₀ family of ternary phases shown more clearly in Fig. 2. G = TTB-type Ba₆Ti₂Ta₈O₃₀.which forms the solid solution Ba_{6-x}Ti_{2-2x}Ta_{8+2x}O₃₀, x=0 \rightarrow 0.723 H = hexagonal, defect perovskite *8L* solid solution.
- **Figure 2.** Expanded portion of the BaO:TiO₂:Ta₂O₅ diagram showing the Ba₄Ti₁₃O₃₀ (*6L*) family of ternary phases Ba₁₈Ti₅₃Ta₂O₁₂₉ (*13L*), Ba₁₀Ti₂₇Ta₂O₆₉ (*7L*), and Ba₆Ti₁₄Ta₂O₃₉ (*8L*, "6:14:1"=F).
- Figure 3. Illustration [52] of the polyhedral layers in orthorhombic 6L Ba₄Ti₁₃O₂₀, cp layer stacking sequence (chc)₂ (Cmca; a=17.063 Å, b=9.864 Å, c=14.053 Å; Z=4) [53]. Spheres denote Ba²⁺; vertices of distorted [TiO₆] octahedra represent oxygens. The structure is built from two types of layers, one with strings of three edge-sharing octahedra (layers 1,4), the other with groups of five edge-sharing octahedra (layers 2,3,5,6).
- **Figure 4.** Illustration of the polyhedral layers in *13L* Ba₁₈Ti₅₃Ta₂O₁₂₉, *cp* layer stacking sequence *cchcchcchcc* (*C2/m*; *a*=9.859(2) Å, *b*=17.067(5) Å, *c*=30.618(8) Å, β =96.11(2)°; Z=2). Spheres denote Ba²⁺; vertices of distorted [(Ti,Ta)O₆] octahedra represent oxygens. The structure is built from the same two types of layers as *6L* Ba₄Ti₁₃O₂₀, as can be seen by comparison with Fig. 3.
- Figure 5. Illustration of the polyhedral layers in 7L Ba₁₀Ti₂₇Ta₂O₆₉, cp layer stacking sequence cchcchc (C2/m; a=9.855(3) Å, b=17.081(7) Å, c=16.719(7) Å, β=101.18(3)°; Z=2). Spheres denote Ba²⁺; vertices of distorted [(Ti,Ta)O₆] octahedra represent oxygens. The structure is built from the same two types of layers as 6L Ba₄Ti₁₃O₂₀ and 13L Ba₁₈Ti₅₃Ta₂O₁₂₉, as can be seen by comparison with Figs. 3 and 4.
- Figure 6. Illustration of the polyhedral layers in 8L Ba₆Ti₁₄Ta₂O₃₉, cp layer stacking sequence (hccc)₂ (Cmca; a~17.1 Å, b~9.86 Å, c~18.7 Å; Z=4), drawn using preliminary refinement results of isostructural Ba₆Ti₁₄Nb₂O₃₉. Spheres denote Ba²⁺; vertices of distorted [(Ti,Ta)O₆] octahedra represent oxygens. The structure is built from the

same two types of layers as 6L Ba₄Ti₁₃O₂₀, 13L Ba₁₈Ti₅₃Ta₂O₁₂₉, and 7L Ba₁₀Ti₂₇Ta₂O₆₉, as can be seen by comparison with Figs. 3, 4, and 5.

Fig 7 The structurally related series of compounds occurring along a line from $Ba_4Ti_{13}O_{20}$ to $Ba_6Ti_{14}Ta_2O_{39}$, viewed parallel to the *cp* layers along the ~17 Å unit cell axes (*a* or *b*). The layers are stacked along the *c*-axes which are vertical (or nearly so) in the page. Yellow spheres denote Ba^{2+} , red spheres denote oxygen, and distorted blue octahedra are occupied by Ti/Ta. For all four compounds, the average layer thickness is 2.34 Å. All the structures are built from the same two types of polyhedral layers, illustrated in Figs. 3-6.