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Meteors as a source of organic
matter on the early Earth

• There is a lot of it

– For each molecule brought in by meteorites and
interplanetary dust particles at the time of the origin of life,
20-100 are deposited in the atmosphere as a “meteor”.

•  Product is unique

– a chemical derivative of organic matter in comets and
asteroids.

•  Chemistry is elusive

– non-equilibrium hot rarefied high Mach number flow,
unlike any in laboratory.



• Electronic transitions:

– H, C atoms from disintegration

– CN, CH, C2 molecules, from partial breakup

• Vibrational transitions

– C-H and C=O stretch vibration bands

• Rotational transitions

– Submm lines of HCN, H2CO, CO, O3, H2O, ….

Organics in meteors



Physical conditions

• How is organic matter chemically changed?
– Plasma temperatures, cooling rates

– Composition of the air plasma

– Signs of non-equilibrium chemistry

• What fraction survives as solids?
– differential ablation?

– Signs of breakup products, dust



Meteor storms as a window on the 
delivery of organic matter to the early Earth
- High rates
- Frequent persistent trains
- Rare



Yeomans 1981

1998: Possible storms in 1998 and 1999



Different assumptions about
ejection+radiation pressure

but similar results (same orbit to match encounter time)

Model by Lyytinen

Model by Asher

1999: primitive model of dust-trail formation



Hartwig Leuten

2001 shower

PLANETARY PERTURBATIONS

2002
Earth

to Sun
gap from prior Earth encounter



Earth

2001 Leonid storm encounter



•Dust trail size:  30,000x90,000 km at node
(factor 3 wider in heliocentric in-plane direction)

• Dust grain density: 0.97±0.13 g/cm3 (from β)
• Size distribution: s = 1.64±0.05 for M > 2x10-3 g

      s = 1.97±0.07 for M < 5x10-4 g
• Total mass loss: 2.6±0.7 x 1010 kg/return
• Dust/gas ratio: 2.4 ±1.7  (or larger if less gas lost)
• Ejection velocities: 9.1±1.8 m/s at perihelion

Large grains appear to fragment more efficiently in the 
comet coma near perihelion 

Dust trail of comet
55P/Tempel-Tuttle



2002 Leonid forecast

• Two storm peaks Nov. 19 (UT):

– 1767 trail:  03:58±15 UT   (Europe)

– 1866 trail:  10:36±15 UT   (USA)

• Peak rates comparable to rates in 2001

• Full Moon (15 days)



2002 Leonid Multi-Instrument Aircraft Campaign



R. McNaught





2002 Leonid forecast (ground)

http://leonid.arc.nasa.gov/estimator.html

Summary
by Cooke
10/9



In-cabin view “FISTA”

40o elevation
12” flat
special glass

12o

12” flat
horizon

Low weight cameras: tripod mounted



More elaborate equipment: trainable eyeball assembly (±20o)
or custom mount

40o

12o





Optical slit-less spectroscopy

• Old tool (Millman, Harvey, Ceplecha, Borovicka, …)
• In need of quantitative analysis
• Few good spectra only describe physics of bright fireballs

Borovicka et al. 1999
1998 Leonid MAC



Solution: 
• Highest possible resolution
• C ooled CCD (not intensified)



Typical Leonid meteor spectrum

Abe et al. 2000 
HDTV, 1999 Leonid MAC)

Region of interest: 550-900 nm



1998 Leonid MAC Spectrum I

Borovicka (1994):
High excitation levels:
N, O lines originate in
hot T ~ 10,000 K plasma

We find:
• N/N2 ratio: T = 4350±100   K

Temperature similar to metal atom
ablation lines T ~ 3900-5000 K

17:47:06 UT

Theory
NEQAIR2

observed



1998 Leonid MAC Spectrum II

Emitting volume of plasma:
Initial train radius predicts 

volume of 3x107 cm3

• Intensity implies emitting 
volume of 1x1013 cm3.

• Non-LTE?
• O I 8446 Å factor 3 too faint
• N I 8656 Å too strong

ON

06:08:47 UT



03:35:36 UT Perseid

1999 Perseids (ground):

First fit of N2 band profile with
theoretical model.

• N2 contour: T = 4,300±40 K
• Excess ∆ν = 10-9 and 9-8
evidence of recombination: 

N + N  <—>  N2

• New line at 648 nm (OI ?)



09:44:53 UT

K I

N

N2

2001

1998



Air plasma
temperature

(almost) NO dependence on
meteor mass or speed

 T = 4,500 K for small meteoroids
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4150 K:
Interesting chemistry
in CO2 rich atmosphere



Hans Stenbaek-Nielsen, University of Alaska

Leonid 1000 frames/s

Discovery of a “Shock”

Interpretation (ongoing work):

• Diffuse glow: (instrumentally?)
scattered light from bright
pointsource
• Circular bright area with “cut-out”:
predissociation by UV photons
• Parabolic shock with meteoroid in
focal point. Region behind shock
where air is fully dissociated.



Meteor model

• Single air collision releases
cloud of products: “Meteoric
Vapor Cloud”

• Air interacts with cloud to
form warm wake with
dimensions of mean free
path.

• Shock forms surrounding
wake, predissociation air by
UV photons



Leonids: CN/Fe < 0.03

 (upper limit factor 10
  better than after
  1999 campaign)

Organics do not break up
in di-atoms

(P. Jenniskens et al., 2002
Astrobiology, submitted)

Halley: N/Fe = 0.79±0.02

FATE OF ORGANICS IN ABLATION
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10:54:59 UT

Loss of functional groups (H)

• Sharp flare termination (deposition debris)
• Detection of Hα - probable source H: organics 

(in preparation)



Blue: model 
O, N, 
N2 first positive

P. Jenniskens et al., 2002 (Astrobiology, submitted)

Blue: model 
O, N, 
N2 first positive

- 2 0

- 1 0

0

1 0

2 0

3 0

700 750 800 850
In

te
n

si
ty

 
(a

.u
.)

Wavelength (a.u.)

Difference obs-model

Search for C2: detection of OH Meinel band?



09:08:25 UT

Three components  (Borovicka 1993)

•Air plasma (O, N, N2) 
• T ~ 4,400 K

•Metal atoms (Fe, Mg, Na, K, Al, Ca, Mn, …)

• T ~ 4,400 K 
• anomalous excitation

•Hot (Ca+, Mg+)
• T ~ 10,000 K



NO differential ablation

As a rule: 
NO differential ablation

But: in fragile Leonids
volatile Na minerals
start ablation earlier
(Borovicka et al. 1999)

< At end: Na nearly gone.

< Fe/Na = constant



Survival of debris

Some material rich in 
Ca, Mg, and Al 
survives flare (debris).



Ray Russell & George Rossano et al., The Aerospace Corporation

Nov. 18, 1999 - 04:00:29 UT

• C-H stretch vibration band in persistent train emission



Mid-IR (3-5.5 µm)
emission peak
George Rossano et al.,
       The Aerospace Corporation

Release of organics
At altitude ~ 117 km?

lightcurve

model



Conclusions

• Organics appear to survive ablation
– Large molecules

– Solid debris (soot)

• Volume of atmosphere affected by meteors
is orders of magnitude larger than thought
before

• Much work and opportunity remains


