

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Drift Stability: Seismic and Thermal

Presented to: Nuclear Waste Technical Review Board Joint Meeting of the Natural System and Engineered System Panels

Presented by: Mark P. Board Bechtel SAIC Company, LLC

February 24, 2003 Las Vegas, Nevada

Objectives of Study

- Produce a geologically-based estimate of the distribution of rockfall for lithophysal and non-lithophysal rocks as a function of ground motion
 - Rockfall defined in terms of:
 - Total tons per "unit length" of tunnel
 - Distribution of block sizes/masses
 - History of velocity (energy), position and timing of ejected blocks
- Estimate rockfall as a function of variability of geology, rock properties and ground motion
- Determine impact of thermal load history and time-related degradation

Rockfall Modeling and Analysis

Contributors

BSC - Ming Lin, Dwayne Kicker, Junghun Leem

Itasca - Branko Damjanac, Dave Potyondy, Carlos Carranza-Torres, Peter Cundall

USBR/USGS - Steve Beason, Rob Lung, Mike Fahy, Dave Buesch

Sandia - Larry Costin, Ron Price

Univ. of Arizona - John Kemeny

Preliminary Draft Materials

Two Distinct Rock Types in Proposed Repository - Non-Lithophysal and Lithophysal Rock

Non-lithophysal is strong, fractured rock, 150 MPa Unconfined Compressive Strength (UCS), Modulus (E)~30GPa, GSI ~ 60 - 70

Lithophysal rock is high lithophysal porosity (10-30%), ~ 7 to 15 MPa UCS, E~1-5 GPa

Preliminary Draft Materials

Modeling Approach for Non-Lithophysal Rocks

Preliminary Draft Materials

BSC Presentations_NWTRB_YMBoard_02/24/03

YUCCA MOUNTAIN PROJECT

Fracture Modeling using FracMan

Fracman Data

Orientation of Sets		Trace Length		Spacing	
		FM	DLS	FM	DLS
Set 1	122/84	1.8m	2.3m	0.61m	0.55m
Set 2	195/85	1.5m	1.9m	1.61m	1.48m
Set 3	306/09	2.1m	2.7m	6.8m	4.20m
Set 4	150/90	1.4m	1.7m		

Orientation = Strike/Dip FM = Fracture Mapping DLS = Detailed Line Survey

BSC Presentations_NWTRB_YMBoard_02/24/03

Sampling Strategy for Rockfall 3DEC Analyses

R	ealization Number	Ground Motion Time History Number	Synthetic Fracture Pattern Number	•
	1	7	22	•
	2	11	21	
	3	11	30	
	4	16	27	
	5	14	26	
	6	13	10	
	71	1	100	
	72	16	13	
	73	2	73	
	74	11	43	
	75	7	72	
	76	11	105	

- The complete sample space: 105 fracture patterns x 16 ground motions
- Apply Latin Hypercube random sampling technique to select 76 representative cases

BSC Presentations_NWTRB_YMBoard_02/24/03

Example 3DEC Model Block Structure

(outside block structure removed)

- Currently examining 100 or more analyses per ground motion
- FracMan input of fractures
 - Partially-penetrating cracks in larger blocks modeled
 - Base case assumes planar, zero dilation joints
 - Examine range of joint surface properties
 - Examine impact of thermal load history

Determine Block Impact Location, Mass and Velocity

Block impact location to drip shield - record mass, velocity, time

Preliminary Draft Materials

Results - Distribution of Rockfall Block Mass for Non-Lithophysal Rock

- **Rockfall largely** controlled by block geometry and peak particle velocity (ppv)
- Median block size is approximately 0.25 tonne for all cases
- Fracture dilation angle potentially important, friction angle unimportant
- Thermal load decreases rockfall during heating phase

Preliminary Draft Materials

Lithophysae and Fracturing in the Lower Lithophysal Unit

- Lithophysal porosities of 10% to 30%
- Block size controlled by
 - Lithophysae spacing
 - Extensive cooling fracture network
- Block sizes produced are on order of inches when rock is overstressed

Potential Size of Rock Particles

Preliminary Draft Materials

- Randomly-shaped "Voronoi" blocks in UDEC model do not represent actual internal structure of the lithophysal rock mass
- Blocks are computational tool used to represent damage in the model and formation of loose blocks
- Model has to be calibrated to ensure that its "macro" behavior is the same as behavior of the lithophysal rock mass

Preliminary Draft Materials

YUCCA MOUNTAIN PROJECT

Modeling Approach for Lithophysal Rocks

Preliminary Draft Materials

Testing **Mechanical and Physical Properties**

In Situ Slot Compression Testing

> Laboratory Testing of 12-inch Cores

Preliminary Draft Materials

Summary of Compression Data on Large Lithophysal Core Samples and In Situ Tests

Strength vs Young's Modulus -- All Data

Preliminary Draft Materials

Example of UDEC Model Calibration

Preliminary Draft Materials

Comparison of Model Failure Mechanism at Large Core-Scale

Preliminary Draft Materials

Thermal Drift Degradation Analysis in Lithophysal Rock

- 50 year ventilation
- Temperatures imported from NUFT 1.45 kW/m scenario, peak temperature at drift wall of approx. 135°C reached 20 years (year 70) after closure
- Temperatures applied to UDEC lithophysal model in small increments
- Allow thermal stressing and fracturing to form naturally with potential gravitationally-induced rockfall

Immediately at end of ventilation

Preliminary Draft Materials

20 years after end of ventilation - peak stress change/damage *Preliminary Draft Materials*

Seismic Drift Stability - Lower Lithophysal Unit

Example Results

1x10⁻⁶, unsupported

- Results
 - 5x10⁻⁴ sidewall spalling only
 - 1x10⁻⁶ and 1x10⁻⁷ similar damage rock failure over drip shield - primary impact is dead weight load on drip shield
- Damage levels for low prob. events not consistent with observations of no damage in lithophysae in Exploratory Study Facility

Summary of Drift Degradation Studies

- **Preliminary Conclusions Based on Estimated Ground Motions:**
 - **Non-Lithophysal rock**
 - Median rock size approx. 0.25 tonne
 - **Relatively small rockfall volume**
 - Lithophysal rock
 - Thermal stressing in post-closure results in small displaced volume of rock from springline areas
 - **Pre-closure motion results in loosening of springline for** unsupported conditions
 - Significant damage for 10⁻⁶ and 10⁻⁷ motions
 - Estimated ground motions at 10⁻⁶ and 10⁻⁷ not consistent with geological observations of undamaged lithophysae in ESF and **Enhanced Characterization of the Repository Block Drift**
 - Time-dependency work currently underway

Preliminary Draft Materials