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This paper has two parts. The first part uses a single point of view to discuss the reflection and
averaging mechanisms of spin-transfer between current-carrying electrons and the ferromagnetic lay-
ers of magnetic/non-magnetic heterostructures. The second part incorporates both effects into a
matrix Boltzmann equation and reports numerical results for current polarization, spin accumula-
tion, magnetoresistance, and spin-transfer torques for Co/Cu/Co multilayers. When possible, the
results are compared quantitatively with relevant experiments.

INTRODUCTION

In 1996, Slonczewski [1] and Berger [2] pointed out that
an electric current that flows perpendicularly through a
magnetic multilayer can exert a torque on the magnetic
moments of the heterostructure. The torque arises be-
cause a polarized electron in a non-magnet feels a large
exchange field when it propagates into a ferromagnet.
For at least two distinct reasons, this interaction in-
duces a transfer of spin angular momentum (and hence
a torque) between the current-carrying electrons and the
ferromagnetic layers of the heterostructure.
One source of spin-transfer, the reflection mechanism,

occurs because the reflection coefficient for electrons in-
cident on a magnetic/non-magnetic interface is spin-
dependent. The spin content of the reflected and trans-
mitted wave functions differ (in general) so, inevitably,
angular momentum is gained or lost to the magnetiza-
tion in the immediate vicinity of the interface. A second
source of spin-transfer, the averaging mechanism, occurs
because the spins of electrons transmitted into a ferro-
magnet from a non-magnet precess around the magne-
tization of the ferromagnet. On account of this preces-
sion, the component of the total conduction electron spin
transverse to the magnetization averages to zero when
summed over all electrons. Since total angular momen-
tum is conserved, the ferromagnetic moments gain what
the electrons lose.
Motivated by theoretical considerations of this sort,

and earlier experimental indications of current-induced
magnetic excitations [3], groups at Cornell [4, 5] and Or-
say [6] recently demonstrated that the relative magneti-
zation of the cobalt layers in Co/Cu/Co trilayer struc-
tures (Figure 1) can be switched by passing an elec-
tric current through the structure. The observed asym-
metry of the switching with respect to the direction of
current flow is indicative of the effect of spin transfer
torques (rather than an effect of a current-induced mag-
netic field).
The theoretical treatment of this problem is compli-

cated by the fact that the magnetizations of the ferro-
magnetic layers are necessarily not collinear [7–9]. In
this paper, we use a Boltzmann equation to compute cur-
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FIG. 1: Co/Cu/Co multilayer with non-collinear magnetiza-
tions.

rent polarization, spin accumulation, magnetoresistance,
and spin transfer torques in Co/Cu/Co heterostructures.
This approach is restricted to Ohmic transport, but it
permits us to treat situations where the interface resis-
tance does not necessarily dominate the transport and
also where the layer thicknesses are less than relevant
mean-free paths [10]. That is, we can treat spacer layers
of arbitrary thickness. Our main results are: (1) spin-
flip scattering in the external leads is sufficient to po-
larize the current; (2) the two sources of spin transfer
torque identified above combine in a natural way; (3)
the magnitude of the torque depends on the reflection
coefficients, the spin-dependent conductivity of the fer-
romagnets, and the layer thicknesses; (4) the dependence
of the magnetoresistance on the angle between the two
ferromagnetic magnetization vectors is not exactly cos θ;
and (5) satisfactory quantitative agreement is found with
the magnetoresistance data of Katine et al. [5] but not
with the data of Grollier et al. [6].

OBSERVABLES & PARAMETERS

This section defines the observables we use to discuss
transport and spin-transfer. We also give the numerical
values of the parameters used in our quantitative calcu-
lations for thin Co layers embedded in bulk-like Cu. Sev-
eral of the most relevant observables involve incoherent
sums of quantities that are defined quantum mechani-
cally for each electron. One familiar example is the elec-
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tron number current density

j(r) = −
ih̄

2m

∑
σ

[ψ∗σ∇ψσ + h.c.] (1)

Less familiar is the current density of spin angular mo-
mentum

Q(r) = −
ih̄2

4m

∑
σσ′

[ψ∗σ(r)σσ,σ′ ⊗∇ψσ′ (r) + h.c.] (2)

The gradient of this quantity at any point in space is
the local torque/volume exerted by the electrons on the
rest of the system. Discontinuities are local torques/area
exerted by the electrons. As the product notation indi-
cates, Q is a tensor because σ has a direction and ∇ψ
has a direction.
It is particularly useful to define a current polarization

vector p(r) by contracting the space part of Q with the
number current density:

p(r) =
2

h̄

Q(r) · j(r)

|j(r)|2
. (3)

For a distribution of electrons, Q(r) and j(r) should each
be computed separately and then contracted. For a com-
pletely polarized current, p is a unit vector that points
in the direction of the polarization. The length of p is
the up spin current minus the down spin current, all di-
vided by the total current for up and down defined with
respect to the direction of p. Notice that the current po-
larization and density polarization (magnetization) need
not lie in the same direction or have the same magnitude.
We discuss such an example below.
We will also have occasion to discuss the voltage drops

∆V that occur over various portions of the sample. To be
precise about our usage of this symbol, it is important to
recall that both the electric field E and gradients of the
density deviation from equilibrium δn(r) lead to electric
current flow. In this context, it is usual [11] to define an
electrochemical potential

µ(r) =

[
2π2vFh̄

k2F

]
δn(r)− eV (r) (4)

as the combination that enters the transport equations.
Here, E = −∇V (r). Of course, V (r) and δn(r) are re-
lated by the Poisson equation. But, as far as the trans-
port equations are concerned, it does not matter how
the two are distributed. Therefore, we are free to choose
an approximate solution of Poisson’s equation for which
there is no charge accumulation, δn(r) = 0, and interpret
∆µ/e as the voltage change ∆V . This is what we have
done in this paper.
On the other hand, the electric field does not couple

to the deviation of the magnetization from its equilib-
rium value. This is called the spin accumulation, δm(r).
Gradients of the spin accumulation lead to spin currents.

The numerical results we report in the next section
were obtained by solving a matrix Boltzmann equation
(see the Appendix) appropriate to each portion of the
heterostructure shown in Figure 1 (leads, ferromagnets,
and spacer layer). The reflection and averaging mech-
anisms of spin-transfer are included automatically when
we match the solutions together suitably using a general-
ization of the boundary conditions described in Ref. [12].
The details will be given elsewhere.
We make several simplifying approximations which are

not intrinsic to the Boltzmann equation method. We as-
sume that all Fermi surfaces are spheres of the same size.
Minority and majority electrons in the ferromagnets have
different conductivities due to different Fermi velocities
(effective masses) and different scattering rates. We also
assume that the interface resistance is due to specular re-
flection instead of diffuse scattering. We parameterize the
reflection amplitudes in terms of dimensionless parame-
ters ασ, chosen to give the correct interface resistances
[13], in the form

|Rσ(k)|
2 =

ασk
2
F

ασk2F + k2x
, (5)

for an electron with wave vector k and spin σ =↑, ↓ in-
cident on an interface with normal x̂. For simplicity, we
choose Rσ(k) to be real for all the calculations reported
in this paper [14]. Measured values of the interface resis-
tance for Co/Cu [15, 16] are consistent with calculated
results from first principles in the specular limit [13, 17],
but they are also consistent with calculations in the dif-
fuse limit [18].
Resistances extracted from experiments performed at

Michigan State [15, 16] were used to determine the pa-
rameters we use to model Co/Cu structures. These in-
clude the mean free paths for Cu (λ = 110 nm) and Co
(λ↑ = 16.25 nm and λ↓ = 6 nm) as well as the reflectiv-
ities for Co/Cu interfaces (α↑ = 0.051 and α↓ = 0.393).
The spin-flip mean free path for Cu (λ↑↓ = vFτ↑↓ =
2000 nm) was taken from the spin-diffusion length

√
λλ↑↓

extracted from a different set of experiments on multilay-
ers grown electrochemically [19]. The layer thicknesses
were taken from the experiments done by Katine et al.
[5]. These are tCo(1) = 10.0 nm, tCu = 6.0 nm, and
tCo(2) = 2.5 nm.

RESULTS

Current polarization by spin-flip scattering

Inside a ferromagnetic metal like Co, Ohm’s law (jσ =
σσE) guarantees that the current is naturally polarized
(j↑ �= j↓) because the conductivities for majority and
minority spin electrons are different (σ↑ �= σ↓), while
both spin types feel the same electric field E. By the



3

same argument, the current is naturally unpolarized in a
non-magnetic metal like Cu because σ ↑= σ↓ = σ. How-
ever, for a heterostructure like the one shown in panel
(a) of Fig. 2—a thin ferromagnetic film sandwiched be-
tween two non-magnetic leads—the steady-state current
polarization can deviate (locally) from its preferred bulk
behavior in the presence of spin accumulation.

To see this, suppose first that spin-flip scattering is
absent. In that case, the number densities of up and down
spin electrons are conserved separately and the two spin
types conduct electricity in parallel. Moreover, in steady
state, the up and down spin currents (and the current
polarization) are time-independent and spatially uniform
everywhere. For a layer of Co of thickness t sandwiched
between two Cu leads, each of length L, a simple series
resistor model for the two spin channels conducting in
parallel gives the polarization of the current as

I↑ − I↓

I↑ + I↓
=

t(σ↑ − σ↓)

L(4σ↑σ↓/σ) + t(σ↑ + σ↓)
. (6)

This formula shows that the current is unpolarized in the
limit that the leads become infinitely long (L→∞).

Now introduce spin-flip scattering in the leads. The
current polarization can vary spatially in this case be-
cause only the sum of the up and down spin currents is
conserved. This is shown as the solid curve in panel (b)
of Fig. (2) where p = pzẑ. Note that the current in the
ferromagnet is polarized and the current in the leads (far
from the interfaces) is unpolarized. In between, pz(x)
varies on a scale set by the spin diffusion length. There-
fore, the presence of spin-flip scattering [20] allows the
system to accommodate as much as possible to the ”po-
larization desires” of both the ferromagnet and the non-
magnet (as determined by their intrinsic conductivities).
Non-zero values of the dashed curve in Fig. (2) identify
portions of space where the spin density deviates from its
equilibrium value, i.e., spin accumulation. As mentioned
earlier, the gradient of this quantity contributes to the
current polarization.

Returning to the solid curve, the fact that pz(x) is sym-
metrical around the origin tells us that the steady state
current distribution is equally polarized on both sides of
the ferromagnetic layer. This means that no torque acts
on the magnet. On the other hand, the non-zero gradient
of pz(x) elsewhere tells us that distributed torques act
throughout the leads where spin-flip scattering occurs.
These torques are equal and opposite at points which
are symmetrically disposed with respect to the thin film.
This means that current flow in this system with a single
ferromagnetic layer induces a bending stress in the entire
structure. In essence, the conduction electrons transfer
angular momentum from one lead to the other. This in-
teresting result motivates us to look into the mechanisms
of spin transfer in more detail.
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FIG. 2: Current polarization for a single ferromagnetic layer.
Panel (a): a thin Co layer embedded between two semi-infinite
Cu leads. Panel (b): current polarization (solid line)and spin
accumulation (dotted line) for a single Co layer embedded in
Cu. The spin accumulation, defined as a density rather than
a magnetization, is put in a dimensionless, scaled form by
dividing by the ratio of the current to the Fermi velocity.

Spin-transfer by reflection

The fate of a polarized electron incident on a ferromag-
net depends on the angle between the electron spin mo-
ment and the magnetization direction of the magnet. We
can encode this effect of quantum mechanical exchange
most concisely using spin-dependent reflection and trans-
mission coefficients Rσ and Tσ. This has been discussed
qualitatively by Waintal et al. [8]. Here, we focus on the
scattering state for a polarized electron in a non-magnet
(x < 0) that is incident on a ferromagnet (x > 0). If
the incident electron spin points in an arbitrary direc-
tion (θ φ) with respect to the permanent magnetization,
we can write its wavefunction in the form

ψ = e−iφ/2 cos(θ/2) |ψk↑〉+ eiφ/2 sin(θ/2) |ψk↓〉 . (7)

Here,

|ψk↑〉 = (eikx +R↑e
−ikx) |↑〉 x < 0

= T↑e
ik↑x |↑〉 x > 0

|ψk↓〉 = (eikx +R↓e
−ikx) |↓〉 x < 0

= T↓e
ik↓x |↓〉 x > 0 (8)

are scattering states in a majority/minority basis. In-
serting Eq. (7) into Eq. (3) gives the incident current
polarization as

pinc = (sin θ cosφ, sin θ sinφ, cos θ). (9)

It is straightforward (but tedious) to compute the cor-
responding quantities prefl and ptr from the transmit-
ted and reflected waves generated by Eq. (7). We omit
them here and focus instead on the extreme case where
R↑ = 1 and R↓ = 0 for an incident electron with a spin
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pointed in the y direction (the magnetization in the z
direction). In this case, the incident spin current polar-
ization is pinc = (0, 1, 0). Only up spins are reflected, so
the reflected spin current polarization is prefl = (0, 0, 1).
Only down spins are transmitted, so the transmitted spin
current polarization is ptr = (0, 0,−1).
Note first that the z component of pinc is the same

as the z component of prefl + ptr. The numerical value
happens to be zero in this case, but the stated equal-
ity is a general result. Nothing very interesting happens
to the component of the electron spin that is parallel to
the quantization axis of the ferromagnet. By contrast,
the transverse component of the spin angular momen-
tum does change. From Newton’s law (and Ehrenfest’s
theorem), this is possible only if the magnetization ex-
erts a torque on the conduction electron spins. For other
angles and other reflection amplitudes, the amount of
transferred angular momentum is more complicated, but
it is non-zero in general.

From the sentence below Eq. (2) and using Eq. (3), the
torque exerted on the permanent magnetization at x = 0
due to this reflection mechanism is

NR = A
h̄

2
(pincjinc − ptrjtr − prefljrefl)⊥ . (10)

Here, A is the cross sectional area of the interface and
the currents jinc, jrefl and jtr are taken to be positive.
The subscript ⊥ reminds us that this vector is transverse
to the magnetization. We have chosen M = M ẑ, so the
torque lies in the x−y plane—specifically, the y-direction
for our simplified example.

Spin-transfer by averaging

The averaging mechanism of spin transfer is also a con-
sequence of the exchange interaction. But, it is com-
pletely distinct from the reflection mechanism. To see
this, observe first that the incident electron wavefunc-
tion Eq. (7) in the non-magnet is a coherent superposi-
tion of two degenerate spinors with the same wave vector.
When this electron enters the ferromagnet, the majority
and minority spin components at the Fermi surface no
longer share the same wave vector. As a result, the elec-
tron spin precesses rapidly in real space [21]. The spatial
precession frequencies vary rapidly over the Fermi sur-
face so, when we sum over all current-carrying electrons,
the transverse component of the total conduction elec-
tron spin averages to zero. In other words, an ensemble
of electrons that enters a ferromagnetic layer with a non-
zero transverse component of the current polarization,
exits the layer with zero transverse component. From the
change, the torque the ensemble exerts on the permanent
magnetization is NA = 1

2 h̄Ajtr(ptr)⊥. This “averaging”
torque cancels part of the “reflection” torque Eq. (10) so

the net spin-transfer torque is

N =NR +NA = A
h̄

2
(pincjinc − prefljrefl)⊥ . (11)

The net torque manifests itself in a discontinuity in
the transverse angular-momentum current; the latter is
zero inside the ferromagnet. For an electron “beam” with
current density j, this torque is

N = Aj
h̄

2
[1−R↑R↓](sin θ cosφ, sin θ sinφ, 0) (12)

if each electron is described by Eq. (7). We remind the
reader that R↑ and R↓ are both real in our calculation.
Also, since both reflection and averaging contribute to
the torque, there can be extreme cases where only one or
the other contributes. For example, only the reflection
mechanism contributes if R↑=1 and R↓ = 0. Conversely,
only the averaging mechanism contributes if R↑ = 0 and
R↓ = 0. Both happen to give the same numerical result
for these particular cases (R↑R↓ = 0 in Eq. (12) for both
cases). Finally, it is worth noting that the product R↑R↓
in Eq. (12) is closely related to the mixing conductance
G↑↓ used in the “circuit” theory of Ref. [7].

Non-collinear transport in a trilayer

We now apply all the above to a trilayer structure
modeled after the experiments of [5] and [6]. The one-
dimensional geometry is shown schematically in panel
(a) of Fig. 3. For simplicity, we first consider a situ-
ation where the magnetization of the left ferromagnet
points along ẑ and the magnetization of the right ferro-
magnet points along ŷ. We omit spin-flip scattering in
the spacer layer because its thickness is small compared
to λ↑↓. Solving the Boltzmann equation, we see from
panel (b) that the “voltage drop” is largest across the
interfaces (because the interface resistance is large) but
not at all negligible across the layers themselves. The rel-
ative slopes of the lines in the Co and Cu layers reflects
their relative resistivities.
Panels (c) and (d) of Fig. 3 show the current polariza-

tion along the magnetizations directions of the left and
right ferromagnets respectively. Both are discontinuous
at the interface with the misaligned ferromagnet. This
discontinuity is the origin of the torque exerted on the re-
spective magnetizations. Moreover, as in the single-layer
problem, p(x) decreases (too slowly to be seen in this
plot due to the long spin-diffusion length) toward zero
in each lead as x → ±∞. This again corresponds to a
distributed torque in each lead. Thus, for electron flow
from left to right through the multilayer, the conduction
electrons extract angular momentum from the lattice of
the left lead (by spin-flip scattering) and deposit an equal
amount of angular momentum into the magnetization of
the right ferromagnet. A similar transfer occurs between



5

0.0

0.1

0.2

V
/I

 (
Ω

)

0.0

0.5

p z

0.0

0.5

p y

-2
0
2

δm
zv

F 
/ j

-10 0 10 200
x (nm)

-2
0
2

δm
yv

F 
/ j

(a)

Cu CuCo

(b)

(c)

(d)

(e)

(f)

Co
Cu

M

j

M

z y
x

FIG. 3: Voltage, current polarization, and spin accumulation
for a trilayer. Panel (a): a heterostructure with two Co lay-
ers, an interposed Cu layer, and two semi-infinite Cu leads.
Electron current flows in the x-direction and the left magne-
tization is in the z direction and the right is in the y direc-
tion. Panel (b): the voltage drop (electrochemical potential)
through the structure. Panels (c) and (d): z and y compo-
nents of the current polarization, respectively. Panels (e) and
(f): z and y components of the spin accumulation (see Fig 2),
respectively.

the right lead and the magnetization of the left ferromag-
net. The transfers are in the same direction, as pointed
out in Ref. [1], so that the current induces the two Co
layers to “pinwheel” in the same direction.

Panels (e) and (f) show the spin accumulation along
the respective magnetization directions that is required
for consistency with the calculated current polarizations.
The obvious discontinuities in spin accumulation across
the interfaces are due to the large spin dependence of the
interface resistances. From panels (c) and (d), the polar-
ization of the current in the Cu spacer layer is roughly
in the ẑ+ ŷ direction inside the spacer layer, while from
panels (e) and (f), the polarization of the density in the
Cu spacer layer is roughly in the ẑ − ŷ direction. The
two are not collinear.
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FIG. 4: Magnetoresistance and torque. Panel (a) shows the
change in resistance as a function of the relative angle between
the two magnetizations (solid curve). The dotted curve is pro-
portional to 1−cos θ. The resistance has been computed from
the values in the text and a cross-sectional area of π 652 nm2.
Panel (b) shows the transverse current polarization on the
right ferromagnetic layer. Panel (c) shows the same quantity
divided by − sin θ.

Angular dependence of resistance and torque

For the structure illustrated in Fig. 3, Fig. 4 shows
the dependence of the resistance and the torque on the
angle θ between the magnetizations of the two ferromag-
nets. Panel (a) shows that while the magnetoresistance
varies roughly like 1 − cos θ, there are significant devia-
tions. Several authors [22] find similar deviations using
a fully quantum mechanical treatment. Our results show
that non-sinusoidal behavior occurs already at the semi-
classical level if spin non-collinearity is treated properly.

Our computed value of R(180)−R(0) is about half of
the value measured by Katine et al. [5]. Possible sources
of this discrepancy are (1) experimental uncertainty in
the multilayer cross-sectional area (on the order of 40%);
(2) material differences in the structures grown at Cor-
nell and Michigan State; and (3) the treatment of the
leads in the calculation. In our results, the leads have a
higher resistance for parallel alignment than for antipar-
allel alignment. The current is largely unpolarized in the
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latter case, but not in the former, and there is extra resis-
tance associated with the spin-flip scattering that polar-
izes the current. We suspect that the wider leads used in
the experiment would reduce this effect leading to better
agreement between the calculation and the measured re-
sults. Even though a series resistor model is not justified
for layers thinner than the relevant mean free paths, we
find from such a model, with no resistance in the leads,
a factor of two increase in the difference in resistance, in
much better agreement with the measured result.
We have carried out similar calculations to compare

with the results of Grollier et al. [6]. That comparison
is much less satisfactory. Using their experimental ge-
ometry and the same transport parameters, we compute
R(180)−R(0) to be about 0.006 Ω. This is much larger
than the experimental value of about 0.001 Ω. Moderate
changes in the Co and Cu layer thicknesses do not change
the results very much because the interfaces dominate the
physics. We could bring the calculation into agreement
if there was much less spin-dependence to the interface
resistance or if the cross-sectional area of the multilayer
was much different than the quoted value. In addition
to the possible sources of error discussed above, it is also
possible that the ferromagnetic layers are not uniformly
magnetized in either the parallel or the antiparallel state.
Panel (b) of Fig. 4 shows the transverse part of the

current polarization at the interface with the left ferro-
magnetic layer. Again, this curve deviates significantly
from simple sin θ behavior. The deviation is highlighted
in panel (c) which shows

g(θ) = −p⊥(θ)/ sin θ. (13)

We find that the deviations for the transverse current po-
larization track the deviations for the magnetoresistance
as we vary material parameters. These deviations are
quite pronounced, even for completely symmetric struc-
tures. The maxima in the transverse currents do not
occur for perpendicular alignment of the magnetizations,
but rather happen nearer to antiparallel alignment. For
a symmetric structure with magnetizations perpendicu-
lar to each other, the current polarization is only 45◦

away from the magnetization. The current polarization
becomes perpendicular to the magnetizations as they be-
come antiparallel, but the amount of polarization de-
creases to zero in that limit. This is significant because
the torque on the left ferromagnetic layer is proportional
to the transverse part of the spin current incident on the
interface.
The magnitude of the torques we compute are consis-

tent with those that cause reversal in experiment, but
direct comparison is difficult. As has been pointed out
by others [5, 23], it is not simply a matter of comput-
ing when some energy barrier is overcome. The torque is
zero in both the parallel and antiparallel configurations so
fluctuations away from these orientations can be ampli-
fied by the current-induced torque. The other sources of

torque—magnetostatics, magnetocrystalline anisotropy,
and external fields—lead to precession. The damping
tends to reduce the amplitude of the precession, counter-
acting the effects of the current-induced torque. At some
point, the current becomes high enough that a compli-
cated reversal occurs.

SUMMARY

We have used a matrix version of the Boltzmann equa-
tion to study perpendicular transport in submicron mul-
tilayers where the magnetizations of the ferromagnetic
layers point in different directions. Spin-flip scattering
in the leads ensures that a polarized current flows. The
boundary conditions for the Boltzmann equation incor-
porate the reflection and averaging mechanisms of spin
transfer discussed by Slonczewski and Berger. As a re-
sult, the conduction electrons and the magnetic moments
of the ferromagnets exert torques on one another. Using
material parameters extracted from experiment, we com-
puted the magnetoresistance, spin accumulation, current
polarization, and magnetization torques for Co/Cu/Co
structures similar to those used in experiments. The
transport data were compared quantitatively with data
obtained at Cornell and Orsay and reasons were sug-
gested to explain some discrepancies between theory and
experiment. The magnitudes of the computed torques
were comparable to the torques that induce magnetiza-
tion reversal in the experiments.
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THE BOLTZMANN EQUATION

The semi-classical Boltzmann equation is a standard
approach to transport calculations that lies between a
fully quantum calculation and classical drift-diffusion
theory. In the portions of space occupied by ferromag-
netic layers, we use Fert’s “two-current” description [24]
where f↑(k, r) and f↓(k, r) describe the occupancy of up
and down spin electrons in the phase space volume dr dk.
Specifically, we restrict the wave vectors k to lie on the
Fermi surface and let gσ(k, r) denote the change in the
occupancy of electrons of spin type σ that occurs when
we apply an electric field E to the system. In the lin-
earized relaxation-time approximation, gσ(k, r) satisfies
the stationary Boltzmann equation

vkσ ·
∂gσ(k, r)

∂r
− eE · vkσ = −

gσ(k, r)− gσ(r)

τσ
(14)
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where vk is the velocity of a state on the Fermi surface,
τσ is the spin-dependent relaxation time, and gσ(r) is the
average of gσ(k, r) over the Fermi surface.
We assume that non-magnetic leads carry current into

or out of each ferromagnet. In that case, each lead can
share the quantization axis defined by the ferromagnet
to which it is connected. A spin-flip scattering term

g↑(k, r) − g↓(k, r)

τ↑↓
(15)

for both spin types is included in Eq. (14) where appro-
priate.
The non-magnetic spacer layer must be treated differ-

ently because the non-collinearity of the two ferromag-
nets induces a spin polarization in the spacer whose di-
rection generally varies in both real space and reciprocal
space. To treat this situation, we use a 2 × 2 Hermi-
tian occupation matrix f(k, r) in place of the functions
fσ(k, r) [25]. In particular, at a point where the natu-
ral spin quantization axis points in the direction (θ φ), a
convenient representation for f is

f = U(k, r)

(
f↑(k, r) 0

0 f↓(k, r)

)
U †(k, r) (16)

where

U(k, r) =

(
cos(θ/2)e−iφ/2 − sin(θ/2)e−iφ/2

sin(θ/2)eiφ/2 cos(θ/2)eiφ/2

)
(17)

is the usual rotation matrix for spinors. We have sup-
pressed the k and r dependence of θ and φ for simplicity.
Then, since the matrix g is related to f as gσ is related
to fσ, we describe [25] the transport in the spacer layer
using the matrix analog of Eq. (14):

vk ·
∂g(k, r)

∂r
− eE · vkI = −

g(k, r) − g(r)

τ
. (18)

In this equation, I is the 2 × 2 identity matrix and τ is
the relaxation time in the non-magnetic spacer.
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