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Introduction

This work developed the relationships between the data collected by a robot on another planet and the geomorphologic conclusions made by geologists at ground control (Figure 1).  These models were developed analytically in the first year, verified with post-hoc analysis of a robotic field test in the second year, and confirmed in the third year by using the model to predict what information the science team will collect and what information the science team will find most useful in forming scientific hypotheses.  The model formed the basis for a series of data products including software that enables the science team to interactively explore a dataset's strengths and limitations relative to specific scientific conclusions.  Other products of the research include recommendations for science operations and mission planning and performance guidelines for artificial intelligence algorithms on-board planetary robots.  The proposal addressed the Applied Information Systems Research Program by increasing the scientific return on research with a new approach to modeling information use, exploiting modeling and analysis advances in information technology for the benefit of Space Science, and promoting strong interdisciplinary collaborations among interface developers, mission planners and geologists.  
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The principle outcomes of the project were a series of papers that demonstrated the following findings:

· Changes in science team effectiveness correlates with the number of comments made by the science team about data provided by the rover.  This finding is described in Pudenz, E., Glasgow, J., Thomas, G., Coppin, P., Wettergreen, D., Cabrol, N. Searching for a Quantitative Proxy for Rover Science Effectiveness, Proceedings of the 2006 Conference on Human-Robot Interaction, March 2-4, 2006, Salt Lake City, Utah.
· During a large field test, we observed that although the science team requested a large amount of data in the form of three dimensional panoramic images, they didn’t seem to use this three-dimensional data in many of their scientific conclusions.  We recommended that they reduce the frequency with which they request such data and instead request other types of data from the rover.  Initial indications suggest that this further improved the team’s scientific effectiveness, although the final analysis is still being conducted.  The evidence for this finding is presented in Glasgow, Justin, Erin Pudenz, Geb Thomas, Nathalie Cabrol, Peter Coppin and David Wettergreen (2005), Observations of a Science Team during an Advanced Planetary Rover Prototype Field Test, Ro-MAN Conference, August 13-15, Nashville, TN, 2005.

· Novice rover operators have difficulty perceiving the height of distant objects from monoscopic, panoramic images provided by a rover, even when the rover operator is provided with substantial context aids including a physical model of the local environment.  This finding was demonstrated in both a laboratory environment and in a large-scale field test.  The evidence for this finding is presented in Kanduri, A.K., Thomas, G., Cabrol, N., Grin, E. and Anderson, R.C. (2005), "The (In) Accuracy of Novice Rover Operators Perception of Obstacle Height from Monoscopic Images," Systems, Man and Cybernetics A 35(4), 505-512.
· Operators have difficulty estimating the slope of terrain near the rover.  This was demonstrated with both controlled laboratory experiments and in field tests.  The evidence for this is currently under review in a paper tentatively titled Xiang, Z., Thomas, G., Cabrol, N., Grin, E., and Anderson, R.C., “Slope perception from monoscopic field images:  applications to mobile robot navigation.”  A copy of the working paper is attached here as Appendix A.
· Another series of laboratory studies measured the limits of resolution for a geologist to analyze sedimentary grains with a rover-mounted camera.  These limits are currently being applied to analysis conducted as part of the MER mission.  Wagner, J., Thomas, G., Glasgow, J., Cabrol, N., Grin, E., and Anderson, R.C., “The Accuracy of Sediment Size, Shape, and Distribution Measurements from Robotic Geological Images.”  This article is also under review, but a copy of the working paper is appended here.
· A series of images and associated geologist analysis was created for estimating rock roundness and grain distribution.  Two separate research groups have used these images as part of studies investigating how to automate this process.  The standard datasets allow this research to be conducted and compared to human performance on the same task.  This archive is online at http://grok.ccad.uiowa.edu/~jacob/Mars/images.html
Review of progress made since last year’s report
The project generally proceeded as scheduled.  The following tasks are taken verbatim from last year’s report in the section titled “Plans for Next Year.”  Progress on each task is individually addressed.  
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Year 3

3.1 Identify appropriate field test for stage 3 (Cabrol and Anderson).  This task is been completed.  We participated in the exploration of the Atacama Desert as part of the Life in the Atacama project led by Carnegie Mellon University.
3.2 Pre-visit test site and make predictions regarding most useful data based on model and mission operations recommendations (Cabrol or Anderson and Thomas).  In year two, we determined that this task was not necessary, since we are no longer attempting to develop a comprehensive model of robotic geology.  However, we did ask the scientists to make specific observations at the end of each of the 10 mission days, some of which will relate to predictions made by our existing models.  These observations were compared against direct measurements made in the field.  
3.3 Record audio, video and computer logs during field test (whoever was not at field site previously, for double blind protocol).  During the 2004 field test we recorded 265 audio tapes, each lasting approximately 3 hours.  In addition we collected the server logs, the rover command logs, and a complete archive of all the data analyzed during the missions.
3.4 Make transcripts and use video and computer logs to connect observations to data (Thomas).  .  From the 265 tapes, 61 were selected for transcription, from which 22,492 lines of transcript were collected.  
3.5 Take geologists in field test to the field site to record any misperceptions they had and the reasons for the misperceptions (Cabrol and Anderson).  In year 2, we decided that this would not be possible during the 2004-2005 field season because it would violate the protocol established in the ASTEP mission design, which includes this step at the end of the 2005-2006 field season.  However, a follow-on proposal provided funds to continue this research through the AISR project (Award Number NNG05GA51G) and we completed the field trip in January 2006.  Four members of the LITA science team traveled with six members of our research team to the regions of the desert explored by the rover.  We prepared lists of hypotheses for the scientists at each of the locations visited by the rover.  The analysis of this data is ongoing as part of the work with the new grant.
3.6 Compare transcripts and field observations to predictions.  Determine if predictions were accurate and, if not, why not (All).  The analysis of transcripts and field observations is nearly complete for the 2004 season.  Of particular interest is the validation of the difficulties scientists face in estimating the scale of objects seen in images provided by the rover.  This is particularly evident in objects visible in the panoramic image that are more than approximately 20m from the rover.
3.7 Use mission data to refine model (All).  This work is still on-going.  Several are being prepared for submission or are in the review process.
3.8 Refine mission operations recommendations (All).  Our analysis at the end of the 2004 season suggested that the science team had requested a large amount of data, particularly from the stereoscopic panoramic cameras, that did not contribute directly to the science results.  We recommended that the science team reduce the number of stereoscopic images that they requested.  In the 2005 season, the team chose to download other data than stereoscopic panoramic images.  We also recommended that the science team increase the formality with which they reported their analysis each day and made several suggestions regarding the manner in which the findings were checked (ground-truthed).  Many of these suggestions were implemented by the 2005 field season.
3.9 Prepare a report suggesting key areas in which artificial intelligence could increase mission effectiveness by recognizing important data, comparing artificial intelligence performance with human performance on similar task and examining implications of differences (All).  This task is currently being pursued as part of the follow-on study.  Our current approach emphasizes the analysis of panoramic images to determine which areas are of greatest interest to the scientists.  The rover team has also expressed interest in analyzing which features and feature characteristics in a panorama are of greatest interest to the scientists.  JPL and CMU have both expressed interest in developing image-processing techniques to analyze rock size and density from the test set collected in year 1 of this project.
3.10 Share results with science team (All).  This step will be conducted as originally conceived.  
Challenges and Opportunities:

Last year we discussed the following as a challenge/opportunity:

As expected, there were no more operational readiness tests for the MER mission, so we conducted our own field test.  The limitation of this approach is that we replaced a rover with a tripod and camera.  We don’t believe that this change significantly reduced the validity of the results from the geological analysis and the behavior of the scientists.  However, we will team with Carnegie Mellon on an ASTEP proposal this Fall to complete a field test with an active rover.
Now that we have both experiences to compare, it is clear that there are advantages and disadvantages to both.  The principle advantage of participating in a live field test is the face validity and the opportunity to observe challenges as they unfold.  The limitation to the approach is the lack of experimental control and the large number of confounding variables that can make it difficult to specifically identify the cause of a particular effect.  

One of these challenges is the limited number of participants in the study, which reduces our ability to generalize findings from a full field test.  The principle question in this case is:  was the effect caused by the system or is it a consequence of the individual analyst?  

Ultimately, we conclude that an appropriate balance must be struck between the field studies and laboratory studies to confirm each finding with appropriate statistical rigor.

Publications and Presentations resulting from this effort
1. Kanduri, A.K., Thomas, G., Cabrol, N., Grin, E. and Anderson, R.C. (2005), "The (In) Accuracy of Novice Rover Operators Perception of Obstacle Height from Monoscopic Images," Systems, Man and Cybernetics A 35(4), 505-512.

2. Pudenz, E., Glasgow, J., Thomas, G., Coppin, P., Wettergreen, D., Cabrol, N. Searching for a Quantitative Proxy for Rover Science Effectiveness, Proceedings of the 2006 Conference on Human-Robot Interaction, March 2-4, 2006, Salt Lake City, Utah.

3. Glasgow, Justin, Erin Pudenz, Geb Thomas, Nathalie Cabrol, Peter Coppin and David Wettergreen (2005), Observations of a Science Team during an Advanced Planetary Rover Prototype Field Test, Ro-MAN Conference, August 13-15, Nashville, TN, 2005.

4. Thomas, G., Coppin, P., Cabrol, N., Wettergreen, D., Pudenz, E., Glasgow, J. (2005), Collaborative Virtual Environments for Control of Planetary Exploration Rovers, Special Session on Human Robot Interaction, Human Computer Interaction / Virtual Reality Conference 2005, July 22-27, 2005, Las Vegas, NV.
5. Thomas, G., J. Wagner, Z. Xiang, A. Kanduri, and J. Glasgow (2004), Analytical Rover Operations Development, IEEE Systems, Man and Cybernetics Conference, The Hague, The Netherlands.
6. Wagner, J., Thomas, G., Glasgow, J., Anderson, R.C., Cabrol, N., and Grin, E. (2004), Error-associated behaviors and error rates for robotic geology, Human Factors and Ergonomics Society 48th Annual Meeting, New Orleans, LA, September 20-24.

7. G. Thomas, Engineering Robotic Geology for Mars Exploration, IIE Annual Conference, March 2004, Houston, TX.

8. Keynote speech, “Science with Robots on Earth, the Moon and Mars,” ASME Student Leadership Training Seminar, Iowa City, IA 9/24/05.

9. Robotic Space Exploration and the GROK Lab a presentation for the Engineering Alumni, 6/04, The University of Iowa
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SUMMARY

When remotely navigating a mobile robot, operators must estimate the slope of local terrain in order to avoid areas that are too steep to climb or that slope so steeply downward that the operator would lose control of the rover.  Although many rovers are equipped with sensor systems to aid the operator in this task, it is sometimes necessary to estimate slopes from two-dimensional images, either when planning operations, or when the operator wishes to monitor the results of a sensor system.  This experiment compares the operator’s estimates of the slope in Martian terrain with the actual slope determined from three-dimensional data.  The 10 participants overestimated the slope of the indicated regions by an average of 19 degrees (standard deviation 16 degrees).  An analytic model of the error, based on psychophysical analysis, accurately predicts the average magnitude of the errors.  Implementation of this model eliminates an average amount of participant error.  However, the large estimate variance within and between participants and images still poses a challenge for veridical slope estimation.
INTRODUCTION

Sheridan’s Supervisory Control Theory (Sheridan (1992)) outlines how operators control most semi-autonomous mobile robots, or rovers.  The control architecture explains that an operator controls a semi-autonomous machine by specifying goals that the robot can execute on its own.  The theory describes five roles the operator must fulfill: plan, teach, monitor, intervene, and learn.  Crucial to safely controlling a rover, the operator must conduct the plan and monitor roles completely, consistently, and accurately.  

Planning (Sheridan (1992)) requires the operator to understand the mission goals, the rover’s current state, its capabilities and limitations, and its physical environment.  The operator must then conceptualize a task sequence that the rover can understand and execute to achieve the mission goals.  Ideally, the task sequence would also optimize certain mission goals such as completing the task in the minimum time, moving the furthest distance with the least energy, or minimizing risk to the rover.  

Monitoring (Sheridan (1992)) requires the operator to continuously compare the current state of the rover with expectations, searching for failures or process variations.  Effective monitoring requires the operator to accurately predict how the rover should perform the specified tasks, interpret the information coming back from the rover, and detect and track small variations between the predicted and actual states.  The operator’s understanding of the rover, its behavior, and the environment should be detailed enough to differentiate between significant and insignificant differences in expected and actual performance.  Although both planning and monitoring require a precise understanding of the geometry of the rover’s environment, people have trouble perceiving this geometry with the information that a rover generally provides (Lewis, Wang, Hughes, and Liu (2003), Casper and Murphy (2003), Drury (2003)).

A thorough understanding of the local geometry is required for the operator to perform the plan and the monitor roles.  When planning the operator determines favorable paths for navigating the rover around obstacles or dangerously steep slopes.  The final mission plan must accommodate any environmental constraints.  Monitoring requires an accurate understanding of the environment’s geometry, aiding the operator in developing a precise expectation of the rover’s behavior as it traverses the environment.  Operators cannot sufficiently complete the plan and monitor roles because of difficulty perceiving environmental geometry as presented by the rover (Lewis et al. (2003), Casper and Murphy (2003), Drury (2003), Perrone (1980)).  In order to design a system to aid operators in completing their roles adequately and efficiently, we must first understand the difficulty experienced by operators.

Common difficulties operators have when navigating a rover include disorientation, overestimation of geographical feature size, problems with determining rover orientation, and problems with distance and slope estimations.  In short, many operators describe the navigation of a rover as “looking through a soda straw (Steinfeld (2004)).”  Some systems currently use 3D or stereoscopic displays, however these systems can lead to operator disorientation (Steinfeld (2004)).  Casper and Murphy (2003) describe operators having difficulty trying to determine if the rover was in the upright position while van Erp (1998) showed that operators consistently overestimate distances while navigating a vehicle from a video monitor.  A major limiting factor in navigation is operator overestimation of height in monoscopic images (Kanduri (2005)).  Noticing this effect, Woods, Tittle, Feil, and Roesler (2004)) highlight examples in which operators cannot determine whether a rover can pass through an opening or over an obstacle.  Proffitt, Bhalla, Gossweiler, and Midgett (1995) and Proffitt (2001) have shown that people are notoriously poor at determining the angle of an incline in virtual as well as real environments.  From these examples, it is evident that rover operators have little understanding of the rover’s geographical environment.  

In an effort to increase the operator’s understanding of the rover’s geographical environment, Lewis et al. (2003) developed a gravity referenced view (GRV) system, which rotates the camera view of the rover along one axis with respect to gravity.  This system allows the operator to visualize the current roll of the rover, improving the accuracy of determinations of the rover’s ability to traverse the environment, therefore avoiding some rollover accidents.  In the experiments conducted by Lewis et al. (2003), the GRV system significantly reduces but does not eliminate the number of rollover accidents.  This system improves the monitor role of the operator, making it slightly easier for operators to estimate the rover’s current orientation and environmental position.  The operator still requires assistance in making geographic determinations during the plan role.

To make the role of plan manageable for the operator, an aid must present the operator with information about the geographical environment ahead.  This understanding relies on an unbiased perception of the terrain or slope over which the rover must navigate.  People cannot naturally make accurate estimations of slope; therefore, the system must accurately present slope information to ensure satisfactory completion of the plan role.  Effectively designing an interface to present this information requires an understanding of how operators currently perceive slope, and how the perceived slope will be used in a navigational decision.

BACKGROUND

With respect to the observer’s viewpoint along the z-axis, a slope has two components: pitch and roll (Figure 1).  Pitch is defined as the surface’s rotation away from vertical about the x-axis, which is equivalent to the angle between the y-z projection and the y-axis.  Roll is the rotation from the vertical about the z-axis, which is equivalent to the angle between the x-y projection and the y-axis (Proffitt et al. (1995)).  Most slopes in a natural terrain have non-zero pitch and roll.  Methods similar to the ideas employed by Lewis et al. (2003) aid operators in determining roll but not pitch, so this paper exclusively considers the accurate perception of pitch. 

Figure 2 demonstrates the various geometrical considerations involved in the estimation of local slopes with a rover.  In this image, the rover’s position is on a sloping terrain, so the rover’s reference frame is at an angle, r, with respect to gravity.  In general, this angle could affect the both the rover’s pitch and roll but only rover pitch is considered here.  Many rovers use a camera mounted on a pan and tilt gimbal, so that the camera can be directed towards different positions in the rover’s environment.  In Figure 2, the camera aims downward at an angle t, which we refer to as the camera tilt.  Horizontal displacement of the camera constitutes the camera’s pan.  The camera in Figure 2 is imaging a region in front of the rover.  This region has an overall slope tendency and a local region that has a separate slope tendency, defined by , which is the angle between the normal of the sloping surface and the camera’s direct line of sight.  The operator’s task is to estimate the slope of the local region with respect to gravity.  This slope estimate depends on the rover’s angle with respect to gravity, the camera tilt, and the operator’s estimate of .  Generally, an accelerometer fixed to the rover’s body measures angle with respect to gravity.  Position encoders on the tilt and pan gimbal record the camera position.
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Figure 2:  Illustration of the task geometry involved in estimating a local terrain slope with an image taken by a rover equipped with a camera on a pan and tilt gimbal. 

It is not clear, however, how the operator incorporates the numerical estimates of robot tilt and camera tilt in his or her estimation of slope.  For example, the operator may assume that the rover is level (i.e., r = 0) and estimate the camera pitch (t + r) from the texture gradient of the general terrain in the scene.  Such an assumption may be incorrect or prone to greater error than relying on the numerical values from the accelerometer and gimbal angle encoder.  Sparse research covers how these values aid in improving slope estimations; however, we chose to explore the accuracy of slope estimates without this data to account for a worst-case scenario.  

Many rover designers have circumvented operators’ imprecise slope perception by incorporating hardware and software that directly estimate local terrain slopes with three-dimensional imaging systems, such as stereoscopic cameras or laser rangefinders.  The operator can use this information to provide quantitative estimates of the slope, or to generate a display of safe versus unsafe navigation regions.  Because of the limits of sensor resolution, such solutions are generally only possible in the immediate vicinity of the rover.  The operator must still estimate slope from images when on-board measurement systems are not available, when planning rover operations beyond the range of the on-board sensors, or when visually confirming the results of the automatically generated slope estimates.  Work described here investigates the operator’s ability to make these judgments without a three-dimensional map.

Existing perceptual models, developed with geometric situations much less complex than those investigated here, suggest that people’s estimates of slope tend to bias in the direction towards the projection plane (Epstein and Park (1964)).  This bias is evident in laboratory studies of optical slant, in which research participants estimate the relative angle between their viewpoint and a stimulus surface (e.g. Gibson (1950), Smith (1959)).  Research in geographical slant perception, in which research participants estimate the absolute slope of terrain when they are directly perceiving it or when they are looking at images of natural and virtual environments (Proffitt et al. (1995), Creem-Regehr et al. (2003)) shows the same bias.  This existing research suggests that observers misestimate the angle of regard or projection plane of the visual information.  The research reported here considers the hypothesis that slope perception is inaccurate in the visual conditions provided by a mobile rover interface.  More importantly, it is the first to demonstrate that this inaccuracy is large enough to limit effective rover operation.

There are several ways that an operator may improve performance over the conditions tested here.  It is likely that training and experience with a rover would improve an operator’s ability to perceive slope, so long as the training includes effective feedback.  Without appropriate feedback, such as seeing the rover directly, an operator might form and maintain a false perception of scale, for example, imagining that the rover is larger than it is.  Without seeing the rover approach and climb a steep slope, the operator might easily misconstrue how steep a slope the rover could climb.  An operator might use familiar objects in the imagery to understand the scale of the environment.  The operator might use landmarks to reconstruct the geometry of the terrain from different viewing positions and thus have an independent method for evaluating the environment’s geometry.  The presence of familiar objects or landmarks could create a perceptual feedback loop that might provide the feedback necessary to refine slope estimation with controlled experience with a rover.  In unfamiliar environments, however, performance may not improve beyond the unacceptable levels reported here.

Before developing a strategy to mitigate perceptual challenges, it is necessary to investigate the perceptual mechanisms that may be the source of the inaccuracy, and to provide some baseline performance measure with which to understand the significance of the problem.  For this, we consider two perceptual theories proposed by Perrone.

Perrone’s Two Models of Optical Slant Perception

Perrone (1980) analyzed the texture pattern in visual images and concluded that a veridical perception of optical slant is possible if the observer can perceive direction and accurately estimate the length of the vector extending from the viewing position to perpendicularly intersect the extended plane of the slanted surface (line OA in Figure 3).  In practical situations, this critical location (position A in Figure 3) is not directly perceivable by the viewer because of the limited field of view, or frame.  In natural environments, this position may not be physically observable because the observer’s position and the slanted surface are often located so that this important position does not lie on the limited extent of the physical surface.  When the critical position is not observable, Perrone argues, observers form an assumption about the missing information.  Perrone analyzes the consequences of two different assumptions that observers could make.
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Figure 3: Geometrical relationships for Perrone’s Perpendicular Model.  The observer at position O views the slanted surface, DR.  The observer’s vertical field of view is ZV.  See text for definitions of other variables.

Perrone’s first model (Figure 3), which we refer to as Perrone’s Perpendicular Model, proposes that observers erroneously take the slanted surface to be perpendicular to the ray along the bottom of the image (OQ).  Perrone’s rationale for this counter-intuitive hypothesis is that the normal visual environment contains “an abundance of information about the direction of the perpendicular from the eye to the surface we are viewing.”  When the image frame removes this normally available information, the observer assumes that the point of intersection (A) is the bottom of the image (Q).  With this assumption, the gradient is proportional to the angle of the optical slant, sin .  In other words, Perrone proposed that in the absence of the direct perception of the true perpendicular, observers assume that the vector OQ is perpendicular to the slope surface.  Consequently, they perceive the slope to lie in the direction Q’C’R’ rather than QCR.  As a result of this assumption, the perceived optical slant, β (<C’OQ’), differs from the actual optical slant, θ (<COA).  The two parameters are related by 
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, where v is half of the visual angle vertically subtending the visible part of the slope surface.  Despite the basis of Perrone’s Perpendicular Model on optical slant, it extends to geographic slant.  The next section considers the introduction of a variable for camera tilt, which aids in extending the model to geographic slant.  In Perrone (1980), this model is shown to be consistent with Gibson’s experiments with optical slant perception.
Perrone’s second model, which we call Perrone’s Reference Model, proposes that observers incorrectly assume that the line from observing point O to the bottom edge of the visible surface is parallel to the ground plane.  The rationale for this hypothesis is that, in natural environments, the horizontal information is generally clear from the position of the visual horizon.  When visual cues are impoverished, people are very poor at estimating the location of the horizontal direction, despite available posterial cues.  

According to Perrone’s Reference Model, the observer sees the surface in the correct relative position, but misestimates the reference.  If the observer takes the reference plane to be perpendicular to ground, the error in the slant estimate is equal to error in the reference plane position.  Consequently, the perceived slant, , is given by:  = , for slopes tilting away from the projection plane, as illustrated in Figure 4. 


[image: image4]
Figure 4:  Geometric Relationships for Perrone’s Reference Model.

Perrone compared the minimum absolute value estimate for the perpendicular and reference models using previously published optical slant estimates; the fit was within 3.25 degrees. Later, Perrone and Wenderoth (1981) followed by Perrone (1982) proposed a more general model based on the idea that the direction from the observing point to the nearest part of the stimulus is perceived to be the true straight-ahead direction.  The model may also apply to more general geometric cases, such as when the stimulus tilts forward relative to the visual line of sight.  However, this revised model is essentially equivalent to Perrone’s Reference Model, in which slopes generally tilt away from the projection plane, which is usually the case when judging potentially navigable terrain in natural environments.  In addition, the later model considers the convergent angles of a regular texture pattern on the stimulus surface, reducing its applicability in natural environments.  Perrone’s models are the only models found to date of human slope perception published in peer-reviewed literature.   
This paper seeks to measure slope perception error for rover navigation in natural, desert-like environments to determine whether observers tend to overestimate slopes.  This paper also seeks to determine which of Perrone’s models may be adapted to this domain, given that the problem of estimating slopes from images of natural environments considered here is somewhat more complex than the geometric situation considered by Perrone.  Perrone’s work relied on perceptual experiments in which a participant viewed a tilted planar surface through a round aperture.  One complexity is that a natural visual scene may contain many regions with different slopes.  A second complexity is that the observer can not use the perception of gravity or isokinetic feedback to relate the optical slant to an absolute reference frame, a potentially large source of error.  Instead, the observer must use the observed natural terrain to estimate the direction of gravity with respect to the viewed scene.  This is analogous to estimating both the robot tilt and the camera tilt from the visual field of view.  Previous perceptual experiments controlled or eliminated these factors (Perrone (1980), Proffitt et al. (1995), Gibson (1950), Smith (1959)).  Consequently, it is not clear that the previous laboratory studies will directly apply to the problem of robot navigation.  

Extending Perrone’s Models to Rover Slope Estimation

To adapt Perrone’s model to slope perception from field images, several additional complexities must be accounted for.  First, both of Perrone’s models assume that the observer views the physical stimulus directly.  In this case, the perceived texture gradient is related to the observer’s position relative to the textured surface. When viewing an image of a slope, the perceived texture gradient is a function of both the camera’s position with respect to the surface and the observer’s position with respect to the viewed image.  This arrangement weakens the observer’s ability to use his or her knowledge of body position relative to the surface and gravity.  It also introduces the possibility of a distorted perception of the image if the observer’s line-of-sight is not perpendicular to the image plane.  Because we are interested in modeling the perceptual limitations of a rover operator when viewing a rover image, we do not attempt to restrict the viewer’s head position or adjust the position of the image to match the camera tilt. 

The second complexity arises from the fact that Perrone’s models assume that a single sloping region fills the entire effective field of view, in which case the center of the slope and the center of the image are at the same position.  When a region of slope is a subportion of the image, the center of the slope and the center of the image are different.  To account for this, we calculate the geometric center of the slope and use this position.  Consequently, there is a small offset term for the region offset added to the overall tilt of the image.  Thus, we redefine t in Perrone’s model to be t’, as illustrated in Figure 5.

A third complexity is the adjustment for half the vertical field of view, v, used by Perrone, which is also based on the assumption that the slope occupies the entire field of view.  Instead, we use v’, which is half of the vertical field of view of the sloping subregion of the image, which is also illustrated in Figure 5.
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Figure 5:  Geometric considerations for extending the models.

The fourth complexity is related to the observer’s need to estimate the absolute slope, rather than the relative slope modeled by Perrone.  This is problematic because all the cues related to the direction of gravity are indirect.  If the general tendency of the terrain is perpendicular to gravity, the global horizon and texture gradient provide information about the direction of gravity.  If the global terrain is not perpendicular to gravity, however, the horizon and texture gradient will not reflect the direction of gravity, only the general trend of the landscape.  For the sake of this study, we choose to address this based on Perrone’s two models and our experiment instruction. For the Reference Model, only the direct estimation of the tilt of local terrain is required.  For the Perpendicular Model the observer must perceive the direction of gravity in the image in order to estimate the camera tilt.  We presume that the observers estimate the camera tilt from indirect cues, such as the texture gradient of the whole image and the position of the rocks and sediment, for example.  It is not clear exactly what cues contribute to the perception of the camera tilt angle, but the images clearly provide some indication.  This assertion leads to the assertion that the observer can also estimate the tilt of the camera, also through indirect cues. 
If the observer can estimate the camera tilt, then he or she can estimate the absolute slope of a region by transforming the optical slant to global coordinates.  For Perrone’s Perpendicular Model (Figure 3), the real slope QCR tilts up to Q’C’R’. In this situation, α is the slope perceived by observers and α = 90 °– t’ – v’.  This is the Modified Perpendicular Model.  For Perrone’s Reference Model (Figure 4), OQ is assumed to be parallel to the ground, α is the perceived slope, and α = t’ + s0 +v’, where So is as indicated in Figure 3.  This is the Modified Reference Model.

Our objective is to measure the accuracy of a novice observer’s estimate of slope in conditions similar to those experienced by a rover operator and to determine whether an observer perceives slopes in an image of a natural environment in the manner predicted by the Modified Perpendicular Model or the Modified Reference Model.  Specifically, we hypothesize that observers will perceive the slope of areas within a region according to either: (a) 90°– t’ – v’, or (b) t’ + s0 +v’.

METHOD

Participants

Ten participants (3 females, 7 males) aged between 18 and 60 years were recruited locally; 8 were University of Iowa students. All the subjects have normal or corrected to normal vision. 
Stimuli 

The stimuli were taken from the Mars Pathfinder mission data archive (NASA (2003)), which includes stereoscopic image pairs taken by the Mars Pathfinder mission lander and a three-dimensional terrain model of the terrain within 2-15 m of the lander generated from these images (Jet Propulsion Laboratory (2003)).  The terrain model uses a set of over 90 images as texture maps.  Each of these 256×248 pixel images subtends a 14.0°x13.6° field of view with respect to the lander camera viewpoint.  About 120 points in each image are tied to three-dimensional coordinates in the terrain model.  The experimental stimuli consist of a subset of 15 images from the full dataset.  Images were selected based on the following criteria:  (1) selected images should not contain views of the lander, (2) selected images should display a range of slope angles at varying distances, and (3) the selected slopes should be planar and the uncertainty of the coefficients of regression for a plane passing through six selected points on the slope should determine pitch within 0.5 degrees. 

Estimates of the selected slopes in the image subset were calculated from the three-dimensional terrain model. To estimate a slope within an image, we first selected three points from the terrain model corresponding to locations in the sloping region in the image.  An algorithm then considered all combinations of groups of six points in the three-dimensional data close to the three selected points.  The set of six points having the largest R2 value when fitted to a plane was taken to be the best group of points to represent the slope.  This procedure resulted in six points associated with each selected slope, along with an estimate of the slope of the corresponding planar surface passing through the three-dimensional position of the points. All slopes in stimulus set have a confidence interval of +/- 0.5 degrees at the 70% confidence level.  A consequence of a defining a mathematically unambiguous sloping region was that the points are not uniformly spaced, though it seems appropriate for natural environments with uncontrolled geometry.
Two images were prepared for each slope in the stimulus set.  The first image was the original image annotated with a small, red, filled circle that indicate the geometric center of the points used to estimate the slope.  The second image included the blue circles placed at the position of each of the sample points, plus the red circle placed at the center of the chosen points (Figure 6).  These annotations served to direct the participant’s attention to the correct region of the image and specify exactly which points were considered to be included in the slope. 

[image: image6.png]



Figure 6:  A sample of a fully annotated stimulus.  The double-outlined circle (which was red) indicates the geometric center of the slope; the other outlined circles (which were blue) indicate the points used to indicate the local region of interest.

Apparatus

A laptop with a 15’’ screen displayed the images.  Participants reported their slope estimates with a slope indicator, a flat circular plate covered with a random texture pattern mounted on a pan and tilt gimbal that tilted in both directions about the center of the plate.  

[image: image7.jpg]



Figure 7:  The slope indicator.  The circular top surface rotates about a pivot point below its center.

Design

Each subject estimated the slope of all 15 stimuli three times.  Each stimuli set was presented in a separate, randomized block.  For each trial the pitch and roll angles of the slope indicator were recorded. The dependent variable is the estimated pitch angle, defined below. 

Procedure

Participants adjusted their seat and the laptop screen angle to a comfortable working position.  For each stimulus, first the image annotated with the location of all the points in the region was displayed, followed by the image with just the annotation of the geometric center of the slope.  Participants could freely alternate between the two views, but their final slope estimate was made from the second annotated image.  For each stimulus, the participants indicated their estimate of the local slope on the slope indicator so that the slope indicator surface would pass parallel to the plane formed by the slope.

Participants were instructed to imagine that their eyes were at the position of the camera and to indicate their perception of the absolute slope of the indicated region by adjusting the angle of the tilt indicator. They were also asked not to assume that the reference frame provided by the table top was parallel to the terrain, but to exclusively rely on their perception of the top of the slope indicator to indicate their perception of the local slope. 

RESULTS 

A total of 450 estimates were collected.  Participants significantly overestimated pitch with a mean error of 19° (SD 16°, t(449) = 24.68, p < .0005).  Figure 9 presents the pitch estimate error as a function of stimulus image.  
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Figure 8:  Pitch Estimates vs. stimulus image.  The error bars indicate one standard deviation of the combined participant estimates.

For each image, the observed pitch errors (estimate minus actual) were compared with the errors predicted by the Modified Perpendicular and Reference Models.  Figure 9 present the average and predicted errors of the Modified Perpendicular and Reference Models of each stimulus.  A paired t-test indicates that the errors predicted by the models are significantly different (t(14)= 63.08, p<0.0005).  The average error predicted by the Modified Reference Model is 47.9 degrees less than those predicted by the Modified Perpendicular Model.  The observer pitch estimate errors and the Modified Reference Model predictions are not significantly different (t(449)=-1.5, p=0.933).  
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Figure 9:  The estimated error predicted by both models compared to the error observed in the experiment.

The average standard deviation of the subject pitch errors was 14 degrees.  The average standard deviation of each individual subject on each individual image was only 4 degrees.  A two-way analysis of variance of the pitch error as a function of subject, image and subject-by-image interaction indicated that 26%, 22% and 36% of the remaining variability is accounted for by the subjects, images and subject-by-image interaction, respectively. 
DISCUSSION 

The data suggest that veridical, absolute slope estimation from monoscopic images may pose a significant challenge for a rover operator.  The average pitch overestimation of 19 degrees is quite large compared to the size of slopes that may be safely traversed by rovers.  If a rover operator overestimates the magnitude of an upward slope, he or she will likely navigate the rover to avoid the slope, which can potentially lead to choosing inefficient paths and missing opportunities to explore upslope areas that the rover is capable of navigating.  The bias also suggests that operators may underestimate the magnitude of down slopes, or estimate steep downward slopes to be level or even sloping upward.  In this case, the operator might direct a rover down a potentially dangerous slope, leading to a loss of navigation control.  This condition represents a serious potential rover hazard.

The data do not support the Modified Perpendicular Model, which proposes that observers assume that viewing direction to the lowest point in the projection plane is perpendicular to the ground between the bottom of the projection plane and the position of interest.  The data do support the Modified Reference Model, which proposes that observers assume that the viewing direction to the lowest point in the projection plane is parallel to the ground.  The between-stimulus differences between the observer’s pitch estimate error and the Modified Reference Model suggest that other factors, such as the size of the slope, or its position relative to the center of the image, may contribute to this slope estimation bias.  

The Modified Reference Model provides an opportunity to mitigate this overestimation bias by correcting operator estimates.  The model predicts pitch bias as a function of the camera pointing angle and the actual slope.  During rover operations, the true camera angles are known, but the true terrain pitch is generally not known.  If the model uses the estimated pitch from the rover operators as an approximation of the true pitch, it will predict a bias, which may then be subtracted from the operator bias.  
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Figure 10:  Observer estimates corrected by the error predicted by the Modified Reference Model
Figure 10 presents the errors of observer estimates and the same estimates corrected by the Modified Reference Model, following the above procedure.  A paired t-test comparison of the errors of each observation with their corresponding corrected estimate indicates that the corrected estimates had significantly less error than the original estimates (t(449)= 50.59, p<0.0005), with a 95% confidence interval of (19.538°, 21.117°). The amount of correction is very close to the scale of original estimation error. A paired t-test between the corrected estimates and the real slopes indicated that they were not significantly different (t(449) = 1.5, p=0.134). The 95% confidence interval for the error of corrected estimates is (-0.373, 2.784).  Consequently, when averaged across all the images, the error reduction is about 89%-98%. For each single image, the model correction reduced the error by 40% - 99%, except for image 3, where the correction makes the estimation worse by 125.9%.  No obvious feature of image 3 suggests why it would be estimated differently than the other images.

Further model refinements designed to reduce the between-stimulus differences may not be as important as reducing the variance in observer estimates.  The standard deviation of 16 degrees is too large for safe rover navigation, even if the estimates are unbiased, because the occasional large misestimation could lead to catastrophic mission failure.  Compared to most rover navigation constraints, even an unbiased perception of slope with such a large uncertainty would be inappropriate for reliable navigation.  Consequently, the most pressing research question is to understand how to increase the precision with which rover operators estimate slope.  By further refining the model based on geometric considerations, we could hope to eliminate as much as 22% of the variation in the errors associated with image differences.  However, it may be more beneficial to study how operator pitch estimation strategies differ, because 36% of the error variation is associated with the subject-by-image interaction.  Without specialized training, our results suggest that participants are consistent in their estimates, as indicated by the 4 degree standard deviation of pitch error.  With training, an operator may become even more consistent.  An effective error range for slope estimation in rover operations would be on the order of 5%, or a standard deviation of approximately 1 degree for a 20 degree slope.  Increasing the estimation precision by a factor of approximately 4 would significantly reduce the rover’s system complexity by eliminating some of the need to carry sensors to detect terrain slope and would increase the operator’s ability to reliably supervise rover operations. 

CONCLUSIONS
Observers overestimate the absolute pitch angles of a sloping region in the Mars Pathfinder dataset by 17.6 to 20.6 degrees at the 95% confidence level.  The bias may be corrected, on average, with a model that presumes that observers take the ray from the camera’s focal point to the bottom of the locally sloping region to be parallel to the horizon.  This model may be used to correct for observer slope pitch estimate biases during rover operations.  However, the between-observer and within-observer pitch estimate variation still pose significant challenges for a rover operator attempting to estimate local slope from a monoscopic image.  The data and literature suggest that humans cannot make accurate slope estimations in two- or three-dimensional images.  In order for an operator to be able to independently assess the quality of three dimensional terrain information presented by a rover’s terrain-mapping subsystems, or to plan rover operations beyond the range of such subsystems, it is necessary refine appropriate technologies and training techniques.  Devising a combination of training and technology to improve rover operator’s ability to accurately perceive local slope would increase the operator’s effectiveness in navigating the rover reliably and safely.
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FIGURE CAPTIONS

Figure 1: Definition of pitch and roll.  N is the normal of the terrain surface.

Figure 2:  Illustration of the task geometry involved in estimating a local terrain slope with an image taken by a rover equipped with a camera on a pan and tilt gimbal. 

Figure 3: Geometrical relationships for Perrone’s Perpendicular Model.  The observer at position O views the slanted surface, DR.  The observer’s vertical field of view is ZV.  See text for definitions of other variables.
Figure 4:  Geometric Relationships for Perrone’s Reference Model.

Figure 5:  Geometric considerations for extending the models.

Figure 6:  A sample of a fully annotated stimulus.  The outlined circle (which was red) indicates the geometric center of the slope; the other circles (which were blue) indicate the points used to indicate the local region of interest.

Figure 7:  The slope indicator.  The circular top surface rotates about a pivot point below its center.  

Figure 8:  Pitch Estimates vs. stimulus image.  The error bars indicate one standard deviation of the combined participant estimates.

Figure 9:  The estimated error predicted by both models compared to the error observed in the experiment.  

Figure 10:  Observer estimates corrected by the Modified Reference Model.
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Abstract

Quantifying and determining the source of system error within a complex human-machine system is an important step in understanding and improving the system performance.  This work addresses the accuracy of geologic image interpretations within the context of robotic exploration.  Experiments assessed the accuracy of geologists performing the tasks of length measurement, shape classification, and grain distribution in person versus an image of the grains.  The inaccuracy in edge location introduced by the camera ranged between 2 and 4 pixels.  The inaccuracy of length measurements was 2.33 pixels with a standard deviation of 2.399.  The accuracy of grain distribution measurements was 42.5% of the actual bin size with a standard deviation of 322%.  The accuracy of shape classifications was 0.151 categories for sphericity classifications and 0.114 categories for roundness classifications.  The shape classification experiment suggest lower-than-expected intra- and inter- geologist consistency.
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Introduction

Robotic geology, the vicarious study of the geology through a remotely operated robot, enables geologists to work in hazardous and distant environments of great scientific significance, such as volcanoes, underwater, and other planets.  Generally, geologists direct the robot to collect images, chemical spectra, and other science data.  Often the scientists work closely with an engineering team that monitors the robot’s health and generates the command sequences to control the robot.

The traditional path for robot design and development has been for engineers working with scientists to design and build the robot, then test the robot in a field trial.  Such trials have been conducted at the Kilauea volcano[1]; Mt. Spur, Alaska [2, 3]; under the Arctic glacial ice [4]; Dinosaur Tracks, Arizona [5]; the Atacama Desert in Chile [6-8], and Black Rock Summit, Nevada [8b].  In these tests, a remote robot is directed by a team of geologists and engineers to make scientific observations of the field site terrain.  Typically, the centerpiece of the operator interface has been the generation and presentation of photorealistic virtual environments representing the robot's immediate surroundings [5, 9].  Throughout these tests, there has been significant growth and sophistication in the robot systems and a corresponding quality increase in the scientific results.  Through these efforts the field has grown from an early exploration and investigation phase, in which different robot and interface designs were rapidly developed and tested, into a more considered phase in which many of the principle challenges have been identified.  The remaining work is to isolate these challenges and develop strategies to mitigate them.

A number of studies have been conducted to determine the needs of the geologists while working through a rover.  The earliest investigations were conducted by McGreevy [10, 11], who studied geologists wearing helmet-mounted displays while they explored a Mars-like environment.  These studies emphasized the types of words that geologists used and the effect of the limited vision on their navigation and behavior.  More recent work conducted by Clancey [12] emphasizes the ethnographic study of geologists as they explored the Haughton Crater in the Canadian High Arctic.  Clancey’s work emphasizes the team coordination, tools, and behaviors of the scientists simulating daily activities that might occur during a manned Mars mission.  

Robot/human interaction researchers working in related areas, such as rovers for disaster response and military operations have also identified a number of factors that should be considered in the context of designing rovers to be more useful for remote exploration.  Kaber, Onal and Endsley [13], explored the effect of different levels of autonomy on the situational awareness of a robot operator.  Woods et al. [14] describe both the difficulty of coordinating the users (the scientists) and the system builders (the engineers).  They also discuss the problems of perception and navigation with a remote robot.  Olivares, Zhou, and Adams [15] explore the mechanics of the user interface and explore different ways to present information to the robot controller.  Wang [16] is developing alternative strategies for presenting graphical information to help a driver control a robot and search a disaster site by modifying an action-game software engine.  Fong, Thorpe, and Baur [17] explore ways to fuse information from different sensors to support operator control of remote robots.

Each of these works explores interesting questions related to operating a robot.  However, if the problem of controlling a robot is divided into two parts:  enabling the operator to move the robot and avoid obstacles, and enabling the operator to perform the task for which the robot has been built, most of this research is pursuing the first goal.  Indeed, there are many challenges associated with providing the appropriate information to the operator so that he or she may accurately perceive the hazards and navigation challenges of the remote environment and move without colliding with obstacles or becoming lost.  In this work, however, we chose to pursue the second objective, trying to understand how the rover might affect the geologists’ interpretation of the remote environment.

One of the principle challenges in designing a science rover is balancing the weight, power and communication constraints to keep the robot safe and provide the scientists with the greatest possible science return.  For the designing engineers, it is a difficult technical matter to design the robot system, but a rich theoretical framework can provide great insight into the various design tradeoffs that must be considered for the mechanical design, camera design, communication system design, and control system design.  The tradeoffs are much less clear when the designer considers the science systems.  In this domain, there are few theories that relate scientific benefit to power, imaging systems, and other robot parameters.  Quantitative design decisions require quantitative understanding of the effect of different designs on the scientific utility of the rover, particularly at the level of detailed, specific, rover parameters, such as the height of the camera and camera field of view.  To date developers have relied on experience and analogies to determine the best value for these parameters.  However, to advance the field and optimize the selection of these parameters, models are needed to formalize the effect of these parameters on scientific success.  

The geological evaluation of Mars involves the use of many different remote data collection systems.  These systems require the geologists to change their approach to field geology.  Instead of directly interacting with the environment, their interactions with the environment are constrained by the parameters of the data collection systems.  The question addressed by this research was how the geologic interpretations change when the rover was inserted between the geologist and the environment.

This research focuses on sedimentology, the study of sediments.  The fine-scale appearance of rocks and soils can provide indications of how they were formed.  For example, the size and shape of grains can show how they were transported and deposited.  Often geologists in the field use a hand lens to closely examine these features, which is one reason why the microscopic imager is part of the MER payload.  Sedimentology is particularly useful for determining whether water, wind, or both have been present or are present in the environment.  The influence of remotely interpreting these features rather than directly observering them is therefore closely related to the scientific results effectiveness of the mission design.  Consequently, this study’s objectives were to assess the accuracy of measurements made using sediment images and determine if differences exist between the interpretations made using the images and interpretations made directly from the sediments.   

Two experiments tested different sedimentology measurements commonly made by geologists.  The first experiment assessed the consistency of shape classifications.  To perform a shape classification, a geologist compares a rock (or image of a rock) with a classification table consisting of photographs or illustrations of rocks with different shapes.  The shape experiment measured the difference between a geologists’ classifications when looking at a physical sample compared with looking at an image of the same sample.  The second experiment assessed the accuracy of grain distribution measurements taken from images.  Grain distribution is a complex, objective measure, which determines the percentage of the total number of grains within specific size ranges.  

The camera used in this experiment was a EOS D30 possessing a 2160 X 1440 pixel CMOS imaging chip fitted with either a Sigma 300mm telemacro lens or a Canon 52mm zoom lens.  Experiments conducted with the camera on a set of prepared visual targets indicated that the blurring caused by the imaging system in the conditions used in this experiment was on the order of 2 pixels.
Grain Shape


A grain’s shape can be described using two parameters: the roundness and the sphericity.  Roundness measures how smooth the edges and surface of a grain are.  Sphericity measures how closely a grain resembles a sphere.  Both measurements are made subjectively with the geologists relying on their background for proper classification.  For this experiment, the sphericity and roundness were assessed using Croft’s [18] visual measure.  The visual measure consists of a 6x6 matrix with one dimension representing sphericity and the other roundness.  The two axes are considered orthogonal.  For each axis, the categories are given verbal descriptions.  For roundness, the categories are: 1) very-angular, 2) angular, 3) sub-angular, 4) sub-rounded, 5) rounded, and 6) well-rounded.  For sphericity, the categories are: 1) very-spherical, 2) spherical, 3) sub-spherical, 4) sub-flat, 5) flat, and 6) very-flat.  For the experiment, the verbal descriptions were mapped to integer values (1-6 for both axes).  


Images were taken using three camera resolutions (550 pix/in, 100 pix/in, and 50 pix/in) and the grains were selected from a range of sizes (10 – 300 pixels).  An effort was made to select grains from a wide range of shapes.  In all, 195 grains were selected, imaged, numbered, and stored.  Six subjects (all geologists) participated in the experiment.  Before each experiment, the subjects were asked if they were familiar with this classification scheme and all subjects had previous used the scheme.  Three of the subjects classified all 195 grains and three of the subjects classified a subset consisting of 120 grains.  Each grain was classified by five of the six subjects.  


Because shape classification is a subjective measure, there is no gold standard to assess the accuracy of the classification.  For this experiment, the geologists classified both the images of the grains and the actual sediments.  For both the sphericity and roundness classification, the accuracy was determined by subtracting the classification of the physical specimen from the classification of the imaged specimen.  For sphericity the average difference was –0.20 categories with a standard deviation of 1.27 categories.  This indicates the geologist found the image specimens to be slightly more spherical than the actual specimens.  For the roundness, the average difference was 0.46 categories with a standard deviation of 1.38 categories.  This indicates the image grains were found to be slightly more round than the physical specimens.  A regression analysis was done to determine if camera resolution and grain length were significant factors for any differences.  Camera resolution was found to be significant for both the difference in roundness (p < 0.0001) and the difference in sphericity (p < 0.0001).  For the roundness regression, the intercept was significant (p = 0.0248), but for the sphericity regression, the intercept was not significant (p = 0.4103).  Equations 2 and 3 list the regression models determined from the analysis.  The models indicate as the resolution increases, the sphericity error decreased and roundness error increased.  As the resolution increases, imaged grains are interpreted as being more round and more spherical.


Roundness error = 0.1305 + 0.0011(camera resolution
(2)


Sphericity error = -0.00083(camera resolution
(3)

Information theory can be used to estimate the total system error introduced in robotic geology [19].  Information theory measures the transfer of information through a communication system in the presence of system noise, in this case both human and machine.  The theory measures both input and output signals in terms of the number of bits it would take to minimally encode the relevant information.  The number of input bits minus the number of output bits determines the information lost.  The calculation is based on a 6X6 confusion matrix.  To generate a confusion matrix, we selected a pair of subjects and placed the categorizations made by the first subject along each row and the categorizations made by the second subject along each column.  If the first subject coded 5 rocks with the value 1, and the second subject categorized 4 of the same rocks with the value 1, but one of rocks with the value 2, then the first row of the confusion matrix would be [4 1 0 0 0 0].  The confusion matrix allows the calculation of both the input and output signals, according to the following formulae:



[image: image11.wmf]å

=

-

=

n

s

S

p

S

p

S

H

1

2

))

(

(

log

)

(

)

(


(4)



[image: image12.wmf]å

=

-

=

n

s

S

R

p

S

R

p

R

H

1

)

|

(

log(

)

|

(

)

(


(5)

where H(S) is the information in the signal (in bits), H(R) is the information in the response (in bits), p(S) is the probability of a particular signal, and p(R|S) is the probability of a particular response given a particular signal.

We constructed a total of 218 confusion matrices for the categorizations of all combinations of each pair of participants and the following categorizations:  physical roundness versus physical roundness, physical sphericity versus physical sphericity, imaged roundness versus imaged roundness, imaged sphericity versus imaged sphericity, physical roundness versus imaged roundness and physical sphericity versus imaged sphericity.  We then averaged the amount of information in the original classifications for each comparison and the average amount of information in the response.  For the response classification averages involving the same classification material, we did not include contributions of participants with themselves, because these contributions would represent the perfect transmission of information.  Table 1 summarizes the results.

Table 1:  Average information communicated among

subject ratings of roundness and sphericity of imaged and physical rock specimens
	Comparison
	Average Info in Stimulus
	Average Info Communicated
	N
	Standard

Deviation

	Physical Roundness
	2.3
	1.1
	30
	0.4

	Physical Sphericity
	1.9
	0.8
	30
	0.5

	Imaged Roundness
	2.1
	0.7
	30
	0.4

	Imaged Sphericity
	2.0
	0.6
	30
	0.5

	Physical v Imaged Roundness
	2.3
	0.8
	36
	0.5

	Physical v Imaged Sphericity
	1.9
	0.5
	36
	0.5


The value of 2.3 bits of information in the physical roundness of rocks and 1.9 bits of information in the physical sphericity of rocks indicates that geologists generally believed that there was a wide distribution in the rocks provided for study, since if the rocks were evenly distributed across the 6 classification levels, the information in the signal would be at a maximum of log2(6) = 2.58 bits.  However, the average information communicated suggests the geologists were not very consistent in their rock categorization.  The value of 1.1 and .8 bits of communicated information suggests that if one geologist classifies a physical specimen of a rock, only approximately 1 bit of information would be transmitted to another geologists.  Since one bit of information was used, the information could be most efficiently coded into just two categories.  This result suggests that instead of six levels of categorization for roundness and sphericity, only two may be required to accurately convey the geologists’ interpretations.  

The image roundness and image sphericity indicate that although the information containing the image inputs signals is similar, much less information is conveyed among the geologists by their categorizations, particularly for estimates of roundness, which drops from 1.1 bits of information communicated for physical specimens to .7 bits of information for imaged specimens.  The table indicates a smaller information drop for judgments of sphericity:  from .8 bits (physical) to .6 bits (imaged).  This indicates that the geologists disagreed more about roundness and sphericity categorizations made from physical specimens than they did for imaged specimens.

The best measure of the difference between physical and imaged judgments may be made from the last two rows of the table, which compare average information transmitted between geologists when comparing physical and imaged specimens.  This measure includes measurements of each subject when viewing the same physical and imaged specimens, which would presumably allow more information to be transferred, compared to the other measures.  However, the information transferred is just .8 and .5 bits for the roundness and sphericity judgments, respectively.  This indicates that there is very little agreement in the categorizations of the rocks made by the geologists when comparing categorizations of the physical versus imaged specimens.  Comparing the between subject information loss with the between presentation style loss of information, suggests that between 1.1 and 1.4 bits of information lost is caused by categorization disagreements among the geologists looking at either physical or imaged specimens, but when comparing across modalities, 1.4-1.5 bits of information are lost.  This leads us to the conclusion that although imaging the rocks increases the confusion among the geologists, the baseline confusion among the geologists working with physical samples dominates the information loss problem. 

Grain Distribution


Natural processes sort sediment grains.  The extent of the sorting can be measured by determining the distribution of grain sizes in a sediment sample.  In traditional field geology, the distribution is measured by collecting a sample and then sorting it using a set of sieves.  A distribution can then be determined based on the percentage of the total sample’s mass each sieve contains.  Collecting and returning a sample is currently not possible in robotic geology; therefore, sediment distributions are measured from images.  The current method for imaged distributions is to compute the percentage of the total image area covered by grains within a specified size range.  This experiment determined the difference between the distribution measured using images and the distribution measured using the physical sample.


Eighteen sample images of pre-measured distributions were prepared using three different camera resolutions (550 pix/in, 100 pix/in, and 50 pix/in) and three different median grain sizes (10 pixels, 30 pixels, and 60 pixels).  This allowed for two images in each size range for each camera resolution.  Each distribution contained grains from six different size ranges.  

Ten subjects (3 geologists and 7 students) participated in the experiment.  Each subject did not analyze all the images, but only a subset of the images.  Each subset contained images from all three camera resolutions and all three size ranges.  The number of images in each subset varied depending on the availability of the subjects.  Sixty-three separate analyses were collected with each of the 18 images being analyzed three times and nine of the image being analyzed four times.  In each analysis, the subjects determined the percentage of the total area covered by grains from each size range.  To reduce confusion, the size ranges were presented to the subjects with the measurements in pixels instead of inches.  The subjects used Photoshop to display and analyze the images.  Many subjects used the grid feature to either divide the image into 100 uniformly sized regions or to produce a grid where each square represented the sieve’s screen size.


Two different measurements were used to determine the accuracy of the grain distribution.  The first measurement was the absolute value of the difference between the bin size determined from the image and the bin size measured with the sieves.  The second measurement was the difference between the bin size measured from the image and the bin size measured with the sieves divided by the bin size measured with the sieves.  The first statistic assesses the inaccuracy of each bin measurement in terms of the total image area.  The second statistic is the percent error for each bin measurement.


The average absolute error was 11.11 percent of the total image area with a standard deviation of 14.91 percent of the total image area.  The errors ranged from 69.85 to 0.040 percent of the total area.  A regression analysis was performed to determine if any factors produced significantly different absolute errors.  Three factors were used in the analysis: the camera resolution, the relative size ranking of the bin in each image (bin 1 is the smallest and bin 6 is the largest), and the relative ranking of the actual bin size in pixels (12 bins with bin 1 being the smallest and bin 12 being the largest).  Only the relative ranking within each distribution and the actual size were significant factors for the absolute error.  Tukey’s post-hoc analysis was done to determine the significant differences within each of these factors.  Figure 4 shows the significant differences for the relative size ranking in each image.  The interesting part of this analysis is that the smallest and largest bin sizes have significantly larger errors than the bins in the middle of the distribution.  Tukey’s post-hoc analysis indicated there was no pattern to the significant differences for the actual size rankings.


The average percent error for each bin was 42.5 % with a standard deviation of 321.9 %.  The errors ranged from 4990 % to – 100 %.  To determine the factors affecting the percent error a regression analysis was performed using the same three factors used in the regression for absolute error.  The only significant factor was the relative size within each distribution.  Figure 5 shows these differences.  Again, the smallest and largest bins had the largest amount of error. 
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Figure 4.  The box indicates the median and quartile values for the absolute difference in percent of the total image area for each bin in the distribution.  The X’s indicate the mean value for each bin.  The bins were number from smallest to largest for each image.  The bars to the left of the boxes indicate bins where there was no significant difference between median values.
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Figure 5:  The box indicates the median and quartile values for the percent error for each bin in the distribution.  The X’s indicate the mean value for each bin.  The bins were number from smallest to largest for each image.  The bars to the left of the boxes indicate bins where there was no significant difference between median values.

Conclusion

This work attempts to bridge the gap between the scientific interpretations made by geologists and the designers of the information collection systems.  By experimentally assessing the impact of system parameters on specific scientific judgments, this work helps designers understand what system parameters affect scientific results, and shows scientists how their judgments may be affected by the system they are using.

The size experiment indicates that the camera resolution is directly related to the accuracy of a size measurement and that the participants in this experiment were reasonably accurate in determining the size of the objects they measured, so long as the object was larger than a few pixels.  This unsurprising finding simply indicates that if a scientific question can be related to the accuracy of a length measurement, the camera system can be relatively easily defined around this measurement need.

The shape experiment showed that there was agreement between shape classification using the images and classification using physical specimens, but the information that a classification conveyed between geologists was rather low.  Although it is difficult to precisely determine how the properties of the imaging system affect these judgments, the results suggest that the imaging system decreases the agreement of rock classifications.  Considering the broader problem of rock classification, however, the results suggest that the primary issue is learning how to improve the classification agreement between geologists for the same physical specimen, and then addressing how the imaging system affects these agreements.  A critical component of such a study would include the identification of within-subject classification for the same specimen.  If an individual geologist is not consistent in classification, there is little hope that inter-geologist classification would be consistent.  We are currently conducting a follow-up experiment to determine the size of this effect.  It seems reasonable to conclude that although artificial intelligence algorithms or special-purpose instruments could be developed for robotic geology for this task, the benefit may be limited by the imprecise collective understanding and interpretation of the shape and roundness of physical specimens.   


The distribution experiment indicates that the task simply can not be performed well with sample images.  Clearly, this is an area where greater research is required, since measuring grain distributions is a common task in field geology.  Based on the length experiment, the problem does not seem to be one of camera spatial resolution, although we can not rule out the possibility of differentiating individual rocks based on color.  However, studying the images used suggests that the rocks are reasonably distinct except when they become very small relative to the pixel size.  The inaccuracy may be related to the assumption that a visual image can be used to relate the distribution of grains determined by their mass, a measurement that implies three dimensional geometry and knowledge of rock density.  If that is the case, the robot must be equipped with some instrument that can directly measure the features of interest.  A second possibility is that the task is simply too tedious for people to reliably conduct.  In this case, an artificial intelligence algorithm may be more effective than a human analyst.  In either case, the experiment suggests that the current technique is not appropriate and another technique should be developed.


Taken together these experiments provide new insight into the relationship between the robot and the geologist.  Each experiment provides a quantitative measurement of scientist performance on several tasks specific to robotic geology.  For length measurements, the primary limitation is the camera resolution.  For shape, the primary limitation is lack of consensus among the geologists.  For distribution, the task appears to be inappropriate either because of the underlying assumptions or because the task is too tedious to be reliably conducted by people.  This work provides a new dimension to the challenge of building effective rovers and, in addition to suggesting some specific refinements of current techniques and technologies, provides an experimental path for future insight and discovery.
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Figure 1: Definition of pitch and roll. N is the normal of the terrain surface.
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Figure 1:  Model of the Mars robot information system.
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