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Abstract

Individuals show different cell classes when they
are in the different stages of a disease, have different
disease subtypes, or have different response to a
treatment or environmental stress. It is important
to identify the individuals’ cell classes, for example,
to decide which disease subtype they have or how
they will respond to a certain drug.

In a temporal gene-expression matrix (TGEM)
each row represents a time series of expression val-
ues of a gene. TGEMs of the same cell class should
show similar gene-expression patterns. However,
given a set of TGEMs, it can be difficult to classify
matrices by cell classes.

In this paper, we develop a tool called LAB-
STER (LAttice Based cluSTERing) to cluster
gene-expression matrices by cell classes. Rather
than treating each row or column as a vector, we
create a Galois lattice for each matrix, which yields
a natural distance function between gene expres-
sion matrices. Finally, we cluster based on these
distances. A key advantage of our method is that it
effectively handles missing values, which is a prob-
lem in gene expression data.

We evaluated LABSTER on both simulation
data and clinical data. The results show that LAB-
STER has better clustering performance than sev-
eral widely used vector-based clustering methods.
A bootstrapping procedure is also proposed to fur-
ther improve the performance of LABSTER. LAB-
STER has the potential to be used on matrices
containing data other than gene expression.
Keywords: gene expression, clustering, Galois
lattice, matrix distance.
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1 Introduction

Microarray technology, as a powerful tool for
monitoring and measuring large-scale gene-
transcriptional profiles, leads to the advancement
of diagnosis and treatment for numerous diseases.
Many microarray experiments are designed to
study the temporal patterns in dynamic biological
processes by measuring the gene expression of the
cells at several distinct time points, thus yielding
temporal gene-expression data. Indeed, about a
third of microarry studies makes use of time-series
experiments [10], for example, for studying the cell
cycles of organisms [7, 31], cell development [22],
stress response [13] and disease development [25].

In time-series microarray experiments, gene ex-
pression data are represented in temporal gene-
expression matrices (TGEMs), where rows corre-
spond to genes and columns correspond to time
points. Each row represents a time series of ex-
pression values of a certain gene.

Individuals often show different cell classes
when they are on the different development stages
of a certain disease, when they have different sub-
types of a disease or when they respond differently
to a certain stimulus. We are often interested in
identifying cell classes by time-series microarray
experiments, for example, for deciding the devel-
opment stage or disease subtype of an individual.

However, due to the experimental cost and
time, many previous time-series experiments accu-
mulated limited amount of expression data. They
often measured temporal gene expression once for
each cell class, resulting one TGEM for every cell
class. For example, the common experiment de-
sign can be one TGEM for the normal cell and one
TGEM for each disease subtype. It can be difficult
to distinguish cell classes when only one instance
of each class is available.

As the microarray technique becomes more eco-



nomical and efficient, a new design of time-series
microarray experiments is gaining popularity re-
cently. In the new design of experiments, a num-
ber of individuals of various cell classes are involved
and gene expression is measured for each individual
during a time course. In other words, the new ex-
periments measure temporal gene expression mul-
tiple times for each cell class, but each time the
measurement is performed on different individuals
of that cell class. Hence, one TGEM is obtained
for one individual and a number of TGEMs are
obtained for every cell class.

Many studies have begun to use the new exper-
iment design. For example, to distinguish patients
with different responses to the human interferon
beta (rIFNβ), Baranzini et al. measured transcrip-
tional profiles of blood cells from many patients at
several time points after initiation of therapy [5].
They obtained dozens of TGEMs for patients with
good response and patients with poor response.
Similarly, a number of TGEMs were obtained for
each of several classes of rat liver cells, where cell
classes correspond to different doses of a drug [2] or
different degrees of environmental pollution [32].

Because the experiments described above pro-
vide multiple TGEMs for each cell class, by study-
ing common patterns and dynamics in the matrices
we might gain more insights into the complex bi-
ological processes behind various cell classes. We
expect such experiments will become more impor-
tant especially in pharmacogenomics, where drug
response and disease development are studied in
the genomics context.

Ideally, we wish to identify the cell classes from
the data accumulated in the above experiments.
Thus, given a set of TGEMs, we face the challenge
of class discovery, which is to divide those matrices
into reproducible classes, each of which represents
a cell class.

After reviewing some related work on the anal-
ysis of temporal gene-expression data, we will show
our method to the problem. Aach and Church de-
veloped a time warping algorithm to align temporal
gene-expression profiles [1]. Bar-Joseph et al. mod-
eled the time-series data as a cubic spline and per-
formed clustering, aligning and predicting missing
values based on spline representation [4]. A func-

tional principle-component analysis was developed
to classify individual temporal gene-expression pro-
files [21]. Bar-Joseph reviewed many more algo-
rithms for temporal gene-expression analysis [3].
However, those algorithms usually focus on min-
ing information from the individual vectors in
one TGEM or comparing vectors in several ma-
trices, which makes it difficult to adapt them for
our purpose. In [6] the authors modeled the
gene-expression profiles with Linear Time Invari-
ant (LTI) system. And then they used a kernel
on LTI to classify the gene-expression matrices.
Their problem is about class prediction and can
be viewed as the complementary to our problem of
class discovery, which is often the first step in data
analysis.

Rioult et al. built a Galois lattice for a gene-
expression matrix to take all genes in the same
concept as the candidates for co-regulated genes
[29, 30]. Though we also use the lattice in our
method, our goal is different from theirs. We
do not make any assumption about co-regulation
and are interested in comparing gene-expression
matrices. Murali and Kasif searched for the large
conserved gene-expression motif in gene-expression
data [24]. Though it was not stated in the paper,
a motif indeed corresponds to a size-constrained
maximal submatrix, which we will define later. It is
possible that essential biological information is lost
when only the largest submatrices are considered
in their method. Contrast to their method, we
develop a systematic way to consider all maximal
submatrices in the gene-expression matrix.

To tackle the problem of class discovery in a set
of TGEMs, we propose to cluster the TGEMs and
develop a tool called LABSTER (LAttice Based
cluSTERing). In our method we develop a distance
metric to measure the dissimilarity among TGEMs
based on pattern similarity coefficient, which we
introduce to measure the similarity between two
genes’ expression. We use the properties of max-
imal submatrices, in which the two genes coex-
ist, to define the coefficient. To calculate the dis-
tance, we construct a Galois lattice for each TGEM
efficiently. Once obtaining the pairwise distance
among TGEMs, we apply a clustering method to
infer the clusters of TGEMs.



Clustering is one of the most widely used meth-
ods for analyzing gene-expression data. For a re-
cent review, please refer to [15]. However, as the
model in [15] suggests, the objects to be clus-
tered in most previous methods are represented by
vectors. In the time-series experiments, clustering
vectors only considers one time point at a time.
To take the advantage of temporal data, we clus-
ter TGEMs to consider all the time points at the
same time. Furthermore, our method has the fol-
lowing advantages: First, for the missing values,
a common problem in gene-expression data, our
method can handle it in a natural way. Secondly,
our method can deal with the noise problem, an-
other problem in gene-expression data, which be-
comes more serious when a large number of mi-
croarrays are used. Thirdly, an effective and ef-
ficient distance function is introduced to measure
the difference between two TGEMs. The experi-
mental results have shown that LABSTER is able
to cluster TGEMs with low error rate and performs
better than applying traditional clustering meth-
ods on vectors in the matrices.

The outline of our paper is as follows: We
introduce the formal problem and Galois lattice in
section 2. In section 3, we describe the complete
method in detail. In section 4 we show the
performance of LABSTER on both simulation data
set and clinical data set. We conclude in section 5.

2 Preliminary

2.1 Problem Given N n × m (m << n)
TGEMs, we want to cluster them so that matrices
with high similarity can be put into the same clus-
ter, while matrices in different clusters have more
dissimilarity. The TGEMs are obtained by measur-
ing gene expression of n genes at m time points for
each of N individuals. It is assumed that the mea-
surement timing is the same for all individuals, the
experiment protocol is the same in each measure-
ment and the corresponding rows and columns of
different matrices carry the same experiment no-
tation. However, due to noise and experimental
handling, some values in some matrices might be
missing.

2.2 Introduction to Galois lattices Given a
set of objects O = (g1, g2, . . . , gn), and a set of
attributes T = (t1, t2, . . . , tm), we use a n × m
binary matrix R to represent a binary relation
I ⊆ O × T , i.e. Ri,j = 1 if (gi, tj) ∈ I and
Ri,j = 0 otherwise. For gi ∈ O, we define a function
fO(gi) = {tj |Ri,j = 1}. Furthermore, for an object
set A ⊆ O, we denote fO(A) = ∩gi∈AfO(gi).
Similarly, we define fT (tj) = {gi|Ri,j = 1} for
tj ∈ T and fT (B) = ∩tj∈BfT (tj) for an attribute
set B ⊆ T . With the above notation we are ready
to define the concept.

Definition 2.1. The concept C ∈ 2O × 2T is a
pair (A,B) where A = fT (B) and B = fO(A).
A = fT (fO(A)) and B = fO(fT (B)) are called
closed.

Denoting the set of all concepts to be B ⊆
2O × 2T , we define a partial order ≺ on B:

(A1, B1) ≺ (A2, B2) ⇐⇒ A1 ⊆ A2(B2 ⊆ B1)

where (A1, B1), (A2, B2) ∈ B.

Definition 2.2. The ordered set L =< B,≺> has
the mathematical structure of a complete lattice and
is called the Galois lattice or concept lattice.

When the context is clear, we will refer to a
Galois lattice as lattice. The diagram representing
an ordered set is called a Hasse diagram, where an
edge connects two adjacent concepts in the ordered
set. We show an example of binary matrix and the
Hasse diagram of its corresponding lattice in Figure
1. For more details about the lattice, please refer
to [12].

The problem of constructing a lattice from a
binary matrix is closely related to enumerating
maximal bipartite cliques in a graph and listing
closed frequent itemsets in a transaction database
[37]. Many algorithms have been developed to solve
those three problems. Nourine and Raynaud’s al-
gorithm for computing a lattice takes the total
time O(|O||T ||B|) [26], which is the fastest in the-
ory. The performance comparison among many lat-
tice construction algorithms was studied in [19].
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Figure 1: (a) A binary matrix where x represents
1 and space represents 0. (b) The corresponding
lattice.

Makino and Uno proposed an algorithm to enu-
merate all maximal bipartite cliques in O(δ2) poly-
nomial delay time where δ is the maximum de-
gree in the graph [23]. Their algorithm is the
best known algorithm in enumerating all maximal
bipartite cliques. CHARM [36] and CLOSET+
[34] are two state-of-the-art algorithms for mining
closed frequent itemsets.

3 Method

We will first define the distance between gene-
expression matrices and show how to compute
it efficiently. Then we will give a overview of
LABSTER. Finally, we propose a bootstrapping
procedure for LABSTER.

3.1 Distance Between Gene-Expression

Matrices Traditional clustering methods cluster
vectors. In the vector space, the distance metric
and other distance functions are well defined [14].
Euclidean distance and Pearson coefficient are two
distance functions that are often used in clustering
gene-expression data. The Euclidean distance be-
tween vectors x1 and x2 is |x1 − x2|2, the 2-norm
of x1 − x2. Analogously, to compare two gene-
expression matrices M1 and M2, we may want to
compute ||M1 − M2||p, the p-norm of M1 − M2.
However, such a simple solution often does not
work due to high level of noise and complex prop-
erties of gene-expression data. We need to define
a new matrix distance. The general requirement
for distance between TGEMs is that the distance

between the ones of the same cell class should be
small and the distance between the ones of differ-
ent cell classes should be large. In our method,we
consider discretized gene-expression matrices. We
define a maximal submatrix as follows:

Definition 3.1. A matrix is called column con-
stant if each of its entry in the same column has
the same value. In a matrix of discrete values, a
maximal submatrix is a column constant subma-
trix for which no other column constant submatri-
ces contain all of its rows and columns. A maximal
positive submatrix is a maximal submatrix with all
entries being positive. The set of rows (columns)
of a maximal submatrix is called maximal as well.

One way to compare two TGEMs is to com-
pare their maximal submatrices, which character-
ize the matrices. However, in our application, each
TGEM contains various levels of noise. A direct
comparison of maximal submatrices might fail to
yield meaningful distance. We use an alternative
approach. Given a discretized TGEM M , we say
a set of gene (time points) is maximal if the corre-
sponding set of rows (columns) is maximal in M .
Intuitively, two genes show similar expression pat-
tern if they appear in the same maximal gene set.
To measure how similar two genes’ expression is in
M , we define a pattern similarity coefficient for the
two genes by looking at how they appear in maxi-
mal gene sets. For the gene i and j, let ci,j be their
pattern similarity coefficient, let ni,j be the number
of maximal gene sets of M which they both belong
to, and let sk be the size of the kth such maximal
gene set.

Definition 3.2. The pattern similarity coeffi-
cient ci,j for the gene i and j in M is defined to
be

ci,j =

ni,j
∑

k=1

√
sk.

If the gene i and j never appear in the same
maximal gene set, ci,j = 0. In addition, we define
ci,i = 0. The pattern similarity coefficient considers
not only the number of maximal gene sets to which
two genes both belong, but also the size of those
gene sets. This is because the significance of a



maximal gene set can roughly be assayed by its
size. If two genes are in a large maximal gene
set, it means that the similarity between their gene
expression is more significant, thus worth more
weight. The reason to use

√
sk instead of sk

is that a large sk term may easily dominate the
summation. In addition, we find this definition
works better than defining ci,j by just counting ni,j.

After we have defined pattern similarity coef-
ficients for pairs of genes, a natural definition for
the distance between discrete matrices M1 and M2

seems to be:

d(M1,M2) =

n
∑

i=1

n
∑

j>i

|c1
i,j − c2

i,j|

where ch
i,j refers to the pattern similarity co-

efficient in Mh (h = 1, 2) and n is the number of
genes. When we compute the distance between two
TGEMs of the same cell class, the fact that they
should have more gene pairs showing similar pat-
terns, results in more terms in the above distance
tend to be zero. Hence, the distance tends to be
small. In addition, it can be shown that such dis-
tance defines a semi-metric space for discrete ma-
trices. However, with this definition we notice that
two matrices with more maximal submatrices tend
to have larger distance compared to matrices with
less maximal submatrices. So we add a normal-
ization term to reduce that effect. Note that the
similarity measurement among databases proposed
in [28], which was computed by using association
rules, may also be modified and applied to compute
the distance between discrete matrices. However,
the similarity in [28] can not be used for a set
of databases, each of which shares few association
rules with others.

Definition 3.3. Let M1 and M2 be two matrices
with n genes. The distance between two matrices
is

d(M1,M2) =

∑n
i=1

∑n
j>i |c1

i,j − c2
i,j |

√

(
∑n

i=1

∑n
j>i c

1
i,j) × (

∑n
i=1

∑n
j>i c

2
i,j)

where ch
i,j is the pattern similarity coefficient in Mh

(h = 1, 2).

The main advantages for using the above dis-
tance to represent the difference between TGEMs
is that the distance is less affected by noise. First,
the pattern similarity coefficient of two genes is de-
fined based on the maximal gene sets, while maxi-
mal gene sets are determined by genes’ discretized
expression values, which are less affected by the
noise specific to each microarray. Secondly, instead
directly comparing the expression values of two ma-
trices in some way, we use pattern similarity coef-
ficients to compute the matrix distance, which al-
leviates the problem caused by various noise levels
across various microarrays.

3.2 Distance Computation Once we have the
families of maximal gene sets of two TGEMs, it is
easy to calculate the distance between them. We
just need to go through each maximal gene set to
compute pattern similarity coefficient for gene pairs
and then the distance follows.

It is the lattice that can help us to obtain
all maximal gene sets since it has the following
property:

Property 3.1. Suppose a lattice L is constructed
from a binary matrix R. The set of concepts of
L and the set of maximal positive submatrices of
R are in one-to-one correspondence. For each
concept (A,B), A (B) corresponds to a maximal
row (column) set in R.

We then need to transform a discretized matrix
to a binary matrix. Given a discretized n × m
TGEM M with discretized levels [0..d − 1], we
create a n × md binary matrix R as follows: If
Mi,j = l, we let Ri,d(j−1)+l+1 = 1 and Ri,k = 0 for
d(j−1)+1 ≤ k ≤ dj and k 6= d(j−1)+l+1. If Mi,j

is missing, then we let Ri,k = 0 for d(j−1)+1 ≤ k ≤
dj. Such transformation guarantees that maximal
submatrices of M are in one-to-one correspondence
with the positive ones of R. Hence, the lattice L
built from such R will have the following property:

Property 3.2. The set of concepts of L and the
set of maximal submatrices of M are in one-to-
one correspondence. For each concept (A,B), A
corresponds to a maximal gene set.



As a result, after constructing one lattice for
each of two TGEMs, we go through every object
set of each lattice to compute pattern similarity
coefficients in each matrix. Then we calculate
the distance between the two TGEMs using the
coefficients.

Note that the lattice provides a nice way to or-
ganize genes and time points for TGEMs. Since
a gene can appear in multiple maximal gene sets,
hence the maximal gene sets can be overlapped.
Conceptually, each concept, containing a maximal
gene set and a maximal set of time points, is like
a cluster identified in subspace clustering. Sub-
space clustering is able to identify clusters that
exist in multiple, possibly overlapping subspaces
[27]. It is well known that in biological processes a
certain number of genes perform certain functions
only during a certain period, which suggests sub-
space clustering might provide biological insights
into the gene regulation and transcription. Simi-
larly, the lattice might prove useful in studying the
TGEM. In addition, a single gene may have multi-
ple biological functions and participate in multiple
pathways. So it is important to allow one gene to
appear in more than one concept with different sets
of genes, as a lattice does.

3.3 LABSTER Overview LABSTER per-
forms the following steps to cluster TGEMs:

1. discretize the set of TGEMs;
2. transform discretized TGEMs into binary

matrices;
3. construct a lattice for each binary matrix;
4. build a distance matrix by computing

pairwise distance among TGEMs with lattices;
5. cluster TGEMs based on the distance

matrix.
For step 1, any discretization method that is

suitable for gene-expression data can be applied.
For step 2, it can be seen that one advantage of
transforming a discretized TGEM into a binary
matrix is that it can handle missing values without
special efforts. Let us recall the transformation. If
a value is missing, 0 will be put into all d entries,
which naturally makes the lattice construction
algorithm aware that there is a missing value, and
hence the algorithm will not consider the gene’s

behavior at that time point. Neither do we give
up certain genes or time points because of missing
values nor we use some complicated method to
predict missing values, such as [35].

Next, we apply an improved implementation of
the algorithm presented in [8] to the binary matrix
to construct a lattice. The implementation employs
depth first search (DFS) on the lattice, diffset for
intersection [36], fast grouping for union and other
techniques to improve the running speed.

The (i, j) entry of the distance matrix in the
4th step is the distance between the TGEM i and
j. As for the clustering method used in the last
step, any method that works on the distance matrix
can be applied, such as most hierarchical clustering
methods and some partitional clustering methods.

3.4 Bootstrapping for LABSTER To fit
LABSTER in the general framework of combin-
ing multiple clustering results and to improve its
clustering performance, we develop a bootstrap-
ping procedure based on the one proposed in [9].
We randomly sample r (c) rows (columns) with-
out replacement from each matrix to form a new
matrix. Note that it is necessary to perform resam-
pling without replacement because of the following
property:

Property 3.3. Suppose there are two same rows
in the matrix M . Let the matrix be M ′ after
removing one of such row from M . The two
lattices, built from M and M ′ respectively, have
the same structure and the same family of maximal
column sets.

In this case, we say M and M ′ are equivalent.
If we resample with replacement it is possible that
one of the sampled matrix of r rows is equivalent
to a matrix of less rows, which makes it contain
less than r genes. Thus the problem formulation
mentioned in section 2 that all TGEMs should have
the same number of genes is not satisfied. Similar
argument applies to sampling of columns.

After the resampling, LABSTER is applied to
cluster the new set of gene-expression matrices.
The procedure is repeated for k times. The dis-
similarity between the TGEM i and j is defined
to be 1 − ui,j/k where ui,j is the number of times



the two matrices are clustered together in k clus-
tering results. Thus, the more often two matrices
are clustered together, the smaller their dissimilar-
ity is. We then feed the dissimilarity matrix to
a clustering method with the appropriate cluster
number. This way we get a new clustering of gene-
expression matrices through bootstrapping.

4 Experimental Results

The first step in LABSTER is to discretize the in-
put TGEMs containing real values. The discretiza-
tion method used in all our experiments is a simple
percentile based method: Suppose d discrete levels
are preferred. At each time point, i.e. at each col-
umn of the matrix, the expression values are sorted.
The smallest 1/d of them are discretized as 0, the
next 1/d of them are discretized as 1 and so on. To
be able to compute the clustering accuracy easily,
we choose to use a partitional clustering method
called partitioning around medoids (PAM) [18] in
LABSTER. Compared to other partitional cluster-
ing methods, PAM accepts a distance matrix and
provides silhouette plot to help to select number of
clusters. PAM is based on the search of medoids
among all data points, to minimize the sum of dis-
tance of data points to their closest medoids. In
PAM, a medoid is a representative point for a clus-
ter.

We tested LABSTER on two data sets. One
is a simulation data set generated according to
an extended patient-gene model. The other is a
clinical data set where class labels are assigned
by doctors. To measure the performance of our
clustering result, we define the error rate e, which is
derived from the cluster disagreement used in [20].
Suppose we have N data points in K clusters. Let
us define a 0-1 membership function xi,v. xi,v = 1
if the ith data point is in the vth cluster or else it
is 0. With such function, e is defined as

e = minπ∈SK
(1 − 1

N
ΣN

i=1Σ
K
v=1xi,π(v)ti,v),

where ti,v is the membership function for the
ground truth and xi,v is the membership function
for the clustering result obtained by LABSTER.
π ∈ SK denotes a permutation and SK is the set
of all permutations on [1, . . . ,K]

Though the worst-case running time of con-
structing a lattice and computing the matrix dis-
tance is O(nmd2md), where n is the number of
genes, m is the number of time points and d is the
number of discretized levels, LABSTER performs
well in practice due to certain heuristics. In most
cases, it is able to complete the job within min-
utes. In the real world applications, most of time-
series data are short, which means m is small. For
example, in Stanford Microarray Database (SMD)
> 80% of time-series datasets contains ≤ 8 time
points [11]. We believe that the running time
should not be a concern for LABSTER.

4.1 Simulation data set In [17] authors sug-
gested a patient-gene model for modeling tempo-
ral gene-expression data from individual patients,
each of whom is assumed to belong to one of sev-
eral classes. There are two kinds of genes: patient-
specific genes and class-specific genes. The patient-
specific genes are genes each of whose expression
forms a unique patient-specific pattern. And class-
specific genes are genes whose expression follows a
pattern common for patients of that class.

Based on the model, we further assume that
genes specific to a certain class can be grouped
according to their temporal expression profiles.
The expression profile of each patient-specific gene
is different from each other, while the profile of the
class-specific gene of the same group in patients of
the same class is similar to each other. However,
due to the noisy nature of gene-expression data
and individual genetic variance, even in patients of
the same class, the grouping of class-specific genes
might be slightly different. Later it will be shown
how this can be done.

Consider a class-specific gene of group G in a
patient P of class C. We assume the temporal
profile of that gene in P should look more like
profiles of other genes of G in the same patient
than profiles of any gene of G in other patients
of class C. To achieve this goal, we introduce
in-array noise and across-array noise, where in-
array noise has smaller variance and is used to
model the difference between profiles of genes of
the same group in the same patient, and across-
array noise has larger variance and is used to model



the difference between profiles of genes of the same
group in different patients of the same class.

Summarizing the above ideas, we develop the
following method to generate one simulated TGEM
for each of 100 patients. The 100 patients are
evenly divided into 5 classes. The expression
matrix is set for 100 genes and 8 time points, hence
its size is 100 × 8.

We first generate a template for each class.
Each class template consists of 5 gene groups
of size 10, 50 remaining non-grouped genes and
one expression profile for each group. The 10
genes of the same group show similar profiles
in patients of the same class. To generate a
template, we randomly take 50 genes and assign
them into 5 groups. For the ith group, a profile
of 8 expression values is sampled from normal
distribution N(mi, 1), where m1 = −3, m2 = −2,
m3 = −1, m4 = 1 and m5 = 2.

To generate one TGEM for one patient P from
the class template, we then perform the following
steps: First, we scan each group of the template
once. Suppose we are scanning the group G. Every
member in G has a probability 0.85 to be selected
as a class-specific gene of the corresponding group
in the patient P . If after we scan G, j members
are selected, then 10 − j genes will be randomly
picked to fill the group in P from the template’s 50
non-grouped genes. This way we make sure that for
each group in P , its class-specific gene membership
is slightly different from the corresponding group
in other patients of the same class. The unselected
genes of the template’s group will be considered
as non-grouped genes. Then, after deciding the
membership of 5 groups for P , for the ith group
we generate 8 random values as the across-array
noise from normal distribution N(0, 0.25), and add
the noise to the template’s ith expression profile
to be the profile of a randomly picked gene g in
the group. To generate the profile for each of the
other 9 genes in the same group with g, an in-array
noise series of 8 values is sampled from normal
distribution N(0, 0.09), and added to the profile of
g. Finally, we take the remaining 50 non-grouped
genes as patient-specific. 8 expression values are
sampled from N(0, 1) for each of them. Following
the above steps, we generate 20 TGEMs from each

of 5 class templates.
Then we discretize the 100 TGEMs with 4 lev-

els and apply LABSTER on them. Interestingly,
when we set the number of clusters to be 5 (cor-
responding to 5 classes of patients), the error rate
e = 0, which indicates that LABSTER correctly
puts each 20 matrices of patients of the same class
in a separate cluster.

4.2 Clinical Data Set Multiple sclerosis (MS)
is an inflammatory disease of the central nervous
system, which affects more than 1 million people
around the world [16]. The exact cause of the
disease has not been understood. And there is
yet no cure for MS. It has become important in
pharmacogenomics to carry out analysis with mi-
croarrays to study the disease like MS. Researchers
studied the drug response of relapsing-remitting
MS patients to recombinant human interferon beta
(rIFNβ) with the time-series microarray experi-
ment [5]. Since the experiment was performed
without housekeeping gene normalization, the gene
expression data were obtained by counting RNA
content.

The whole data set contains 52 expression
matrices, each for one patient. The gene expression
is measured for 70 genes at 7 or less different time
points after IFNβ treatment, which are 0, 3, 6,
9, 12, 18, 24 months. However, only 27 patients’
gene expression is measured 7 times. 17 patients
missed one test and 8 patients missed two tests. We
consider the 70 × 7 TGEMs of those 27 patients.
Among those 27 patients, there are 19 patients with
good response and 8 patients with poor response,
which corresponds to 2 cell classes. Note that there
are missing values in some of the matrices. We do
not compute the fold change between time points,
which makes one column of data become all 1s,
because we want to take the full use of all data. The
discretization level is 3 and the number of clusters
used in PAM is 2. The error rate of clustering
TGEMs by LABSTER is 0.074.

In [5] authors reported clustering samples at
each time point did not give satisfactory result
according to the response status. But they did
not show the error rate of the clustering. To
compare with LABSTER, we use PAM and K-



means implemented in R [33] to cluster samples
at each time point. That is, for each time point we
try to cluster the corresponding 27 column vectors
in the matrices.

We use both Euclidean distance and Pearson
coefficient to measure the difference among vectors.
Besides clustering original column vectors directly,
we cluster normalized column vectors as well. The
normalization is performed as follows: For V j

i , the
ith element of vector V j , j ∈ [1..27], we normalize
it as V j

i /max(V 1
i , . . . , V 27

i ). Furthermore, to let
PAM and K-means make use of all data in a
matrix, we transform a gene-expression matrix to
a vector by concatenating its column vectors of one
particular time point and all genes into one higher
dimensional vector. We call the obtained vectors
“mega-vectors”. Then we cluster the mega-vectors.

If there is a missing value for a gene, that gene
will be discarded from that time point for all 27
vectors. The number of clusters used in all methods
is 2. For K-means method, we set the maximum
number of iterations to be 100 and choose the
lowest error rate as we change the number of initial
random centers from 1 to 5. The error rate of all
methods is shown in Figure 2. Note that method
3 to 6 and method 11 to 12 are applied at every
time point and we have obtained 7 error rates for
each of those methods. But in the figure we only
present the lowest error rate for each method.

The comparison clearly shows that LABSTER
outperforms other vector-based clustering methods
with various distance measurements and vector
representation. This indicates the advantage of
clustering matrices over clustering vectors since
we consider all time points together and avoid
the curse of dimensionality when we cluster the
matrices.

Among patients who missed one test, most of
them missed the test at 18 months or 24 months. 4
patients missed the test at 18 months and 6 missed
the test at 24 months. We cluster 31 (33) TGEMs
of size 70 × 6 without time point 18 (24) months.
The error rate increases a little when only 6 time
points are available. Without time point 18 months
the error rate of LABSTER is 0.161, and without
time point 24 months, the error rate is 0.152.

To test the stability of our method regarding

Figure 2: Comparison of error rate of LAB-
STER and other vector-based clustering methods.
Method 1: LABSTER; 2: trivial method which
puts all vectors into one cluster; 3(4): PAM with
Euclidean distance (Pearson coefficient) on vectors;
5(6): PAM with Euclidean distance (Pearson co-
efficient) on normalized vectors; 7(8): PAM with
Euclidean distance (Pearson coefficient) on mega-
vector; 9(10): PAM with Euclidean distance (Pear-
son coefficient) on normalized mega-vector; 11(12):
K-means on (normalized) vectors; 13(14): K-means
on (normalized) mega-vectors.

to the number of genes in the matrix, we carry
out the following test: We randomly select r genes
from 70 genes and extract their corresponding rows
from each matrix to form a new matrix. And
then we cluster the new set of smaller matrices by
LABSTER. The procedure is repeated for k times.
We let r be 30, 40, 50 and 60 and fix k to be 50.
The lowest error rates obtained in k runnings for
each r are shown with blue bars in Figure 3(a).

Similarly, we test how the number of time
points in the matrix affects the performance of
LABSTER. Since the number of time points is
quite small compared to the number of genes, we
are able to generate all possible

(

7
c

)

combinations
for c time points. For each combination we extract
their corresponding columns from each matrix to
form a new matrix and then apply LABSTER on
the new set of matrices. We let c be 3, 4, 5, 6. The
lowest error rates obtained for each c are shown
in Figure 3(b). From the figure, we can see that
the error rate does not vary much, which indicates
LABSTER is stable and not sensitive to the size of
the matrix.

Finally, we test the bootstrapping procedure



(b)(a)      

Figure 3: (a) Error rate of LABSTER for various
number of genes. At 30, 40, 50, 60 genes, the
blue bar on the left indicates the lowest error
rate in 50 runnings, and the brown bar on the
right indicates the error rate of the bootstrapping
procedure. At 70 genes the bar indicates the
error rate of LABSTER on the original data; (b)
Error rate of LABSTER for various number of time
points.

for LABSTER. We set the number of resampled
genes r to be 30, 40, 50 60 and set k to be 50.
The error rates for each r are displayed by brown
bars in Figure 3(a). It can be seen from the figure
that it is possible to further improve the clustering
performance of LABSTER by the bootstrapping
procedure.

5 Conclusion and future work

As temporal gene-expression data become more
widely used, we not only need to cluster gene-
expression vectors but also need to cluster gene-
expression matrices to identify the cell classes they
represent on many occasions, such as in the study
of drug response and disease development. In
this paper we formulate the problem of clustering
TGEMs and develop an efficient tool LABSTER
to solve the problem. It first constructs a lattice
out of a TGEM, then computes the distance be-
tween any two TGEMs based on the pattern sim-
ilarity coefficient. Finally, it performs clustering
on the distance matrix. We test the performance
of LABSTER on both simulation and clinical data
set. The experimental result is promising, show-
ing that LABSTER has the better performance
compared to other popular vector-based clustering

methods. In addition, the performance is stable re-
garding to the size of the gene-expression matrix.
Our method can process not only TGEMs, but also
other types of gene-expression matrices. The sam-
ples in a matrix can be obtained from different time
points, under different conditions or from different
tissues.

The future direction of our work includes
searching for better matrix distance that is a met-
ric, developing faster lattice construction algo-
rithm, testing other possible representation for the
gene-expression matrix and making the full use of
temporal correlation among time points. In addi-
tion, we will apply our method to matrices contain-
ing data other than gene expression.
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