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ABSTRACT
Motivation: Many methods have been described to iden-
tify regulatory motifs in the transcription control regions
of genes that exhibit similar patterns of gene expression
across a variety of experimental conditions. Here we focus
on a single experimental condition, and utilize gene ex-
pression data to identify sequence motifs associated with
genes that are activated under this experimental condi-
tion. We use a linear model with two-way interactions to
model gene expression as a function of sequence fea-
tures (words) present in presumptive transcription control
regions. The most relevant features are selected by a fea-
ture selection method called stepwise selection with monte
carlo cross validation. We apply this method to a publicly
available dataset of the yeast Saccharomyces cerevisiae,
focussing on the 800 basepairs immediately upstream of
each gene’s translation start site (the upstream control re-
gion (UCR)).
Result: We successfully identify regulatory motifs that
are known to be active under the experimental conditions
analyzed, and find additional significant sequences that
may represent novel regulatory motifs. We also discuss a
complementary method that utilizes gene expression data
from a single microarray experiment and allows averaging
over variety of experimental conditions as an alternative to
motif finding methods that act on clusters of co-expressed
genes.
Availability: The software is available upon request from
the first author or may be downloaded from http://www.stat.
berkeley.edu/∼sunduz.
Contact: keles@stat.berkeley.edu.

1 INTRODUCTION
Transcriptional regulation in eukaryotes depends, to a
large extent, on the activities of hundreds of sequence spe-
cific DNA binding proteins—transcription factors (TFs).
Each TF, or group of closely related factors, recognizes
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a unique family of short sequence elements, usually
between 5 and 15 basepairs in length. The rate at which
a given gene is transcribed is, to first approximation,
determined by the amount and activities of TFs bound to
DNA in the immediate vicinity of the gene, which, in turn,
is determined by concentrations and activities of TFs in the
nucleus and, importantly, by the repertoire of transcription
factor binding sites found adjacent to the gene. Thus,
the non-coding DNA sequence surrounding a gene deter-
mines when and where the gene will be expressed, just as
the coding sequence determines the gene’s structure and
molecular function. A major challenge in contemporary
biology is understanding precisely how this regulatory
information is encoded in the genome. In this paper, we
focus on an early step in this process, the identification of
biologically significant transcription factor binding sites
in the genome of the yeast Saccharomyces cerevisiae.

The simultaneous availability of complete DNA se-
quences and of DNA microarray-based data on the ex-
pression levels of all of an organisms’ genes across a
wide range of experimental conditions (Eisen et al., 1998;
Lockhart et al., 1996; Schena et al., 1995) has spurred
the development of numerous methods to understand how
transcriptional information is encoded in DNA sequences.
A common strategy relies on the observation that there
are multiple sets of genes that exhibit similar patterns
of expression across experimental conditions (Eisen et
al., 1998). This co-expression is taken as evidence of co-
regulation, and sequences upstream of these co-expressed
genes are searched for shared sequence motifs (for mi-
crobes, these searches are usually restricted to regions
of a few hundred to a thousand basepairs upstream of
the gene’s translation start sites—from hereon referred
to as the upstream control region (UCR)). Prior work
in identifying shared sequences can be divided into two
main categories: (1) multiple alignment methods; (2) de-
terministic combinatorial algorithms based on word fre-
quency counts. Methods in the first category (Lawrence
and Reilly, 1990; Lawrence et al., 1993; Bailey, 1995;

c© Oxford University Press 2002 1167



S.Keleş et al.

Lawrence et al., 1995; Hertz and Stormo, 1999; Tavazoie
et al., 1999; Hughes et al., 2000) usually take as input
a set of unaligned UCRs and a range of possible motif
lengths, and return probabilistic models of shared motifs
in the form of position weight matrices. These methods
rely on local search techniques such as Gibbs sampling
(Lawrence et al., 1993) or expectation maximization (Bai-
ley, 1995). Methods in the second category (van Helden
et al., 1998; Tompa, 1999; Jensen and Knudsen, 1999;
Sinha and Tompa, 2000) search the UCRs for various sized
nucleotide sequences exhaustively, and evaluate the signif-
icance of the obtained sequences by a statistical method.

In this paper, we follow a different approach and formu-
late the problem in the feature selection framework. First,
we present some important empirical observations that
motivate the idea of identifying known and novel motifs
based on gene expression data from a single microarray
experiment. Following these observations, we model the
gene expression from a single experimental condition as
a linear function of scores computed for sequence motifs
in UCRs. These sequence motif scores incorporate the
number of occurrences of the motifs and their positions
with respect to the gene’s translation start site. Our model
also allows for two-way interactions of the sequence
motifs. We treat the sequence motifs as explanatory vari-
ables (features) and suggest a feature selection method
to extract those that are the most relevant. The method,
which is described in details in Section 3, is a forward
and backward stepwise selection method embedded into
Monte Carlo cross validation. Finally, we briefly discuss
a transformation of the gene expression data in terms of
sequence motifs. This transformation enables us to find
motifs that are either important in a single experiment or
have important roles across a number of experiments. We
apply our methodology to a publicly available dataset of
the yeast Saccharomyces cerevisiae.

There are at least two other previous works that also pur-
sue a single gene-expression experiment based approach
(Bussemaker et al., 2001; Jensen and Knudsen, 1999). In
both of these works, association with gene expression is
used to identify the most relevant sequence motifs among
a set of different length oligomers. Our approach is closer
to of Bussemaker et al. (2001). In their work, authors use
a linear model of raw counts of sequence motifs for gene
expression and determine significance of the sequence mo-
tifs by extreme value statistics. Aside from laying out the
statistical motivation for focusing on a single condition,
the general scheme of our work differs from this approach
in a number of aspects. The scores we use for sequence
motifs incorporate location with respect to the translation
start sites in an ad hoc way as well as the raw counts.
Our model allows interactions of sequence motifs to cap-
ture combinatorial effects. We suggest a robust feature se-
lection method that does not employ the assumption of

normality on gene expression. Finally, our method starts
of with pentamers as sequence motifs and extends them
in an appropriate way, rather than considering the huge
set of different length oligomers. The nature of the fea-
ture selection method allows implementation of this in a
computationally tractable way.

2 MOTIVATION FOR FOCUSING ON A
SINGLE MICROARRAY EXPERIMENT

As discussed above, a common regulatory motif finding
approach favored in the literature is to cluster genes based
on similarity in their gene expression over a set of exper-
imental conditions and to search the UCRs of clustered
genes for the presence of shared or over-represented mo-
tifs. This method has been reasonably successful, recov-
ering many known motifs, discovering a few new motifs
that have since been experimentally validated, and sug-
gesting a role for dozens of additional motifs that have
not yet been experimentally tested. However, the method
remains somewhat limited by the degree of association
between similarities in gene expression and similarities
in the UCRs of the genes. When investigating this asso-
ciation, we came upon some important empirical obser-
vations that led us to focus on a single experiment as an
alternative.

Our analysis was based on the yeast cell-cycle exper-
iments of Cho et al. (1998), and on known cell-cycle
related regulatory elements from the literature (SWI5E,
ACE2, ECB, STE12, MCB, SCB, RAP1P, NEG, CBF1,
MCM1, and SFF). Details of these experiments are given
in Section 4. We compared gene expression distance (dis-
similarities in gene expression) among two gene groups
where genes in the first group share six of the above cell-
cycle regulatory motifs (including MCB and SCB) and the
genes in the second group do not have any of the cell-cycle
motifs. Gene expression distances were computed as in the
context of clustering (i.e. using cosine angle metric (Eisen
et al., 1998), correlation distance, euclidean distance,
etc. . . ). We found that these two groups have very similar
gene expression distance distribution. The histograms of
gene expression distance of these two groups are given in
part (a) of Figure 1. Mean gene expression distances were
0.966 and 0.978 in the first and second groups respectively,
using a cosine angle metric. Similar results were obtained
with different metrics. This suggests that the presence of
these motifs does not strongly select for genes with similar
patterns of expression across the dataset.

Following this observation, we directly investigated
the association between similarities in gene expression
across different experimental conditions and similarities
in UCRs. The distance in gene expression profiles and
in regulatory motif profiles were computed for a group
of genes and the correlation between them was found
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Fig. 1. (a) Distribution of gene expression distance in groups of genes with no cell-cycle related regulatory elements versus at least six (out
of 11) cell-cycle related regulatory elements. (b) Histogram of gene expression for time point 20 min of the cell cycle for the groups with (+)
and without (−) the MCB and SCB regulatory motifs.

to be 0.00125. Regulatory motif profiles were obtained
for each gene by calculating a score for each cell cycle
regulatory motif from each gene’s UCR. Examples of
these scores are given in the next section. This result
indicates that genes that are close to each other based on
gene expression distance across experiments are no more
likely than random to be close in sequence distance among
the set of distances that we have considered. These results
also confirm the findings of Bilu and Linial (2001), where
they report that the similarity in UCRs of the genes based
on BLAST E-score is quite low between genes of a cluster.

Although not entirely unexpected—our metric on se-
quence distance is fairly crude—the observation that there
is no simple association between similarities in gene ex-
pression across experiments and overall similarities in
UCRs led us to turn our attention to single-microarray
experiments. We directly investigated gene expression
among two groups of genes with and without relevant
regulatory motifs for a single experimental condition. As
a typical illustration, the histograms of gene expression in
two groups at time point 20 minutes of the cell cycle are
given in part (b) of Figure 1. This time point corresponds
to the late G1 phase with the active regulatory motifs
MCB and SCB. These histograms demonstrate the strong
difference in gene expression of the two groups. The mean
gene expression level in the group of genes with MCB and
SCB sites is 0.8638638 where as the mean expression
level of the other group is −0.3099315.

We conclude that although there is a significant relation-
ship between expression of the genes and their UCRs in a
single experiment, averaging across experiments destroys
this signal. We therefore focus here on identifying regula-
tory motifs for each individual experiments separately.

3 METHOD FOR IDENTIFYING REGULATORY
MOTIFS

In the following subsections we define the regulatory
motifs as features of the UCRs and explain the method
that selects the most relevant ones.

3.1 Feature Extraction and the Statistical Model
for Gene Expression

The first requirement of the methodology is to extract
useful, relevant explanatory variables from the UCRs of
the given organism. In van Helden et al. (1998), it was
shown that more than 98% of the 308 yeast regulatory
motifs lie within 800 bp upstream of the translation start
site. Regulatory motifs in yeast are of variable length (5–
15 bp) and have degenerate as well as highly conserved
components. However, in most cases the DNA binding
domain of the transcription factor contacts relatively short
sequences with low internal variation. It is also well
known that in identification of the regulatory motifs, not
only the length but also the location of the site is an
important factor. We obtained an empirical distribution of
the regulatory motif locations in yeast using data from
SCPD (Zhu and Zhang, 1999) by counting the number
of predicted regulatory motifs occurring in each of the
50 bp intervals of all UCRs and normalizing with the total
number of occurrences. We thus obtained an estimate of
the probability that each 50 bp interval of the 800 bp UCRs
contains a regulatory motif.

We now describe how the explanatory variables are
extracted from 800 bp UCRs. We restrict our analysis
to pentamers for computational reasons. We define the
random variable Lig to be location of i th occurrence of
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a pentamer w in UCR of gene g and denote its realizations
by lig ∈ {−1, . . . , −800}. Let Nwg be the total number of
occurrence of word w in the UCR of gene g. We compute
the following score for each word, gene combination (van
Zwet, 2001):

Swg =
Nwg∑

i=1

P(Lig = lig), (1)

where P(Lig = lig) is the probability of location lig being
a regulatory motif location. We obtain a score profile

−→
S g

for each gene g, g = 1, . . . , P . We use a linear model
with two way interactions to model the gene expression
data as a function of scores from UCRs. Denoting the gene
expression by Y and the total number of pentamers by
M , the expected gene expression given the score profile
is modeled as

E(Y |−→S ) = β0 +
M∑

w=1

βwSw +
M∑

w1

M∑

w2,w1 �=w2

βw1,w2 Sw1 Sw2

≡ m(
−→
S |β). (2)

In Bussemaker et al. (2001), authors show that using the
number of occurrences of words as explanatory variables
and adopting a linear model succeeds in identifying reg-
ulatory motifs. Our preliminary analysis (scatter plots of
gene expression versus scores) also suggests that a linear
model is reasonable to work with. The interaction term
serves two purposes: to identify cooperative regulatory
motifs and to gather different parts of the regulatory motifs
that are longer than five base pairs.

3.2 Statistical Method for Feature Selection
Having defined the features and the statistical model, our
next goal is to select the features that explain the observed
gene expression best. We propose a feature selection
method that uses forward/backward selection adaptively
with monte carlo cross-validation. We will refer the
method as stepwise selection with cross-validation (SCV).
Both forward/backward selection and cross-validation are
among the well known methods in statistics literature.
We will first outline the method and then present the
differences with the general feature selection methods of
the literature. We now present SCV in the context of the
model given in Equation 2.

1. Randomly split the total number of genes to obtain a
training sample and test sample of sizes ntr and nte.

2. Perform forward model selection:

(a) Initial step: Fit a univariate linear regression
model for each variable on training sample, get
the parameter β̂tr, j and compute the residual

sum of squares, rss(β̂tr, j ), on the test sample
where

rss(β̂tr, j ) =
nte∑

i=1

{Yi − m(Si j |β̂tr, j )}2.

(b) Add min−1
j {rss(β̂tr, j )} to the model.

(c) Keeping the already added variable(s) in the
model, continue adding other variables. For
each variable added consider its interaction
with the rest of the variables that are already
in the model.

(d) Steps (b) and (c) are repeated until no improve-
ment is observed in the rss of the test sample
and dk is reported as the set of all variables
added to the model.

(e) For all variables in dk , rss on the test sample
is computed for the model that excludes that
one variable. The variable that improves the
rss most is now deleted from dk and remaining
set is denoted as d

′
k . If none of the variables

provide improvement, stop, otherwise continue
backward deletion from the set d

′
k . The final set

obtained is denoted as d f
k .

3. Repeat steps 1 and 2 K times and obtain
(d f

1 , d f
2 , . . . , d f

K ).

4. Let dF I N AL be the union of d f
k , k = 1, . . . , K .

The final output from the procedure consists of following
items for each of the variables in the set dF I N AL :

• Number of splits it is selected.

• Rank profile which represents its order of being
selected in each split.

• Average improvement over splits it provides in the rss
of the test sample relative to the model where it has not
been added yet.

With the SCV method we do not need any model
assumptions other than the linearity of the regression
model. Our criteria of selecting explanatory variables
solely depend on the minimization of the least squares
residual sum of squares and cross-validation provides an
unbiased estimate of this criteria (Breiman et al., 1984).
Repeating the splitting procedure many times overcomes
the instability problem which is common to most of
the feature selection methods. In our application, cross-
validation serves two purposes: to decide on the variable
to be added to or to be deleted from the model and
to provide prediction error (rss) on the test sample.
The most common usage of cross validation in the
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literature is to select among a series of a priori nested
models by minimizing average prediction error on the
test samples. This is typically illustrated by Breiman
and Spector (1992) in the context of linear regression.
In this work, the authors obtain a nested sequence of
models by simply backward deletion from a full model
(using all data and all covariates) and then they use
cross-validation to select among these models. The main
difference of our approach is that we do not construct
sequence of models a priori but use the cross-validation
in an embedded way into stepwise selection to choose
the variables to enter the model. A similar idea was also
briefly mentioned in a further discussions section by Shao
(1993) though to the best of our knowledge, it was not
further analyzed or implemented. Shao (1993) suggests
the addition to or deletion from the model to be based
on average rss on different test samples. The final output
of this method is a single model. Our method provides
importance measures of features, which we discuss in the
next subsection, that are used to transform the UCRs. The
source codes for both of the methods are available through
our complementary website. Some other typical model
selection methods include AIC, BIC criterion and the
practical out performance of monte carlo cross validation
against these was shown by Pavlic and van der Laan
(2001) in the mixture of normals context.

3.3 Summary Measures
Experiment Specific Importance Measure: Let Rw,k(n)

denote the rank of motif w and Iw,k(n) denote the
indicator whether motif w is selected in split k of
the experiment n. We then define a particular overall
experiment specific importance measure of a motif w as

Rw(n) = 1

K

K∑

k=1

Iw,k(n)

J
(J − Rw,k(n) + 1),

where J represents the total number of terms added to
the model. Rw(n) represents a rank weighted proportion
of times motif w is selected within K splits. Thus, it
provides an overall importance measure that is between
0 and 1 for each motif. Hence, a motif that gets into the
model as the first variable in all of the K splits gets an
Rw(n) of 1 whereas the ones that are never selected get an
importance measure of 0. We restricted the total number
of terms in the model to be 10 based on the empirical
observation that for situations where the prediction power
of the model is low, the gain through additional terms
decreases exponentially.
Clustering of Experiment Specific Motifs: A way of
summarizing the regulatory motifs for each experiment is
clustering them based on sequence similarity. Any cluster-
ing method that accepts user defined distance metric can
be used. We used PAM (Kaufman and Rousseeuw, 1990)

with the similarity measure of Vilo et al. (2000) which is
defined as the length of maximum overlap between two
sequences divided by the length of the shorter sequence.
Clustering of the motifs is particularly important when
there are variants of the regulatory motifs that are highly
correlated.

4 APPLICATION AND RESULTS: MITOTIC
CELL CYCLE IN YEAST

We successfully tested the SCV with a simulation study
where the response and the features were generated to
represent the structures in a real data set. This included
models of low R2 (e.g. 0.1) values (the proportion of
variability due to linear relationship of response with the
explanatory variables (features)). Low R2 values raised
even if one used as features the scores corresponding
to exact consensus of the regulatory motifs. To speed
up the computations we used a cutoff for percentage
improvement on rss of the test sample. More detailed
results of our simulation study can be reached through our
complementary website.

We applied the SCV to the cell-cycle data of yeast by
Cho et al. (1998). The eukaryotic cell cycle consists of
four phases: M (mitosis), S (synthesis, DNA replication),
G1 (preparation for S phase and growth), G2 (preparation
for mitosis). Some of the well known regulatory motifs
in cell-cycle dependent transcription are early G1 element
ECB and late G1 elements MCB and SCB. Transcription
factor MCM1 plays an important role in G2 phase and pos-
sibly with transcription factor SFF in M phase. Moreover,
SWI5E, ACE2, RAP1P, NEG, CBF1, MET31p/MET32p
are other potential regulatory motifs of different phases of
the cell cycle.

In the experiments of Cho et al. (1998), cells were
collected at 17 time points with 10 min intervals to cover
two full cell cycles. In our analysis, we discarded two time
points (90 min, 100 min) due to less efficient labelling
of their mRNA prior to hybridization (Tavazoie et al.,
1999). We used normalized expression profiles of the most
variable ∼ 2900 ORFs.

To demonstrate the strength of the method in identifying
motifs relevant for a given experiment among a set
of known regulatory motifs, we first focused on 50
regulatory motifs for which SCPD (Zhu and Zhang,
1999) provided a consensus sequence. We computed the
scores as in Equation 1 using the consensus sequence of
these regulatory motifs. Detailed results for time point
20 min (late G1 phase) are given in Table 1. The analyses
were performed both by only using the scores for the
consensus sequence and by combining the scores for the
consensus sequence and its reverse complement. Since
the results are not dramatically different, we report here
only the latter case. The two regulatory motifs MCB and
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S.Keleş et al.

SCB are the most frequently selected ones with Rw(n)

values of 1 and 0.78. There is also an interaction term
of SCB and MCB indicating a combinatorial effect of
these regulatory motifs. This result is consistent with the
biological findings of (Cho et al., 1998). We conclude that
SCV picks up most of the relevant explanatory variables
with high Rw(n) values. The detailed results can be found
in our complementary web site.

We now extend the set of explanatory variables to
include all possible pentamers. The scores for each of
these are computed as in Equation 1. In Table 2 the results
for time interval 0–30 min are summarized including the
corresponding Rw(n) values. We only report pentamers
with Rw(n) greater than 0.1 since in a model with only
10 terms this corresponds to the Rw(n) of a motif that is
selected always tenth in all of the splits. If a term enters
the model at lower ranks, it is important that this happens
in a consistent way along many number of splits.

We observe that the selected pentamers have partial or
exact match to most of the relevant regulatory elements
(shown in parenthesis in Table 2). Regulatory motifs MCB
and SCB have quite strong effects in determining the
gene expression throughout different phases of the cell
cycle. The method identifies these regulatory motifs for
all the phases in which they are known to be active.
The pentamer AGGGG, which is the STRE regulatory
element, is also identified with high importance measure.
This is likely a result of the manner in which the cell
culture was synchronized, supported by the observation
that the highest importance measure of STRE is obtained
at time 0. Transcription factor MCM1 is also known to
be active in late G2/M phases. However, since MCM1
binds to a very degenerate binding site we were unable
to conclude whether any of the matches we have do
correspond to MCM1 sites.

We clustered the motifs of the time point 20 min to
illustrate motif clustering as a summary measure. All the
pentamers that were selected in at least two of the splits
were clustered. Since the number of motifs in this set was
relatively small (only 28 motifs) it was possible to try
out all possible choices of number of clusters. Average
silhouette, which is a measure of goodness of clusters
(Rousseeuw, 1987), was maximized when number of
clusters was set to seven. The seven clusters obtained are
given in Table 3. The two subsequences of SCB (CGCGA
and CGAAA) are in cluster 3 forming the exact motif
when aligned. In cluster 4, four of the seven motifs are one
base pair variants of STRE (AGGGG) and one of them is
the STRE itself.

Wolfsberg et al. (1999) identified pentamers and hex-
amers as potential regulatory motifs by analyzing UCRs
of the genes that might have been involved in the cell-
cycle dependent regulation of transcription. We compared
the significant pentamers they found (p ≤ 0.05) with our

findings. Pentamers like ACGCG, CGCGA, AACAA are
among the highly scored findings of our and their method.
In general, most of the late G1 pentamers identified by
Wolfsberg et al. (1999) were picked up by our method
as well, however the pentamers selected for other phases
were quite different.

Finally, it is worth commenting briefly on the construc-
tion of models based on candidate motifs to explain gene
expression data. The motifs that enter the model are in
general the biologically most relevant ones. The R2 value
of the fitted models of the test sample increases by ∼50
% compared to a mean fit model indicating that selected
motifs are truly helping to explain the gene expression.
Moreover, the aggregated prediction (mean value of pre-
dicted gene expression over splits) has a lower prediction
error (rss) than any of the individual predictions obtained
at each split. However, the overall ability to predict gene
expression solely on the basis of UCRs remains poor.

4.1 Extending the Pentamers
We had restricted our analysis to pentamers due to
computational constraints. This enabled us to find either
the relevant regulatory motif (eg. ACGCG for MCB) if
indeed it is a pentamer or a core for it (CGCGA for SCB).
Obviously, it is of interest to consider sequences of longer
lengths and investigate whether these provide an improved
prediction of gene expression. One possible extension that
we implement on SCB core motif is as follows: During the
SCV, whenever the core CGCGA is selected, we consider
its length 6 extensions that are obtained by adding one
base pair to left and right of the core, respectively. We
then repeat the selection procedure for the set including
the core word and its length 6 extensions. If a length 6
extension is selected as the best then it is immediately
extended to length 7 in the same way and comparisons
are performed. This process continues until there is no
improvement from extending a length l word to length
l + 1 word. We illustrated this extension for time point
20 min of the cell cycle. Core CGCGA was extended
to CGCGAAA which is the full predicted consensus for
SCB regulatory motif. This extension method provides
a quick way of extending the pentamer cores to longer
sequences since at each extension step there are at most
eight motifs to compare with the selected motif. We have
also applied the extension method to the MCB regulatory
motif for which the latest reported consensus is ACGCGN
(Iyer et al., 2001). The extension method did not extend
ACGCG at time point 20 min. Considering that the
empirical correlation between the pentamer ACGCG and
hexamer ACGCGT was 0.78, this is a promising result.
However, it is quite possible that when the correlation
between the core motif and its extension is very high,
extension from the core might not succeed. One is still
left with a core that is a good representation of the real
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Table 1. Regulatory motifs selected at Late G1 phase (time point 20 min) of the cell cycle. Second column gives the total number of splits the motif is selected,
and third column is the average percentage decrease it provides in rss of the test sample, and the last column is the rank profile over splits. The total number
of splits performed is 50

MOTIF # A.RSS RANK

MCB 50 5.8497 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
STRE 46 0.6509 2.2.2.2.2.6.2.4.2.31.2.2.3.2.2.4.2.2.2.2.4.19.5.2.4.2.4.5.4.18.4.2.2.4.5.2.43.2.2.2.2.2.6.2.4.3
SCB 48 0.5799 3.4.3.3.3.4.3.2.3.3.3.2.4.2.3.3.3.8.2.6.3.3.2.3.2.3.2.2.3.2.4.2.2.3.2.2.3.2.3.3.3.3.4.2.3.2.2.2
MET31 38 0.2059 8.12.7.10.11.23.8.8.5.3.8.6.19.6.19.9.6.7.9.5.6.9.7.17.9.15.31.21.5.5.3.14.6.7.7.7.7.5
GCR1 36 0.1939 12.9.12.8.9.11.17.34.8.6.12.8.29.7.13.21.6.13.8.9.9.11.8.9.7.16.7.34.48.7.7.9.8.13.9.11
REB1 35 0.1277 16.15.8.53.34.16.32.12.6.39.7.27.9.18.10.38.15.16.10.27.14.7.15.14.17.13.10.5.13.6.6.7.11.35.29
URSPHR 41 0.089 18.14.25.22.28.53.13.17.15.12.16.38.15.28.26.34.19.10.13.22.13.27.12.16.12.16.30.18.12.8.16.14.7.16.15.8.17.25.43.9.29
SCB*MCB 37 0.1641 4.5.4.4.5.4.3.18.4.4.5.3.4.4.9.3.7.4.4.3.4.3.4.3.3.5.3.4.33.4.4.4.4.5.3.3.3

Table 2. Selected pentamers and their reverse complements for time points {0, 10, 20, 30} min of the cell cycle. Selected motifs have exact or partial matches
to the regulatory motifs given in parenthesis. The total number of variables in the model is restricted to 10

T = 0 min T = 10 min
Motif Rw(n) Motif Rw(n)

AGGGG/CCCCT(STRE) 0.925 AAACA/TGTTT(STE12) 0.6
ACGCG/CGCGT(MCB) 0.765 CTTAA/TTAAG 0.535
GAAAA/TTTTC(ECB) 0.665 GTTTA/TAAAC(SFF) 0.51
CGGAG/CTCCG 0.49 GCGAA/TTCGC(SCB) 0.495
AAGGG/CCCTT 0.48 CAGAC/GTCTG 0.37
CATAA/TTATG 0.39 AACAT/ATGTT 0.355
CATCG/CGATG 0.22 ACTTC/GAAGT 0.3
GGATA/TATCC 0.185 TTCAA/TTGAA 0.27
TCGCA/TGCGA 0.165 AGGGG/CCCCT 0.21
TCCGA/TCGGA 0.165 GATGA/TCATC 0.19
AGATC/GATCT 0.16 CCACG/CGTGG 0.185
AGTTC/GAACT 0.16 GGGGA/TCCCC 0.145
ACCCG/CGGGT 0.14 CGCGC/GCGCG 0.145
AGGGG/CCCCT*ACGCG/CGCGT 0.125 CAGGG/CCCTG 0.135

CAGTA/TACTG 0.1
ACGGA/TCCGT 0.1

T = 20 min T = 30 min
Motif Rw(n) Motif Rw(n)

ACGCG/CGCGT(MCB) 1.000 ACGCG/CGCGT(MCB) 1
CGCGA/TCGCG(SCB) 0.745 CCACA/TGTGG 0.465
AGGGG/CCCCT(STRE) 0.55 CGCGA/TCGCG(SCB) 0.46
AAACA/TGTTT(STE12) 0.38 CTCCA/TGGAG 0.395
GAAGC/GCTTC 0.315 ATAAC/GTTAT 0.225
CCTGA/TCAGG 0.305 AGGAA/TTCCT 0.225
AAGGG/CCCTT 0.27 CACGG/CCGTG 0.185
TAAAA/TTTTA 0.19 GGTAA/TTACC 0.18
TGAAA/TTTCA 0.17 CCCAC/GTGGG 0.18
AAAGG/CCTTT 0.17 GTTGA/TCAAC 0.175
ATATC/GATAT 0.155 CTCAA/TTGAG 0.16
AAATA/TATTT 0.15 CACAA/TTGTG 0.14
CTATA/TATAG 0.13 TTAAA/TTTAA 0.14
CGAAA/TTTCG 0.11 CTAAA/TTTAG 0.14
GCACC/GGTGC 0.11 TAAGA/TCTTA 0.13
GTTTA/TAAAC 0.1 AGGTA/TACCT 0.11
ACGCG/CGCGT*CGCGA/TCGCG 0.64
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Table 3. Clusters of motifs for time point 20 min

Cluster 1(MCB-like) Cluster 2 Cluster 3 (SCB-like) Cluster 4 (STRE-like) Cluster 5 Cluster 6 Cluster 7

..ACGCG/CGCGT AAATA./TATTT CGCGA..../TCGCG ..AGGGG./CCCCT ATTTC/GAAAT CCTGA./TCAGG ATATC/GATAT

GCACC../GGTGC AAATC./GATTT ..CGAAA../TTTCG AAAGG.../CCTTT GTTTA/TAAAC .ATGAG/CTCAT CTATA/TATAG

ACACG../CGTGT .GATCA/TGATC ....AAACA/TGTTT GAAGC.../GCTTC ATAAG/CTTAT

CTCTC./GAGAG ...TGAAA../TTTCA .AAGGG../CCCTT ATAGA/TCTAT

...TAAAA./TTTTA ...GGGTT./AACCC

..CGAGC../GCTCG .AGAGG../CCTCT

...AGGTG/CACCT

regulatory motif, and the clustering on the final output
will bring the selected variants of the regulatory motif
together.

5 DISCUSSION
These results demonstrate that utility of motif detection
methods that consider individual genome-wide expression
experiment separately. Our and related methods nicely
complement those based on the pattern of gene expression
variation across numerous conditions.

It is natural to consider how our method can be
applied to the very large multi-condition gene expression
experiments that are now available. Using the importance
measures, Rw(n), one can build an M by N matrix where
rows are sequence motifs and columns are the experiments
in consideration. This matrix is a transformation of the
P by N gene expression data matrix to a potential
regulatory motif by experiment matrix in which each cell
represents the significance of a given motif in a given
experimental condition (a similar transformation matrix
based on genome-mean expression profiles was also
suggested by Chiang et al. (2001)). From such a matrix
one can readily identify motifs that have importance
across many experiments—we report motifs with highest
mean importance measure, R̄w, across experiments in
Table 4. More significantly, it allows for the identification
of motifs that are significant in limited numbers of
conditions and those whose significance is obscured by
stronger motifs active in the same conditions.

In essence, this transformation matrix brings us back
into the statistical framework where interesting subsetting
rules can be defined and clustering analysis can be
performed to identify motifs that have similar regulatory
effects across different experiments. Moreover, bootstrap
analysis will be useful to study the reproducibility of the
constructed clusters and subsets as in van der Laan and
Bryan (2001). We are in the process of applying such tools
and developing complementary methods.

To summarize, the method we have suggested both
serves experiment specific regulatory motif identification
and generates groups of motifs that have similar roles

Table 4. Motifs with overall importance measure across experiments ≥ 0.08.
The ratio of the length of the pentamer to the length of the exact regulatory
motif is given in parenthesis

Motif R̄w Match

ACGCG/CGCGT 0.541665 MCB(5/6)
AGGGG/CCCCT 0.247000 STRE(5/5)
CGCGA/TCGCG 0.193665 SCB(5/7)
CCAGC/GCTGG 0.114335 SWI5E(5/8)
AAACA/TGTTT 0.103000 STE12(5/7)
GTTTA/TAAAC 0.087335 SFF(5/8)

across different experimental conditions. One future re-
search direction will be the extensive comparison of this
method with other regulatory motif finding methods based
on clustering of the genes using expression data across
variety of conditions.
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