

High Field Magnet programs in Europe

HFM activities in Europe

- NED program : ending
- NED 1.5 Short Model Coil : ongoing
- CERN HFM program : to start Jan 2008
- European FP7, Integrated Activities, Joint Research Activity, HFM : Preparing for proposal

- NED is a Joint Research Activity (JRA) of the Coordinated Accelerator Research in Europe (CARE) project, funded under the auspices of EU- FP6 Research Infrastructures. Launched in January 2004; most tasks were completed by June 2007; total budget of ~2 M€ and an EU grant of 979 k€.
- Three technical Work Packages (WP) are still active
 - WP 2: Thermal Studies and Quench Protection (TSQP),
 - WP 3: Conductor Development (CD),
 - WP 4: Insulation Development and Implementation (IDI),

NED: Insulation and Thermal Studies

Insulation development

- CCRC/RAL has identified a polyimide sized glass fibre tape that is able to sustain the required Nb₃Sn heat treatment without degradation
- CEA is pursuing the development of ceramic He-porous insulation. Encouraging results were obtained for the thermal qualities, more work is needed on the mechanical properties

Thermal Studies

- A He-II double bath cryostat was built and is operational since end 2006 (Univ. of Worclaw and CEA)
- Heat transfer measurements on cable stacks and insulation samples are ongoing at CEA

NED: Conductor Development (1)

- The Conductor Development Work Package is the core of NED(~70% of the EU-allocated funding) and it includes three main Tasks
 - wire development (two industrial contracts under CERN supervision: Alstom/MSA, Fr and SMI, NL/D)
 - wire characterization (CEA, INFN-Ge, INFN-Mi, and TEU)
 - cabling studies (CERN and INFN-Mi)

NED: Conductor Development: SMI

• Cabling test done at LBNL end of June 2007 with the SMI strand.

- Strand before cabling:
 - 288 filaments (~ 50 μm)
 - D_{strand} = 1.257 mm, Cu/non-Cu ratio of 1.22
 - I_c =1397 A @ 12 T, 4.2 K (~ 15 % below spec.), n=80, J_c ~ 2500 A/mm² RRR ~ 80
- 5 cable sections were manufactured varying the cable compaction by changing mainly the mid-thickness of the cable. Each cable section has a length of ~2 m.
- All sections were characterized by metallographic examination and a first series of critical current measurements was performed by CERN on extracted strands.
- The first results on cabled strands indicate a reasonable degradation between 4 and 8%, which is already a very good result.
- The green light was given to SMI-EAS to start the total strand production (12,7 km) (end Febr. 2008)
- The cabling will be done under CERN's responsibility (either at LBNL or at CERN).

- Has produced strands up to 2100 A/mm²
- New strands expected in November. Expected Jc ~ 2500 A/mm²
- Production of strands expected by mid 2008

NED 1.5 Short Model Coil

CCLRC-RAL, CERN and CEA have started a program extension (NED phase 1.5) on Short Model Coils

- SMC program aim is to test cable in a coil without the complications of a CosQ geometry and to get experience with coil fabrication (420 mm × 190 mm × 10 mm, peak field 13 T)
- First model manufacturing to start in spring 2008

- CERN is starting a High Field Magnet R&D activity
- Aim: prepare for LHC interaction region upgrade to increase luminosity and possible longer term programs
- Using Nb₃Sn technology
- Complementary to existing programs (NED, LARP, Japan)
 - Avoid effort duplication
 - Get CERN up to date in the HFM technologies
- Timescale:
 - Part of the 'white paper' package approved by the CERN council in June 2007
 - To run in 2008-2011
 - In autumn 2007 a budget will be attributed

- New magnets are needed for the LHC phase 2 upgrade in about 10 years
 - Quadrupoles for the low-beta insertions
 - Corrector magnets for the low-beta insertions
 and possibly
 - Dogleg dipoles for the cleaning insertions
 - Q6 for cleaning insertions
 - 10 m dipoles for the dispersion suppressors
 - Early separation dipole (D0)
- New magnet types needed for a neutrino factory
 - Open midplane dipole for a muon decay ring
 - Open midplane dipole for a beta beam decay ring

Summary: requirements

	Field	Aperture (mm)	Rad. load	e.m. Forces	Peak field	Radiation Hardness	Heat removal	Temp. margin	
Low-beta insertion quadrupoles	>140 T/m	>130	high	large	>9 T	increased	very good	large	Als <mark>o for</mark> Pha <mark>se l</mark>
Early separation dipole in front of TAS	8 T	70	high	large	>9 T	increased	very good	large	
Dipole corrector in front of Q1	4 T -6 T	>130	high	as lhc	9 T	increased	very good	large	 Pha <mark>se II</mark>
Dogleg dipole	5 T	>56	high	as Ihc	9 T	increased	very good	large	
Dispersion suppressor dipole	12 T	>56	high	large	>12 T	increased	very good	large	
Multipole correctors	Moderate	>130	High	as lhc	9 T	increased	very good	large	
Beta beam decay ring*	4-8 T	large	high	?	9 T	increased	very good	large	
Muon decay ring	4-8 T	large	high	?	9 T	increased	very good	large	

Common points:

All magnets need radiation hardness, good heat removal and a large temperature margin

and

The Low-beta quad, dispersion suppressor dipole and early separation dipole need the Nb₃Sn high Jc at 12 T

R&D Chapters (HFM-CERN)

Conductor

- Develop the conductor and the cable (in continuation of NED)
- Enabling technologies
 - Study the possible coil types for the dipoles, quadrupoles etc.
 - Study mechanical magnet structures
 - Develop porous insulator including the coil gluing
 - Develop radiation resistant impregnation
 - Study thermal properties and radiation resistance of components and coils
 - Build model racetrack coils
 - Prospect HTS possibilities
- Model magnet
 - Design build and tests 1 m models (dipole, quad and corrector)
- Prototype magnet
 - Design build and test 4 m prototype (dipole or quad)

Conductor Work Packages

		Total	20.5	38.8	36.7	01-Jan-08	31-Dec-11
	WP title	deliverables	Material	FTE	FTE		
			(MCHF)	cat2	cat3-4	begin	end
Conductor						04 T 00	
			5.0	11.2	8.8	01-Jan-08	31-Dec-11
	Strand development	1000 m of strand lengths qualified for 3000 A/mm2					
WPA1		at 12 T, filaments <0.05 mm				01-Jan-08	31-Dec-10
	Cable development	100 m of cable with WPA1 strands for each cable					
		type (for dipole, quadrupole and corrector models					
WPA2		and prototypes)				01-Jan-08	31-Dec-10
	Cable production	Cable for 4 short model coils, 1 m (1.5 m) dipole,					
		quadrupole and corrector models, and an 8 m long					
WPA3		guadrupole protytype.				01-Jul-08	31-Dec-11

Enabling Technologies Work Packages

Nb3Sn R&D

		Total	20.5	38.8	36.7	01-Jan-08	31-Dec-11
	WP title	deliverables	Material	FTE	FTE		
			(MCHF)	cat2	cat3-4	begin	end
Enabling							
Technologies			4.54	8.95	8.4	01-Jan-08	31-Dec-11
WPB1	Coil concept study for dipole	Proposals for dipole coil concepts				01-Jan-08	30-Sep-08
WPB2	Coil concept study for quadrupole	Proposal for a quadrupole coil concept				01-Jan-08	30-Sep-08
	Coil concept study for open mid plane	Proposals for a muon ring dipole coil concept					
WPB3	dipole					01-Jan-09	30-Jun-09
	Coil concept study for correcor	Proposal for a corrector coil concept for					
	magnets	quadrupole, sextupole, octupole and decapole					
WPB4		magnets				01-Jan-09	30-Jun-09
	Ceramic insulation development	Insulation for racetrack coil, mechanical, electrical					
WPB5		and radiation qualification				01-Jan-08	31-Dec-09
	Glass fibre insulation development	Insulation for racetrack coil, mechanical, electrical					
WPB6		and radiation qualification				01-Jan-08	31-Dec-09
WPB7	Impregnation development	Porous impregnated coils				01-Jan-08	31-Dec-09
	Thermal design of coil	Thermaly qualifying coil concepts for heat from					
WPB8		interaction debris				01-Jan-08	31-Dec-10
	Racetrack test coil design and	Test coils for two insulation concepts					
WPB9	construction					01-Jan-08	30-Jun-09
WPB10	Racetrack test coil cold tests	test report				#########	31-Dec-09
	Thermal tests	report on the measurements on conductor stacks of					
WPB11		the two insulation concepts				01-Jan-08	31-Dec-09
	Mechanical tests on coil samples and	report on the measurements on mechanical models					
WPB12	models					01-Jan-08	31-Dec-10
	Radiation qualification of coil	report on irradiation tests on coil segments with all					
WPB13		types of insulation				01-Jan-08	31-Dec-11
WPB14	Quench protection and trigger R&D	Quench protection concept				01-Jul-08	31-Dec-11
	Special instrumentation for constr and	Instrumentation design, assembled instrumentation					
WPB15	test of SC magnets					01-Jan-08	01-Jan-11
WPB16	Very High field HTC dipole insert	dipole insert for 100 mm bore				01-Jun-10	31-Dec-11
	D 17-19 October	2007 G de Rijk CERN	& EU HE	M nr	orams		1

Model Magnet Work Packages

Nb3Sn R&D

		Total	20.5	38.8	36.7	01-Jan-08	31-Dec-11
	WP title	deliverables	Material	FTE	FTE		
			(MCHF)	cat2	cat3-4	begin	end
Model							
Magnet			4.25	11.95	12.6	01-Jan-08	31-Dec-11
	Electro-magnetic design of the dipole	Report for electro-magnetic design of the dipole					
WPC1	model	model				01-Oct-08	31-Dec-09
	Design of the dipole model magnet	Design report of the dipole model magnet,					
WPC2		functional test specification.				01-Nov-08	31-Dec-09
	Electro-magnetic design of	Report for electro-magnetic design of quadrupole					
WPC3	quadrupole model	model				01-Oct-08	31-Dec-09
	Design of the quadrupole model	Design report of the quadrupole model magnet,					
WPC4	magnet	functional test specification				01-Jan-09	31-Mar-10
WPC5	Prepare short model test station	Test startion ready for the tests				01-Jan-09	31-Mar-11
	1.5 m tooling design and construction	Complete set of 1.5 m tooling for dipole,					
WPC6		quadrupole and corrector model magnets.				01-Jan-08	31-Aug-09
	Components design for Nb3Sn	Prototype components					
WPC7	magnets					01-Jul-08	31-Mar-10
WPC8	Construct coils for quadrupole model	Quadrupole model coils				01-Apr-09	31-Mar-10
	Construct quadrupole model cold	complete quadrupole model magnet					
WPC9	mass					01-Nov-09	31-Jul-10
WPC10	Test quadrupole model magnet	test report quadrupole model magnet				01-Aug-10	31-Dec-10
WPC11	Construct coils for dipole model	dipole model coils				01-Jan-10	31-Dec-10
WPC12	Construct dipole model cold mass	complete dipole model magnet				01-Jan-11	30-Jun-11
	Test dipole model magnet	test report dipole model magnet with quench					
		position, hot spot temperature, quench cause,					
WPC13		multipole description of the field				01-Jul-11	30-Sep-11
WPC14	design feedback from cold tests	updated design report				01-Aug-10	31-Dec-11
	Design of the corrector model	Report for design of the demonstrator corrector					
WPC15	-	model.				01-Jan-09	30-Jun-10
	Corrector magnet model construction	demonstrator model of a (sextupole, octupole or					
WPC16		decapole) corrector magnet				01-Jan-10	31-Dec-11

Prototype Magnet Work Packages

R055h K	a D						
		Total	20.5	38.8	36.7	01-Jan-08	31-Dec-11
	WP title	deliverables	Material	FTE	FTE		
			(MCHF)	cat2	cat3-4	begin	end
Prototype							
Magnet			4.85	5.5	6.9	01-Jan-09	31-Dec-11
WPD1	Long reaction furnace	10 m reaction furnace installed and commissioned				01-Jan-09	31-Jul-10
WPD2	Installation of long magnet tooling	full magnet workshop installed				01-Jan-09	31-Jul-10
WPD3	Design of 4 m coils	Design of 8 m quadrupole coils				01-Oct-09	31-Jul-10
	Design of 4 m cold mass	cold mass design report, functional test					
WPD4		specification				01-May-10	01-Apr-11
WPD5	Construction of 4 m long coils	collared coils passing warm electrical tests				01-Aug-10	31-Mar-11
	Construction of 4 m cold mass	cold mass passing warm electrical and magnetic					
WPD6		tests				01-Apr-11	30-Sep-11
WPD7	Cryostating of 4 m prototype	prototype ready for cold test				01-Aug-11	01-Oct-11
	Prepare test station and	Test station ready for cold test					
WPD8	instrumentation for cold test					01-Jul-10	30-Sep-11
WPD9	Cold test 4 m prototype	Report on cold test				01-Oct-11	31-Dec-11
	Design feedback after prototype cold	Reports with design feedback					
WPD10	tests					01-Oct-11	31-Dec-11

• Total program (4y) of:

- 20.5 MCHF material budget
- 75.5 FTE personnel budget

FP7-IA-HFM

- Coordinated by ESGARD
- In the "High Intensity High Energy Proton Beam" activity (Activity leader: Roland Garoby)
- Joint Research Activity
- 11 European partners
 - CERN
 - CEA-Saclay
 - CIEMAT
 - CNRS-Genoble
 - FZ Karlsruhe
 - INFN Milano LASA
 - STFC-RAL
 - Tampere University of Technology
 - Twente University
 - UNIGE
 - Wroclaw University of Technology

FP7-IA-HFM

	r.		Material	Staff			
FP7-IA-HFM	L		(ME)	(ME)			
		Total	2.56	4.61		01-Jan-09	31-Dec-12
	WP title	deliverables	Material	FTE cat2	FTE cat3-4	begin	end
	WF une	denverablea	(inc)	COLL	outo 4	begin	ena
Work package			2.56	25.7	19.5	01-Jan-09	31-Dec-12
		Follow -up of the progress in the technical WPs					
		Regular reporting to EU and participants'					
		management (yearly report)					
		Planning					
		Financial follow up (quarterly report)					
WP-HFM-1	Management and coordination		0.16	1.2	0	01-Jan-09	31-Dec-12
		1) radiation resistance of Nb3Sn certified					
		2) radiation resistent insulation certified					
		3) rediation resistent impregnation certified					
		4)Heat deposition and heat removal model with					
		experimental validation					
WP-HFM-2	Support studies	5)Thermal coil design parameters for dipole and quad	0.8	12.5	7	01-Jan-09	31-Dec-12
		1.5 m long, 13T, 100 mm aperture model dipole					
		magnet					
WD LIEN 2	Lich field dinals model		0.0	5	6	01 Icm 00	20 5
WF-HFIN-5	High field dipole model	1 colonaid insert for 100 mm have	0.9	3	0	01-Jan-09	50-Sep-11
		1 dinala insert for 100 mm hara					
		I dipote insert for 100 min bore					
WP-HFM-4	Very High field dipole insert		0.4	5	4	01-Jun-10	31-Dec-12
		short model of a single conductor wound Nb3Sn					
		corrector					
WP-HFM-5	Corrector model in Nb3Sn		0.3	2	2.5	01-Jun-10	31-Dec-12

Next steps

White paper HFM program

- Waiting for budget allocation and program comments by the DG
- Formulate definitive HFM program
- Selection of WP leaders
- Form collaborations with other institutes (eg CEA, CIEMAT, INFN, STFC-RAL, UNIGE, Twente, Wroclaw, etc...)
- Define (hardware) collaboration with LARP
- Start work on 1/1/2008

FP7-IA-HFM

- Preparative negotiations until end of year (ESGARD, DG, DL, GLs, activity leaders, potential partners) to get a program proposal
- Write WPs for the FP7-IA submission (Febr. 08)
- Wait for EU approval (mid 2008)
- FP7-IA negotiation phase
- FP7-IA contract signature (2nd part 2008)
- Start work in 2009 (mid 2009 ?)

