Chapter 32: Cyanobacterial toxins: a qualitative meta–analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota

Bas W Ibelings¹, Karl E Havens²

¹Netherlands Institute of Ecology (NIOO–KNAW) – Centre for Limnology, Rijksstraatweg 6, 3631 AC, Nieuwersluis, The Netherlands; e-mail b.ibelings@nioo.knaw.nl; ²University of Florida, Department of Fisheries and Aquatic Sciences, Gainesville, FL 33458, USA

Abstract

This paper reviews the rapidly expanding literature on the ecological effects of cyanobacterial toxins. The study employs a qualitative metaanalysis from the literature examining results from a large number of independent studies and extracts general patterns from the literature or signals contradictions. The meta-analysis is set up by putting together two large tables - embodying a large and representative part of the literature (see Appendix A). The first table (Table A.1) reviews the presence (concentrations) of different cyanobacterial toxins in the tissues of various groups of aquatic biota after exposure via different routes, experimentally in the lab or via natural routes in the environment. The second table (Table A.2) reviews the dose dependent effect of toxins on biota. The great majority of studies deal with the presence and effects of microcystin, especially of the MC-LR congener. Although this may partly be justified - MC-LR is an abundant and highly toxic protein - our review also emphasizes what is known about (i) other MC congeners (a number of studies showed a preferred accumulation of the less toxic variant MC-RR in animal tissues), (ii) nodularin (data on a range of biota from studies on the Baltic Sea), (iii) neurotoxins like anatoxin-a(s), which are conspicuously often present at times when mass mortalities of birds occur, (iv) a few studies on the presence and effects of cylindrospermposin, as well as (v) the first examples of ecological effects of newly identified bioactive compounds, like microviridin-J. Data were reorganized to assess to what extent bioconcentration (uptake and concentration of toxins from the water) or biomagnification (uptake and concentration via the food) of cyanobacterial toxins occurs in ecosystems. There is little support for the occurrence of biomagnification, and this reduces the risk for biota at higher trophic levels. Rather than biomagnification biodilution seems to occur in the foodweb with toxins being subject to degradation and excretion at every level. Nevertheless toxins were present at all tropic levels, indicating that some vectorial transport must take place, and in sufficient quantities for effects to possibly occur. Feeding seemed to be the most important route for exposure of aquatic biota to cvanobacterial toxins. A fair number of studies focus on dissolved toxins, but in those studies purified toxin typically is used, and biota do not appear very sensitive to this form of exposure. More effects are found when crude cyanobacterial cell lysates are used, indicating that there may be synergistic effects between different bioactive compounds. Aquatic biota are by no means defenseless against toxic cyanobacteria. Several studies indicate that those species that are most frequently exposed to toxins in their natural environment are also the most tolerant. Protection includes behavioral mechanisms, detoxication of MC and NODLN by conjugation with glutathione, and fairly rapid depuration and excretion. A common theme in much of the ecological studies is that of modulating factors. Effects are seldom straightforward, but are dependent on factors like the (feeding) condition of the animals, environmental conditions and the history of exposure (acclimation and adaptation to toxic cyanobacteria). This makes it harder to generalize on what is known about ecological effects of cyanobacterial toxins. The paper concludes by summarizing the risks for birds, fish, macroinvertebrates and zooplankton. Although acute (lethal) effects are mentioned in the literature, mass mortalities of - especially fish are more likely to be the result of multiple stress factors that co-occur during cyanobacterial blooms. Bivalves appear remarkably resistant, whilst the harmful effects of cyanobacteria on zooplankton vary widely and the specific contribution of toxins is hard to evaluate.

Abbreviation	Definition
AchE	Acetyl Choline Esterase
ANA(a)(as)	Anatoxin–a; anatoxin–a(s)
BCF	Bioconcentration Facor (concentration of toxic compound in
	an organism as % of that in water)
BMF	Biomagnification Factor (concentration of toxic compound in
	an organism as % of that in its diet)
CAT	Catalase (one of the antioxidative enzymes)
CYN	Cylindrospermopsin
GI	Gastrointestinal tract
GPx	Glutathione Peroxidase (one of the antioxidative enzymes)
GR	Glutathione Reductase (one of the antioxidative enzymes)
GSH	Glutathione
GST	Glutathione-S-Ttransferase (catalyst of the formation of MC-
	GSH conjugates in detoxication)
H ₂ O ₂	Hydrogen peroxide (one of the ROS formed during oxidative
	stress)
HP	Hepatopancreas
IP	Intraperitoneal injection
LC ₅₀	Concentration at which 50 % of the test animals die from ex-
	posure to the toxin
LOEC	Lowest Observable Effect Concentration
LPO	Lipid Peroxidation (outcome of oxidative stress)
LPS	Lipopolysacharides
MC	Microcystin
NODLN	Nodularin
PP	Protein phosphatases (inhibition of PP by MC results in hy-
	perphosphorilation of proteins)
PST	Paralytic Shellfish Toxin
ROS	Reactive Oxygen Species (formed during oxidative stress)
SAX	Saxitoxin
SOD	Super Oxide Dismutase (one of the antioxidative enzymes)
TDI	Tolerable Daily Intake (of a toxin like MC)
TEH	Total Extractable Hepatotoxins (sum of toxins and their bio-
	transformation products)
TOSC	Total Oxygen Scavenging Capacity

List of abbreviations.

Introduction

Until just a few years ago statements like "traditionally research has focused on the acute toxicity of microcystin–LR to laboratory mammals" and "there is a general lack of research involving aquatic organisms which may be exposed to toxin producing cyanobacterial blooms in their natural environment" (Zurawell et al. 1999) were fully justified. In contrast, there now exists a large literature from observational and experimental studies dealing with cyanobacterial toxins in aquatic systems. Yet major information gaps remain, and our ability to understand effects is limited by certain attributes of those studies. The aim of this paper is to review the extant literature, identify general patterns in results, and identify key areas where additional research is warranted.

This assessment is complex because in addition to microcystin-LR there are many other toxins produced by cyanobacteria. Some of these toxins, such as nodularin, are closely related to microcystin, while others are quite different (e.g., the neurotoxins anatoxin-a and a(s) and saxitoxin and the protease inhibitor cylindrospermopsin). There also exists an ever increasing list of bioactive compounds produced by cyanobacteria, some of which have been shown to be toxic to selected aquatic biota (like microviridin-J for Daphnia (Rohrlack et al. 2004), but many of which have not been studied in any detail. Furthermore, chronic and sub-chronic effects (see Havens et al elsewhere in this volume for definitions) may be more relevant to study than acute lethal effects. Exposure of biota in lakes supporting cvanobacterial blooms is likely to be repetitive and over much of an organism's lifespan. Although cyanobacterial toxins have been claimed to play a role in acute events like mass mortalities of fish and birds, there is usually insufficient evidence to link fish and bird kills directly to these toxins. This does not mean that there are no important sub-lethal effects resulting from chronic exposure in the aquatic ecosystem.

This study employs qualitative meta–analysis of data from the literature, examining results from a large number of independent studies and synthesizing summaries and conclusions addressing the issue of toxic effects. Meta–analysis aims to utilize the increased power of pooled data to clarify the state of knowledge on that issue, and may include quantitative statistical analyses when the data are consistent with that approach – this is not the case here. We set up the meta–analysis by putting together two large tables (see Appendix A). The first table (Table A.1) reviews the presence (concentrations) of cyanobacterial toxins in the tissues of aquatic biota after exposure via different routes, be it experimental or via natural routes in the field. The second table (Table A.2) reviews the dose dependent effects of toxins on biota. While Tables A.1 and A.2 do not include 100% of the published papers on these subjects, they do embody a large and representative part of the literature.

Methodology

The literature was queried using the ISI-Web of Science. Results of the literature search are given in Havens et al (this volume). To assemble Table A.1 – concentrations in biota – the following data were extracted from the literature: (i) biota involved, four groups are distinguished: birds, fish, macroinvertebrates and zooplankton); (ii) type of cyanobacterial toxin studied; (iii) exposure route; (iv) toxin concentrations in biota; (v) concentration in the source (i.e. this could be dissolved purified toxin in an experimental setting, cells from cultures of toxic cyanobacteria or natural seston containing toxic cyanobacteria); and (vi) analytical analysis method that was used to quantify the toxin. In the discussion, data from Table A.1 will be organized in such a way that biomagnification (accumulation of the toxins in biota via consumption of food that contains the toxins) can be quantified. Bioaccumulation of cyanobacterial toxins is often speculated to increase the risk of exposure for aquatic biota (especially at higher trophic levels), but bioaccumulation has seldom been analyzed correctly (see Havens et al, this volume for definitions). Especially for MC it is well known that the analytical method may have a marked effect on the concentration that is measured. This is even more so when MC is measured in biota. rather than in the toxin producing cyanobacteria. Standard MeOH extraction does not include covalently bound MC and analysis using ELISA suffers from cross reactivity between MC or NODLN and their GSH conjugates formed in detoxication. The consequences of this for interpretation of the concentrations given in Table A.1 are discussed.

For Table A.2 the following data were compiled: (i) biota involved; (ii) exposure route; and (iii) dose and effect. In many studies it is not possible to establish true dose–effect relationships because organisms are exposed to only one or two different dosages, and Table A.2 will indicate in which cases sufficient data have been gathered to establish a relationship. Ideally the unit for dose would be units of toxin administered per unit of body weight and per unit of time (for comparison TDI for humans equals a dose of 0.04 μ g kg bw⁻¹). It is more common however to find toxin contents of the source expressed in μ g L⁻¹. Differences in units hamper interpretation across different studies. What will also emerge from Table A.2 is that the exposure route has a strong influence on biological effects. In fish IP injec-

tion of MC is often fatal however oral dosage hardly ever results in mortality. As will be discussed, fish-kills in lakes seem to be a consequence of multi-stress factors during blooms of toxic cyanobacteria rather than of direct intoxication. Tables A.1 and A.2 are included as an appendix of this paper.

Results and Discussion

The last 5 years have included a steady increase in the number of papers investigating cyanobacterial toxins in aquatic biota. Whether this increasingly large body of literature is sufficiently broad (in terms of the toxins / bioactive compounds and aquatic biota covered by the studies) and deep (in terms of yielding a detailed understanding of the effects these toxins have on aquatic biota) is another matter. Below we formulate an answer to this question – which is central to this paper – by analyzing the assembled literature presented in the tables.

Toxins in biota

Toxin producing species and their toxins

This review takes a somewhat unusual perspective in that the focus is not on toxin producing cyanobacteria but rather on the biota in the aquatic ecosystem that may be affected by the toxins. Cyanobacteria that (frequently) appear in the tables are the MC producing genera *Microcystis* (species *M. aeruginosa*, *M. flos aquae* and *M. viridis*) and *Planktothrix* (*P. agardhii* and *P. rubescens*), the main NODLN producing species *Nodularia spumigena* and the anatoxin–a and a(s) producing genus *Anabaena*. Although species within a genus may differ greatly in their ecology (*P. agardhii* for instance is commonly found in hypertrophic, turbid shallow lakes, whereas *P. rubescens* is typically found in clear, deep alpine lakes), we do not stress differences between toxin producers at the species level since often we know little about differences in toxin production within a genus like for instance *Microcystis*.

If there is one thing immediately striking about the tables it is the prominence of MC, especially of MC–LR (not all studies specify which MC congeners were present, although most studies express total MC as MC–LR equivalents since often MC–LR is the only standard used in HPLC analysis). This focus on the presence and effects of MC is probably (partly) justified because surveys of cyanobacterial toxins in several coun-

tries have indeed shown that microcystins are prominently present (e.g. in Denmark – Henriksen et al. 1997). The spotlight on MC-LR (one variety in a family of around 70 different MC congeners) may be more biased, and seems influenced by the laboratory work on mammals. MC-LR is relatively toxic, its LD_{50} in mice is 50 µg kg⁻¹, considerably lower than for in-stance the LD_{50} of MC–RR (600 µg kg⁻¹) (Spoof 2005). Yet as the data in Table A.1 indicate there are a number of studies demonstrating that especially the less toxic MC-RR is taken up into tissues of aquatic biota, for instance in silver carp (Jang et al. 2004); or in freshwater snails (only MC-RR present in foot of B.aeruginosa (Chen and Xie 2005) and hepatopancreas of S.histrica (Ozawa et al. 2003). On the basis of their observations on the ratio of MC-LR:MC-RR in different tissues and organs. Xie et al. (2004) suggested that MC-LR may be actively degraded during digestion, whereas MC-RR is transported across the intestines and embedded into body tissues. At the same time Xie suggested that MC-RR is not acutely toxic to the carp, since no mortality was observed despite the uptake of MC-RR into various organs. In a study using the Thamnocephalus bioassay LC_{50} of MC–RR (and of MC–YR) was actually very close to the LC_{50} of MC-LR. The real difference in this invertebrate was a much gentler slope of MC-RR compared to MC-LR (and YR) when LC₁₀ and LC₉₀ values were included (Blom et al. 2001).

A further relevant distinction within the microcystins is that between the methyldehydroalanine–containing microcystins which covalently bind to PP in the cell and MC that contains dehydrobutyirine and – like NODLN – that do not bind covalently to PP. For NODLN it has been suggested that because NODLN does not bind covalently its transfer in the food web is facilitated (Kankaanpaa et al. 2001). The same would be true for the dehydrobutyirine containing microcystins, but since concentrations of these have not been analyzed in biota there is no evidence for this. Overall it is clear that studies on MC–LR cover just a small part of the total complexity of interactions between microcystin producing cyanobacteria and aquatic biota, so that the bias indicated by Tables A.1 and A.2 is unjustified. More research is needed on the ecological effects of the whole spectrum of bioactive – potentially harmful – compounds produced by cyanobacteria, including MC congeners other than LR.

Some toxins other than MC have been analyzed in biota. NODLN features fairly prominently in the tables, due to considerable work that has been done on the Baltic sea. This is one of the few regions in the world where there are sufficient data to actually follow concentrations of NODLN and its effects throughout much of the food web (more in discussion on 'bioaccumulation'). Neurotoxins are not a notable group in the table. Interestingly anatoxins (anatoxin–a and/or anatoxin–a(s)) often seem to play a role when toxic cyanobacteria have been implicated in the death of waterfowl (Henriksen et al. 1997; Krienitz et al 2003). Neurotoxicosis can be seen as convulsed extremities and arched back necks (Codd et al. 2005). The death of the lesser flamingos in Africa's Rift valley lakes is an interesting example where multiple cyanobactertial toxins (neurotoxins and hepatoxins) may play a simultaneous role and have synergistic effects (a more accurate description of the interaction between different toxins or toxins and other stress factors may be additive rather than synergistic effects). This is another area where very little is known today.

Biota involved and organs affected

Tables A.1 and A.2 distinguish four groups of aquatic organisms: waterfowl, fish, macroinvertebrates (i.a. bivalves, crabs, prawns, snails) and zooplankton. There are only a handful of studies involving birds (see above). There are many more studies on fish, the other group of aquatic vertebrates where mass mortalities have been attributed to blooms of toxic cvanobacteria. Toxins in fish have been analyzed after exposure via different routes, but the majority of work actually involves studies of fish caught in lake or sea, i.e. fish that has been exposed to toxins via natural routes (exposure through the food web or to dissolved toxins after lysis of blooms). In the ecosystem the feeding guild of a fish species appears to be a primary determinant of exposure to toxins. Phytoplanktivorous fish like silver carp (e.g. Jang et al. 2004) directly consume cyanobacteria. Zooplanktivorous fish like sticklebacks and smelt (Ibelings et al. 2005) feed on zooplankton that directly consume cyanobacteria. Likewise a species like flounder predates on filter feeding blue-mussels. Piscivorous fish that prev on zooplanktivorous fish are one step further removed from the toxin producing cyanobacteria. It may be expected that in the absence of biomagnification (but see discussion below) MC concentrations decrease in the order phytoplanktivorous > zooplanktivorous > piscivorous fish Omnvirous fish may fit in anywhere. Indeed fish caught in the IJsselmeer, The Netherlands showed an increase in MC in fish-liver moving from larger perch (predatory) to ruffe (benthic) and zooplanktivorous smelt (Ibelings et al. 2005). In contrast Xie et al. (2005) found that MC in various tisand organs varied carnivorous omnvivorous sues as >phytoplanktivorous fish. Fischer and Dietrich (2000) explain that there are several differences in GI tract between a carnivorous fish like rainbow trout and planktivorous and herbivorous cyprinids like carp. Cyprinids (as well as cichlids) possess a much longer ileum with larger surface area and higher resorption capacities, so that carnivorous fish would accumulate less MC, i.e. the opposite of what was found in Chinese lakes. In contrast

Carbis et al. (1997) explain that the neutral or slightly basic conditions in the GI of carp limit absorption of MC, since cells of cyanobacteria would only be digested in an acid environment.

Overall no relationship between feeding guild and toxin concentrations in fish can be pulled out from the data in Table A.1. Data from different studies are hard to compare because toxin concentrations, exposure routes and a host of other biotic and abiotic factors differ between sites and studies. What is clear, and this is found across studies on fish, is that concentrations of MC are mainly present in the gut and liver, to a somewhat lesser extend in kidneys and gonads, and much less in muscle tissue (e.g. Kankaanpaa et al. 2005a; Li et al. 2004; Soares et al. 2004; Malbrouck et al. 2003; Xie et al. 2005). Microcystins are also found in fish faeces in substantial amounts (Jang et al. 2004; Xie et al. 2005) and in pseudofaeces of *Dreissena* (Babcock–Jackson et al. 2002; Pires et al. 2004). This could expose the benthic community to cyanobacterial toxins produced in the pelagic zone.

There is a surprisingly large number of studies on the presence of toxins in macroinvertebrates, especially in bivalves (mussels and clams). In contrast there are very few studies that describe effects of cyanobacterial toxins on these animals, perhaps because generally they seem insensitive (e.g. Saker et al. 2004). A common theme in the studies on macroinvertebrates is the analysis of time courses for accumulation and depuration of toxins. Accumulation is often found to be time dependent and proceeds in an orderly manner. Time lagged acccumulation occurred at deeper sites in the Baltic sea. Mussels at deep sites are primarily exposed to toxic Nodularia towards the end of the bloom period, when filaments sink to the sediment, where they over winter. Although mussels at deeper sites contained much less toxin, they did accumulate some NODLN (Sipia et al. 2002). Depuration from mussels is almost always found to be biphasic (Ozawa et al. 2003; Sipia et al. 2001b; Vasconcelos et al. 1995), sometimes concentrations of toxin even increase in the first phase of depuration (Amorim and Vasconcelos 1999). It has been suggested that this is a consequence of dynamics in production and degradation of PP to which the MC are bound (Vasconcelos et al. 2001), but more research is needed (Ozawa et al. 2003). Although depuration is commonly judged to be rapid (e.g. Sipia et al. 2002; Kankaanpaa et al. 2005b; Pereira et al. 2004) it is equally clear that depuration is incomplete even after a considerable period of time. Depuration is temperature dependent and slows down in winter, so that toxins may even be carried on to the next spring (Ozawa et al. 2003). In for instance Lake IJsselmeer this has consequences for thousands of diving ducks that arrive in autumn. Although summer *Microcystis* blooms have dispersed, the mussels (food for the ducks) still contain traces of toxins. Thus the mussels may be considered a vector that prolongs the time when toxins are able to exert negative effects in that lake ecosystem. In macroinvertebrates hepatotoxins, but also CYN, were mainly found in the haemolymph and hepatopancreas, to a lesser extend also in gonads and muscle tissue (foot).

With respect to zooplankton we see the opposite of the macroinvertebrates papers: there are a large number of studies on effects of cyanobacterial toxins on zooplankton but much less on concentrations of toxins in the animals. The available results suggest that concentrations are relatively high in indiscriminately filter feeding taxa such as *Daphnia* (Ibelings et al. 2005; Kotak et al. 1996a; Thostrup and Christoffersen 1999), and perhaps lower in copepods, but again there is a general lack of data. Toxins seem to be taken up into the body of zooplankton, concentrations of toxin cannot be explained solely by the presence of toxic cyanobacteria in the gut.

Analytical analysis methods

The standard method for analysis of hepatotoxins (MC and NODLN) is HPLC, coupled to diode array UV detection (see Table A.1). ELISA is frequently used because of its high sensitivity (see Spoof 2005) for pros and cons of different methods. A drawback of ELISA is cross reactivity with detoxication metabolites, like the conjugates of MC and GSH. These conjugates have been shown to have a much lower toxicity (Metcalf et al. 2000). Conjugates can be detected using LC-MS, but this is still rarely undertaken (however see Karlsson et al. 2003 and Sipia et al. 2002). Because ELISA suffers from cross reativity some studies on biota in the Baltic Sea have introduced the term TEH - total extractable hepatotoxins, which includes the biotransformation products. TEH almost invariably exceeds the concentrations of untransformed hepatotoxins in biota - see for instance the comparison of NODLN (analyzed on LC-MS) and TEH (ELISA) in Kankaanpaa et al. (2005a), which differ by an order of magnitude, or Lehtonen et al. (2003) where NODLN was < 5 % of TEH in Baltic clams. Another important analytical issue is that of extraction of the toxins. A large number of MC congeners – those that contain methyldehydroalanine - covalently bind to PP in plant and animal cells; these covalently bound MC are not extracted using standard MeOH extraction. The handful of studies that have used Lemieux oxidation - a method that does extract covalently bound MC – demonstrated that a large part of the MC in biota is covalently bound (Williams et al. 1997; Pires et al. 2004) (see Table 2 in Havens et al, this issue). This means that almost all of the concentrations given in Table A.1 seriously underestimate the total amount of MC present in biota. What is unknown - and this is important - is whether all these

studies also underestimate the bioavailability and toxicity of MC. Is covalently bound MC in *Daphnia* still (equally) toxic to the fish that swallows cladocerans?

Bioaccumulation

Many studies have suggested that cyanobacterial toxins bioaccumulate in aquatic biota and that this may enhance the risk of exposure of biota higher up in the food web (e.g. Li et al. 2004; Sipia et al. 2001a; Negri and Jones 1995). Xie et al. (2005) present data that demonstrate that MC has a general tendency to accumulate up the food chain, with concentrations being highest in carnivorous and lowest in herbivorous fish species. PST concentrations in Daphnia magna grazing on Aphanizomenon exceeded those in the cyanobacterium (bioaccumulation factor > 1). Bioaccumulation in most papers however use a loose definition and usually it just means that toxins are present in biota. When a more formal – and informative – definition of bioaccumulation, and the related processes of bioconcentration and biomagnification are used (see Havens et al, this issue for definitions) there is very little evidence to support the notion of bioaccumulation of MC and NODLN in aquatic food webs. Rather the opposite, i.e. biodilution of hepatotoxins in the food web, is supported by the data (Karjalainen et al. 2005). Data in Table A.1 do show however that bioconcentration of NODLN may take place. In an experimental setting two copepods and a ciliate took up dissolved NODLN and accumulated this to concentrations far higher than in the water (BCF ranged from 12-22). Predators of these zooplankters and protozoa would be exposed to substantial concentrations of toxin in their food and may suffer consequences like decreased ingestion rates, as was shown for pike larvae and mysid shrimps feeding on the zooplankton (Karjalainen et al. 2005).

Biomagnification factors express the concentration of a toxin in biota as a percentage of that in their diet. BMF for the Baltic Sea and IJsselmeer are shown in Table 1.1. BMF in the Baltic biota and in *Daphnia* and *Dreissena* from the IJsselmeer are well below 100 %, indicating that the concentration was much below the concentration in the seston. Biomagnification obviously is absent in these cases. BMF in the Baltic of Copepods and clams are exceptionally low; only a very small part of NODLN which is present in the cyanobacteria is taken up by these grazers. The calculation in Table 1 of BMF for grazers of the phytoplankton is very sensitive to the toxin content of the seston used in the calculation, and this content may be highly variable. Values of BMF in the table should be taken as indicative rather than absolute. The BMF of ruffe and especially smelt in the IJsselmeer are > 100 and seem to indicate that biomagnification of MC has taken place. In this case however concentrations of MC in a whole organism (like *Daphnia*) are compared to values for a selected organ where the toxin specifically accumulates (the liver), and this gives a skewed representation of biomagnification (Gray 2002). The difference in BMF between freshwater mussels in the IJsselmeer and their marine counterparts in the Baltic is striking. The very low concentration of MC in *Dreissena* led Ibelings et al. (2005) to the conclusion that the food web linked to filter feeding mussels is hardly exposed to toxins. In contrast Kankaanpaa et al. (2005a) concluded that in the Baltic food webs involving mussels are especially exposed to hepatotoxins. The tenfold difference in BMF supports these apparently opposing conclusions.

Table 1. Biomagnification factors Baltic Sea and IJsselmeer (The Netherlands). BMF were calculated as NODLN (Baltic) or MC (IJsselmeer) content in biota as a percentage of toxin in their diet (e.g. in eiders as a % of that in mussels). For comparison BMF is also calculated as percentage of the concentration in the seston (although this would only qualify as biomagnification for organisms that actually feed on seston, like Daphnia and the mussels). Data compiled from (Engstrom– Ost et al. 2002; Kankaanpaa et al. 2005a; Karjalainen et al in press; Lehtonen et al. 2003; Sipia et al. 2001b; Sipia et al. 2002; Sipia et al. 2004) for the Baltic sea. BMF for the IJsselmeer have been modified from Ibelings et al. (2005). Data on which calculation of BMF are based are taken from Table A.1.

Baltic biota	BMF	BMF die	t IJsselmeer biota	BMF	BMF
	seston			seston	diet
Copepods	0.3	0.3	Daphnia galeata	20	20
Blue mussel (Mytilus edulis)	8.9	8.9	Zebra mussel (Dreissena poly- morpha)	0.9	0.9
Baltic clam (Macoma baltica)	0.6	0.6	Perch (Percia flu- viatilis)	5.9	11
Mysid shrimp (Mysis relicta)	0.3	100	Ruffe (Gymno- cephalus cernuus)	13.2	120
Pike larvae (Esox lucieus)	0.2	59	Smelt (Osmerus eperlanus)	53.5	286
Sticklebacks (Gasterosteus aculeatus)	0.05	24	• ,		
Flounder (Platichthys flesus)	1.6	19			
Eider (Somateria mol- lissima)	0.8	8			

Exposure routes

Laboratory studies

Early studies on fish (Tencalla et al. 1994; Kotak et al. 1996b) primarily used the method which is preferred for exposure of mammals in laboratory studies - intra-peritoneal injection. Direct injection of toxins like MC proved to be highly toxic to fish. The effects are comparable to those seen in mammals, but differences are seen as well. Whereas mammals die from haemorrhagic shock following hepatocyte insult, fish die from direct liver failure, necrosis (e.g. Malbrouck et al. 2003, Li et al 2004). The LC₅₀ for MC-LR in perch (1500 µg g DW⁻¹, Ibelings et al unpublished data) is well above the LC_{50} for mice, indicating that these fish species are less sensitive to the toxin than warm blooded animals. Nevertheless Sipia et al. (2001a) notes that salmon hepatocytes seem more sensitive to algal toxins than rat hepatocytes. When MC was administered orally (up to 1150 µg MC kg⁻¹ bw given by gavage 8 times over 96 h (a total dose of 9200 µg MC kg⁻¹ bw) to perch from the IJsselmeer no mortality was seen, although histopathology of the livers showed that MC were having severely detrimental effects. Similar differences between IP injection and gavage can be found in Table A.2 (e.g. Tencalla et al. 1994).

Directly from the water

In ecotoxicology there is a general assumption that uptake from the water is a common route for aquatic vertebrates to accumulate xenobiotic substances (Karjalainen et al. 2003). Indeed some of the studies have demonstrated direct uptake of cyanobacterial toxins from the water, even to the extent that the concentration in biota exceeds those in the water. However, most studies where biota are exposed to dissolved toxins have been in the laboratory (see Table A.2) using purified toxins. These studies have proven valuable in finding the mechanisms through which biota are affected by cyanobacterial toxins but are less informative about the importance of uptake of dissolved toxins in the ecosystem. A specific effect of dissolved MC is inhibition of ATP-ase activity of Na⁺ K⁺ pumps in the gills of fish and crabs, resulting in ion imbalance (Best et al. 2003; Vinagre et al. 2003; Zambrano and Canelo 1996). Concentrations of dissolved MC are much increased when surface blooms of floating cyanobacteria lyse. When cyanobacteria float to the surface they are exposed to extreme conditions, in particular an increase in irradiance, potentially to damaging levels. Photoprotective mechanisms that may protect the cells from photooxidation are hampered by the co-occurrence of light stress and other stress factors, notably an increase in temperature, desiccation and depletion of inorganic carbon (Ibelings and Maberly 1998). Lehtonen et al. (2003) suggested that the major fate of cyanobacterial blooms in the Baltic is to disintegrate in the water column so that very little reaches the bottom. If this were the case exposure to dissolved toxins would be a major event. Lysis of surface blooms is not unlikely, but we maintain that exposure of biota to high concentrations of dissolved toxin are the exception rather than the rule because processes like mixing, adsorption to clay particles, photolysis and bacterial degradation rapidly reduce the availability of dissolved toxins (Ozawa et al. 2003).

Moreover it has been shown by several authors that some aquatic biota are not sensitive to dissolved cyanobacterial toxins – e.g., brown trout (Best et al. 2001), pike–larvae (Karjalainen et al. 2005) and *Daphnia magna* (Lurling and van der Grinten 2003). Microcystins tend to be quite water soluble and polar, and do not readily pass the lipid bilayer of membranes. It is important to note however that whenever effects of purified dissolved toxins are compared to whole cell extracts biological effects tend to be much enhanced for the latter (Palikova et al. 1998; Oberemm et al. 1999), a possible indication of synergistic effects between MC and other bioactive compounds in cyanobacterial cells. There are exceptions, however. For example, in *A. salina* purified CYN showed a lower LC₅₀ than crude *Cylindrospermopsis* extracts, and this may indicate that unidentified compounds in the cyanobacterial cell extracts lowered the bioavailability of the toxin (Metcalf et al. 2002).

Via food (vectorial transport)

Feeding seems to be the most important route for exposure of aquatic biota to cyanobacterial toxins. This seems natural for organisms that directly feed on seston that includes cyanobacteria. Zooplankton, filter feeding bivalves and phytoplanktivorous fish would be among the organisms that are directly exposed to toxins in their food (unless they manage to avoid toxic cyanobacteria – see below 'protective mechanisms'). For those biota that do not feed directly on cyanobacteria, toxins must reach them via the food web. The risk of being exposed to toxins via the food web is much increased if biomagnification takes place. This is commonly found for lipophilic toxicants like PCB, but is less likely for hydrophilic compounds like MC–LR. This congener has a very low octanol to water partition coefficient, but as demonstrated by Ward and Codd (1999) other variants may have higher coefficients, and toxicity to *Tetrahymena* has been shown to vary accordingly. As discussed above biomagnification of MC and NODLN is unlikely and not substantiated by data from the field. Of the

amount of toxin ingested with the food very little is actually taken up into the body (e.g. 2.7 % in *Daphnia* in Rohrlack et al. 2005). And even the little toxin that is actually taken up into the blood of *Daphnia* and transported to its organs is subject to detoxication (see later in this paper) and excretion. These processes that dilute toxin concentration act at every step in a food chain. Rather than biomagnification MC and other toxins may be subject to biodilution in the foodweb. Nevertheless toxins are found at higher trophic levels, so there must be some vectorial transport, and as will be discussed below in sufficient quantities to have harmful effects. The presence of toxins in grazers like the zooplankton indicate that cyanobacteria are indeed ingested, despite their reputation of being hard to handle because of their large size. Indeed Work and Havens (2003) found cyanobacteria in the gut of all crustacean zooplankton in a large subtropical lake, including taxa known to produce toxins such as *Anabaena*.

A special case of exposure via food is coprophagy, described in a study on blue mussels (Svensen et al. 2005). A fair number of studies have analyzed toxins in the faeces of various species. Concentrations may be relatively high compared to concentrations in organs and tissues, and the faeces laden with toxins provide a medium for further transport of toxins in aquatic systems, especially towards the benthic community. Examples in Tables 1 and 2 include the faeces of silver carp and *C. gibelio* (Jang et al. 2004), *M. galloprovincialis* (Amorim and Vasconcelos 1999) as well as *M. edulis* (Svensen et al. 2005), and faecal pellets of calanoid copepods (Lehtiniemi et al. 2002).

Effects on biota

Acute vs. chronic effects

Acute effects are those that result from a single exposure to a toxin. This is conceivable under laboratory settings or after large scale lysis of a surface bloom. Biota in the field however will mainly be exposed repeatedly to toxins over a long period of time. This is sub–chronic and chronic exposure (definitions in Havens et al., this issue). An example of a study of acute exposure is that by Kankaanpaa et al. (2002) on sea trout. The fish were exposed to a single bolus of toxic *Nodularia* and time dependent accumulation / depuration of NODLN was coupled to the analysis of damage and recovery of the liver. An example of a sub–chronic exposure study (i.e. on a time scale intermediate between acute and chronic) is that by Pinho et al. (2003) where estuarine crabs were exposed daily for 4–7 d to cell extracts from toxic *Microcystis* or the exposure of carp to *Microcystis*

during 28d (Li et al. 2004). Experimental chronic exposure studies where biota are exposed to toxins for the greater part of their lifespan have – necessarily – been restricted to organisms with short generation times, especially zooplankton. There are a fair number of studies in which the effects of cyanobacterial toxins on the life–history of *Daphnia* have been studied. Examples are the studies by (Lurling 2003) and (Hietala et al. 1997). Some of the bivalve studies (accumulation / depuration) lasted for several weeks (e.g., Pires et al. 2004 and Bury et al. 1996) exposed brown trout to MC–LR for a period of 63d, but the great majority of data on chronic exposure to toxic cyanobacteria come from field studies where animals are exposed to toxic cyanobacteria via natural routes (many examples in Tables A.1 and A.2) during extended periods of time.

Overall Table A.2 indicates wide ranging effects of different cyanobacterial toxins on various aquatic organisms. Effects vary from mortality to subtle changes in behavior. Effects in fish include changes in liver enzymology, liver damage and ionic imbalance. Effects of cyanobacterial toxins on the embryonic development of fishes have been studied in two species: zebra fish and loach. Whereas immersion of zebra fish embryos in a solution of purified MC did not result in morphological changes except at the very highest concentration (Oberemm et al 1999), embryonic development of loach was affected by exposure to MC (Liu et al. 2002). In the study on zebra fish it was seen – like in studies on other biota – that crude cell extracts had much stronger effects, resulting in malformations of the fishes.

Effect studies are especially rich in the zooplankton literature. In Table A.2 it can be seen that effects on zooplankton vary from feeding inhibition to reduced reproduction, growth and mortality. Feeding inhibition may actually serve as a protective mechanism, and there is some evidence that especially species that are highly susceptible to MC may protect themselves by strong inhibition of the intake of cyanobacteria (Demott 1999). Studies also have shown that zooplankton is relatively insensitive to dissolved toxins (Demott et al. 1991; Lurling and van der Grinten 2003) so that feeding inhibition may indeed be very effective in preventing harmful exposure to the toxins. A complicating factor in zooplankton studies is that also 'non-toxic' cyanobacteria induce effects like reduced growth and reproduction. Cyanobacteria are generally believed to be food of low quality to zooplankton, especially Daphnia, so that direct toxic effects can not always be separated from the effect of insufficient food of good quality (LaurenMaatta et al. 1997). Experimental tests in which toxicity effects were separated from food effects - by adding a sufficient amount of high quality food like the green alga Scenedesmus - clearly demonstrate however that nutritional insufficiency of Microcystis cannot be solely responsible for the effects on *Daphnia*. Negative effects on survival, growth and population development persisted even when green algae were added. Moreover this was true even when a *Microcystis* mutant was used that no longer produces MC (Lurling 2003). Hence the author concluded that harmful effects by *Microcystis* cannot be the result of MC only. Feeding inhibition (starvation) and unknown bioactive compounds must also play a part.

The studies by Rohrlack and co-workers (Rohrlack et al. 1999b; Rohrlack et al. 2004; Rohrlack et al. 2005) enable direct insight into the effects of MC on Daphnia because the wild type Microcystis and its mutant only differ in their capacity to produce MC. Several interesting observations were made. Although MC was not responsible for feeding inhibition – the mutant had an equally strong effect – clearly MC had direct toxic effects. Visible first symptoms of MC poisoning included an inhibition of movements of thoracic legs, mandibles, foregut, second antennae, as well as stimulation of gut muscles leading to a permanent contraction of the midgut. These effects became apparent as soon as MC was taken up into the blood. Contraction of the midgut interferes with digestion, nutrient assimilation and uptake of ions. Eventually MC resulted in a breakdown of Daphnia metabolism, exhaustion and eventually death. In nature intake of microcystins will be modulated by various factors that were not considered in the study by Rohrlack et al. (2005) like Microcvstis colony size, presence of alternative food, temperature or condition of the animal (see section below on 'modulating factors').

Dose effect relationships

In studies on Baltic Sea flounder as well as on fish from the IJsselmeer no relationship could be detected between liver histopathology and toxin concentrations (Ibelings et al 2005.; Kankaanpaa et al. 2005a). The lesions that are seen in fish livers caught from systems supporting dense blooms of cyanobacteria may be attributed to hepatotoxin exposure, but other factors like liver parasites and anthropogenic pollutants will also play a part. Kankaanpaa et al. (2005a) concluded that liver histopathology can not be used as a reliable bioindicator of exposure to cyanobacterial toxins. A complicating factor is the dynamic nature of liver damage and recovery. The acute exposure study mentioned earlier where flounders were given a single dose of toxin (Kankaanpaa et al. 2005a) demonstrated that damage is transient, and recovery from liver damage is rapid (on the order of days). Many studies have failed to relate effects to concentrations of toxin. Egg production of *Daphnia* in the IJsselmeer had no relationship with toxin content of the cyanobacteria in the lake (Ibelings et al. 2005). According to

Rohrlack et al. (1999) it may not be the presence of toxins in the seston but the actual intake of toxins that matters. *Daphnia* species that were presumed to differ in susceptibility to MC may actually be equally susceptible – where they actually differ may be in their ingestion rate of toxic *Microcystis* cells. Rohrlack et al. (2004) established a clear relationship between MC ingestion rate and LT_{50} (survival time) of *Daphnia*. Despite all the complicating factors, significant dose–effect relationships have been found and are included in Table A.2. Another example is the dose (and time) dependent mortality in brine shrimp exposed to CYN and MC (Metcalf et al. 2002).

Protective mechanisms

Aquatic biota are by no means defenseless against toxic cyanobacteria. Blooms of toxic *Nodularia* have been around for at least 7000 years in the Baltic, giving other biota sufficient time to adapt to these nuisance cyanobacteria (Bianchi et al. 2000). Several studies indicate that species which are most frequently exposed to the toxins have the highest physiological tolerance. Baltic shrimp are less sensitive than fish larvae, but these larvae only feed on phytoplankton during the first stages of their life. Baltic copepods feed upon and ingest toxic *Nodularia* and they survive and reproduce without apparent harmful effects of the toxins (Engstrom et al. 2000). Where *Thamnocephalus* exhibited reduced survival after grazing upon *Planktothrix* filaments, other zooplankton – naturally co–existing with toxic cyanobacteria– were unaffected (Kurmayer and Juttner 1999).

Sessile organisms like mussels cannot move away from cyanobacteria, but zooplankton and fish may migrate to parts of the system where concentrations of cyanobacteria are low, as has been suggested for fish in the Baltic (Karjalainen et al. 2005). Moreover zooplankton, mussels and fish may temporarily stop feeding when toxic cyanobacteria are present and avoid ingestion in this way. If toxic cyanobacteria can not be avoided and cells are indeed ingested, very little of the toxin present may actually be taken up into the body. Mucoid cyanobacteria like Microcvstis are resistant to digestion, and there are barriers for the uptake of MC across the gut epithelium into the blood (Fischer and Dietrich 2000). Rohrlack et al. (2005) however showed that presence of Microcystis in the midgut of Daphnia caused the epithelium to loose cohesion. Cells loose contact with each other and this may facilitate the uptake of MC into the blood. Microcystin was transported by the blood to various organs, where beat rates were slowed down, until finally Daphnia died. Although both the MC producing wild type and the mutant (that no longer is capable of MC production) affected cohesion of the epithelium, beat rates were only affected by the MC

producing strain, a clear demonstration that MC – if taken up into the blood – is indeed highly toxic to *Daphnia*.

Feeding inhibition in the presence of toxic cyanobacteria is an efficient means to prevent ingestion of the toxins. However the avoidance of toxins must be balanced with the risk of starvation. Demott (1999) found that in *Dahnia magna* exposure to toxic *Microcystis* in a mixture with *Scenedes-mus* resulted in a rapid feeding inhibition, but feeding recovered when exposure was continued. DeMott concluded that this pattern of inhibition and recovery may balance the benefits of reduced ingestion of toxin with the disadvantage of a reduced food intake. In an environment with a patchy occurrence of toxic cyanobacteria feeding inhibition would be adaptive if the environment could be sensed correctly (chemical cues) and animals are able to recover quickly from inhibition in the absence of toxic strains.

Detoxication and oxidative stress

Another important process is detoxication of MC, which now has been documented in many aquatic biota, including several animals and macrophytes (Pflugmacher 2004). Metabolic breakdown of MC results in conjugate formation, amongst others with GSH. The formation of these conjugates is catalyzed by the enzyme GST, which has a microsomal and a cytosolic fraction. The activity of cGST has been demonstrated to increase after exposure to MC in zebra fish (Wiegand et al. 1999) and brine shrimp (Beattie et al. 2003), although exceptions have also been described, where activity of the enzyme remained unchanged, e.g. in goldfish (Malbrouck et al. 2004) and carp (Li et al. 2003). GST activity (cGST and mGST) also increased in *Daphnia* after exposure to CYN and an unidentified hepatotoxin (Nogueira et al. 2004). The MC-GSH conjugates have a much reduced toxicity and may be subject to enhanced excretion. Detoxication thus is a significant mechanism that protects biota to acute toxic effects of MC, as long as the capacity for detoxication is not exceeded. As a result of detoxication the cellular GSH pool is depleted and this exposes cells to oxidative stress through the formation of ROS like hydrogen peroxide. Organisms have a wide range of protective mechanisms to oxidative stress, including enzymes like SOD, CAT and GSH-reductase. The latter enzyme needs GSH as a co-substrate and its activity may be reduced when GSH is depleted through its conjugation with MC. Thus exposure to MC may have damaging effects in direct (inhibition of PP) and indirect ways (disbalance in ROS). Jos et al. (2005) showed that crushed cyanobacterial cells (MC released) resulted in enhanced oxidative stress resulting in lipid peroxidation, despite the fact that also levels of defensive enzymes were enhanced.

Studies by several authors in Table A.2 (i.e. Best et al. 2002) indicate that LPS (which are present on the cell–surface of cyanobacteria and on bacteria associated with cyanobacterial blooms) interfere with the detoxication process. In the study by Best and others GST activity in zebra fish was reduced when MC and LPS were offered in combination. Since LPS from different bacterial sources are always present in the aquatic environment (although not all LPS from different sources equally disturbed detoxication when tested) it would be rewarding to study the process of detoxication in the field. Another study (Best et al. 2003) demonstrated that LPS stimulate drinking in fish, the increased volume of water in the gut potentially increases the opportunity for uptake of toxins (including MC) from the water and promotes osmoregulatory imbalance.

Modulating factors

A common theme in much of what has been discussed in this paper is that of modulating factors. The effects that these cyanobacterial toxins have on aquatic biota are seldom straightforward but are modulated by factors in the environment or the status of biota themselves. Examples of modulating factors include condition of the animals, temperature and pre-acclimation /adaptation to cyanobacterial toxins. Hepatotoxicity of MC-LR has been shown to increase in fasted compared to fed animals (Malbrouck et al. 2004). Fasted goldfish showed a more severe and rapid inhibition of PP, and this may be related to differences in the glycogen content of the livers and the rate of MC removal from the body via the bilary excretion system. The tolerance of Daphnia pulex to toxic Microcystis was shown to be temperature dependent (Hietala et al. 1997) and decreased with higher temperatures. Adaptation to toxic cyanobacteria may play an important role too. Daphnia from locations where it is repeatedly exposed to toxic blooms would develop a higher tolerance to the toxins (Gustafson and Hansson 2004). Whether this is truly an adaptive evolutionary response remains to be tested since adaptation during 4-6 generations in the experiments by Gustafson and Hansson (2004) seem insufficient (although adaptation in Daphnia has indeed been shown to be a rapid process (e.g. Ebert et al. 2000). The essential message from their work is clear however: whenever the ecological effects of cyanobacterial toxins on biota are considered it is important to understand the history of the species involved. Modulating factors are an important reason why it is so hard to generalize the effects toxic cyanobacteria have on the biota in their environment.

Knowledge gaps

Throughout this paper remarks have been made about knowledge gaps that limit our understanding of the 'true' ecological effects of cyanobacterial toxins. At this point there is no need however to list those gaps extensively, since this is the subject of the paper by Havens et al, this issue. To summarize their main findings, Havens et al recommend further study on the following subjects:

- Studies at the whole community level in the presence vs. absence of cyanobacterial toxins;
- Studies that mitigate the bias towards microcystin, especially MC–LR, i.e. more knowledge is needed about ecological effects of toxins like CYN;
- Studies into synergistic effects of combinations of cyanobacterial toxins and of cyanobacterial toxins and other bioactive compounds from cyanobacterial cells;
- Studies in which biota are exposed to toxins under environmentally relevant conditions (synergistic effects with other stressors like temperature, low oxygen etc);
- More emphasis should be placed into (sub)chronic studies having sublethal effects, including those on behavior or genotoxicty; these may be more relevant than acute lethal effects, and more knowledge is needed here;
- What is the fate of toxins produced by cyanobacteria in the ecosystem?; what is for instance the role of detoxication and covalent binding of MC on transfer of toxins in the foodweb?
- Effects of toxins on benthic communities are not well understood;
- In which way and to what extend does toxicity of cyanobacteria interfere with lake restoration?

Conclusions

The qualitative meta-analysis identifies the following general patterns for major groups of aquatic biota (birds, fish, macroinvertebrates and zoo-plankton).

Birds. On basis of the limited number of studies on the role of toxic cyanobacteria on waterfowl we conclude that aquatic birds are at risk of cyanobacterial toxicosis. Anatoxins seem to play a relatively large role, they are often present when dead birds are found and the symptoms in diseased birds indicate a neurotoxin. Birds may be at high risk because they may directly feed on floating scum of cyanobacteria (personal observation) and are warm blooded animals, like the mammals which have been shown to be sensitive to cyanobacterial toxins in laboratory studies. A disease that must be mentioned here is avian vacuolar myelinopathy (AVM), which is a neurologic disorder primarily affecting bald eagles (*Haliaeetus leuco-cephalus*) and American coots (*Fulica americana*). The agent of this disease is an uncharacterized neurotoxin produced by a novel cyanobacterial epiphyte of the order *Stigonematales* (Wilde et al. 2005).

Fish. On basis of their study of common carp exposed to Microcystis, Li et al. (2005) conclude that fish kills during blooms of cyanobacteria can be assumed to result from extensive liver damage. Zambrano and Canelo (1996) on the other hand state that blockage of the gill activity could be the cause of mass mortalities during blooms of *Microcystis*. Both papers have in common that they put forward that cyanobacterial toxicosis can directly be responsible for the death of fish. We maintain that this is unlikely. Studying the collected data in Table 2 it seems doubtful whether naturally occurring concentrations of cyanobacterial toxins (either dissolved in the water or contained in the cell) are sufficiently high to be directly lethal. Again, generalizations are difficult because there appear to be important differences between fish species. Fischer and Dietrich (2000) related the capacity for uptake of toxins to the morphology of the GI. Perhaps combinations of stress factors that co-occur during blooms of toxic cyanobacteria (high temperature and pH, enhanced levels of ammonia, low oxygen in addition to cyanobacterial toxins) are more likely to cause fish mortality. Important sub-lethal effects of cyanobacterial toxins in fish are more than probable, however. Harmful effects have been seen on embryonic development, on growth of juvenile fish and on adult species. Several organs may be affected (e.g., kidney, heart, gonads), but the liver is the main target. Several studies have shown that around 50 % of fish caught from lakes or estuaries that support cyanobacterial blooms show hepatic lesions that could – partially – be the result of exposure to cyanobacterial toxins.

Macroinvertebrates. Most of the studies on bivalves agree that these animals are quite resistant to different cyanobacterial toxins. This has been shown for freshwater and marine mussels and clams and has been found for hepatotoxins, neurotoxins and CYN. More attention is given to the potential accumulation of toxins in mussels, and especially the risk of vectorial transport to predators (including man). However depuration studies have shown that mussels clear toxins fairly rapidly, so that there is little retention. Nevertheless depuration is seldom complete, and low concentrations may even be carried through to the start of the next cyanobacterial growing season.

Zooplankton. Whenever the ecological significance of cyanobacterial toxins is discussed the primary suggestion is often that they deter grazing by zooplankton. Highly selective grazers like copepods would exert a stronger selection pressure than less selective grazers like Daphnhia, but the study by Kurmayer and Juttner (1999) shows that Daphnia may play a persisting role in the evolution of MC production (see also studies by Jang et al. 2004) who demonstrated that MC concentrations increased up to five-fold when Microcystis was exposed to filtered zooplankton growth medium (Daphnia and Moina spp). The literature concerning the effects of toxic cyanobacteria on zooplankton is extensive (Table A.2 only shows a selection) but there appear to be many contradictions. This is not surprising since there are numerous complicating factors. Furthermore it is now well established that not all toxic effects can be traced back to the well known cyanobacterial toxins like MC. Although work by Rohrlack et al. (2005) has proven decisively that microcystins are toxic, the same work has shown that also the mutant incapable of producing MC has negative effects like inhibition of feeding. Effects of cyanobacterial blooms also exert effects at the community level. Zooplankton community composition may change towards dominance of smaller cladocerans which have a lower grazing pressure. In this way cyanobacterial blooms may stabilize the turbid state on which some of the cyanobacteria like Planktothrix agardhii depend (Scheffer et al. 1997) and interfere with lake restoration. The specific contribution of toxins - as opposed to general negative effects of cvanobacteria - at this high level of integration is unclear however.

Acknowledgments

The authors wish to acknowledge Calvin Walker and Mike Coveney for their comments on the paper.

References

- Agrawal MK, Bagchi D, Bagchi SN (2005) Cysteine and serine proteasemediated proteolysis in body homogenate of a zooplankter, Moina macrocopa, is inhibited by the toxic cyanobacterium, Microcystis aeruginosa PCC7806. Comp Biochem Physiol B–Biochem Mol Biol 141(1): 33–41
- Amorim A, Vasconcelos V (1999) Dynamics of microcystins in the mussel Mytilus galloprovincialis. Toxicon 37(7): 1041–1052
- Babcock–Jackson L, Carmichael WW, Culver DA (2002) Dreissenid mussels increase exposure of benthic and pelagic organisms to toxic microcystins. VerhInternatVereinLimnol 28: 1082–1085
- Baganz D, Staaks G, Steinberg C (1998) Impact of the cyanobacteria toxin, microcystin–LR on behaviour of zebrafish, Danio rerio. Water Res 32(3): 948– 952
- Ballot A, Krienitz L, Kotut K, Wiegand C, Metcalf JS et al. (2004) Cyanobacteria and cyanobacterial toxins in three alkaline rift valley lakes of Kenya – Lakes Bogoria, Nakuru and Elmenteita. J Plankton Res 26(8): 925–935
- Beattie KA, Ressler J, Wiegand C, Krause E, Codd GA et al. (2003) Comparative effects and metabolism of two microcystins and nodularin in the brine shrimp Artemia salina. Aquat Toxicol 62(3): 219–226
- Best JH, Pflugmacher S, Wiegand C, Eddy FB, Metcalf JS et al. (2002) Effects of enteric bacterial and cyanobacterial lipopolysaccharides, and of microcystin–LR, on glutathione S–transferase activities in zebra fish (Danio rerio). Aquat Toxicol 60(3–4): 223–231
- Best JH, Eddy FB, Codd GA (2003) Effects of Microcystis cells, cell extracts and lipopolysaccharide on drinking and liver function in rainbow trout Oncorhynchus mykiss Walbaum. Aquat Toxicol 64(4): 419–426
- Best JH, Eddy FB, Codd GA (2001) Effects of purified microcystin–LR and cell extracts of Microcystis strains PCC 7813 and CYA 43 on cardiac function in brown trout (Salmo trutta) alevins. Fish Physiol Biochem 24(3): 171–178
- Bianchi TS, Engelhaupt E, Westman P, Andren T, Rolff C et al. (2000) Cyanobacterial blooms in the Baltic Sea: Natural or human–induced? Limnol Oceanogr 45(3): 716–726
- Blom JF, Robinson JA, Juttner F (2001) High grazer toxicity of [D-Asp(3) (E)-Dhb(7)]microcystin-RR of Planktothrix rubescens as compared to different microcystins. Toxicon 39(12): 1923–1932
- Bury NR, Eddy FB, Codd GA (1996) Stress responses of brown trout, Salmo trutta L, to the cyanobacterium, Microcystis aeruginosa. Environ Toxicol Water Quality 11(3): 187–193
- Bury NR, Eddy FB, Codd GA (1995) The Effects of the Cyanobacterium Microcystis–Aeruginosa, the Cyanobacterial Hepatotoxin Microcystin–Lr, and Ammonia On Growth–Rate and Ionic Regulation of Brown Trout. J Fish Biol 46(6): 1042–1054
- Carbis CR, Rawlin GT, Grant P, Mitchell GF, Anderson JW et al. (1997) A study of feral carp, Cyprinus carpio L, exposed to Microcystis aeruginosa at Lake

Mokoan, Australia, and possible implications for fish health. J Fish Dis 20(2): 81–91

- Chen J, Xie P (2005) Tissue distributions and seasonal dynamics of the hepatotoxic microcystins–LR and –RR in two freshwater shrimps, Palaemon modestus and Macrobrachium nipponensis, from a large shallow, eutrophic lake of the subtropical China. Toxicon 45(5): 615–625
- Codd GA, Lindsay J, Young FM, Morrison LF & Metcalf J (2005). Harmful cyanobacteria. From mass mortalities to magament measures. Huisman J, Matthijs HCP, Visser PM. Harmful cyanobacteria. Springer (Dordrecht)
- de Magalhaes VF, Soares RM, Azevedo S (2001) Microcystin contamination in fish from the Jacarepagua Lagoon (Rio de Janeiro, Brazil): ecological implication and human health risk. Toxicon 39(7): 1077–1085
- Demott WR (1999) Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. Freshw Biol 42(2): 263–274
- Demott WR, Zhang QX, Carmichael WW (1991) Effects of Toxic Cyanobacteria and Purified Toxins On the Survival and Feeding of a Copepod and 3 Species of Daphnia. Limnol Oceanogr 36(7): 1346–1357
- Ebert D, Lipsitch M, Mangin KL (2000) The effect of parasites on host population density and extinction: Experimental epidemiology with Daphnia and six microparasites. Am Nat 156(5): 459–477
- Engstrom–Ost J, Lehtiniemi M, Green S, Kozlowsky–Suzuki B, Viitasalo M (2002) Does cyanobacterial toxin accumulate in mysid shrimps and fish via copepods? J Exp Mar Biol Ecol 276(1–2): 95–107
- Engstrom J, Koski M, Viitasalo M, Reinikainen M, Repka S et al. (2000) Feeding interactions of the copepods Eurytemora affinis and Acartia bifilosa with the cyanobacteria Nodularia sp. J Plankton Res 22(7): 1403–1409
- Ferrao–Filho AD, Azevedo S (2003) Effects of unicellular and colonial forms of toxic Microcystis aeruginosa from laboratory cultures and natural populations on tropical cladocerans. Aquat Ecol 37(1): 23–35
- Ferrao AS, Azevedo S, DeMott WR (2000) Effects of toxic and non-toxic cyanobacteria on the life history of tropical and temperate cladocerans. Freshw Biol 45(1): 1–19
- Fischer WJ, Dietrich DR (2000) Pathological and biochemical characterization of microcystin- induced hepatopancreas and kidney damage in carp (Cyprinus carpio). Toxicol Appl Pharmacol 164(1): 73–81
- Gray JS (2002) Biomagnification in marine systems: the perspective of an ecologist. Mar Pollut Bull 45(1–12): 46–52
- Gustafson S, Hansson LA (2004) Development of tolerance against toxic cyanobacteria in *Daphnia*. Aquat Ecol 38: 37–44
- Henriksen P, Carmichael WW, An JS, Moestrup O (1997) Detection of an anatoxin–a(s)–like anticholinesterase in natural blooms and cultures of Cyanobacteria/blue–green algae from Danish lakes and in the stomach contents of poisoned birds. Toxicon 35(6): 901–913

- Hietala J, LaurenMaatta C, Walls M (1997) Life history responses of Daphnia clones to toxic Microcystis at different food levels. J Plankton Res 19(7): 917–926
- Ibelings BW, Maberly SC (1998) Photoinhibition and the availability of inorganic carbon restrict photosynthesis by surface blooms of cyanobacteria. Limnol Oceanogr 43(3): 408–419
- Ibelings BW, Bruning K, de Jonge J, Wolfstein K, Pires LMD et al. (2005) Distribution of microcystins in a lake foodweb: No evidence for biomagnification. Microb Ecol 49(4): 487–500
- Jang MH, Ha K, Lucas MC, Joo GJ, Takamura N (2004) Changes in microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish. Aquat Toxicol 68(1): 51–59
- Jos A, Pichardo S, Prieto AI, Repetto G, Vazquez CM et al. (2005) Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions. Aquat Toxicol 72(3): 261–271
- Kankaanpaa H, Vuorinen PJ, Sipia V, Keinanen M (2002) Acute effects and bioaccumulation of nodularin in sea trout (Salmo trutta m. trutta L.) exposed orally to Nodularia spumigena under laboratory conditions. Aquat Toxicol 61(3–4): 155–168
- Kankaanpaa H, Turunen AK, Karlsson K, Bylund G, Meriluoto J et al. (2005a) Heterogeneity of nodularin bioaccumulation in northern Baltic Sea flounders in 2002. Chemosphere 59(8): 1091–1097
- Kankaanpaa HT, Sipia VO, Kuparinen JS, Ott JL, Carmichael WW (2001) Nodularin analyses and toxicity of a Nodularia spumigena (Nostocales, Cyanobacteria) water–bloom in the western Gulf of Finland, Baltic Sea, in August 1999. Phycologia 40(3): 268–274
- Kankaanpaa HT, Holliday J, Schroder H, Goddard TJ, von Fister R et al. (2005b) Cyanobacteria and prawn fanning in northern New South Wales, Australia – a case study on cyanobacteria diversity and hepatotoxin bioaccumulation. Toxicol Appl Pharmacol 203(3): 243–256
- Karjalainen M, Kozlowsky–Suzuki B, Lehtiniemi M, Engström–Ost J, Kankaanpää H, Viitasalo M (in press). Nodularin accumulation during cyanobacterial blooms asnd experimental depuration in zooplankton
- Karjalainen M, Reinikainen M, Lindvall F, Spoof L, Meriluoto JAO (2003) Uptake and accumulation of dissolved, radiolabeled nodularin in Baltic Sea Zooplankton. Environ Toxicol 18(1): 52–60
- Karjalainen M, Reinikainen M, Spoof L, Meriluoto JAO, Sivonen K et al. (2005) Trophic transfer of cyanobacterial toxins from zooplankton to planktivores: Consequences for pike larvae and mysid shrimps. Environ Toxicol 20(3): 354–362
- Karlsson K, Sipia V, Kankaanpaa H, Meriluoto J (2003) Mass spectrometric detection of nodularin and desmethylnodularin in mussels and flounders. J Chromatogr B 784(2): 243–253

- Koski M, Schmidt K, Engstrom–Ost J, Viitasalo M, Jonasdottir S et al. (2002) Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol Oceanogr 47(3): 878–885
- Kotak BG, Zurawell RW, Prepas EE, Holmes CFB (1996a) Microcystin–LR concentration in aquatic food web compartments from lakes of varying trophic status. Can J Fish Aquat Sci 53(9): 1974–1985
- Kotak BG, Semalulu S, Fritz DL, Prepas EE, Hrudey SE et al. (1996b) Hepatic and renal pathology of intraperitoneally administered microcystin–LR in rainbow trout (Oncorhynchus mykiss). Toxicon 34(5): 517–525
- Krienitz L, Ballot A, Kotut K, Wiegand C, Putz S et al. (2003) Contribution of hot spring cyanobacteria to the mysterious deaths of Lesser Flamingos at Lake Bogoria, Kenya. FEMS Microbiol Ecol 43(2): 141–148
- Kurmayer R, Juttner F (1999) Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zurich. J Plankton Res 21(4): 659–683
- LaurenMaatta C, Hietala J, Walls M (1997) Responses of Daphnia pulex populations to toxic cyanobacteria. Freshw Biol 37(3): 635–647
- Lehtiniemi M, Engstrom–Ost J, Karjalainen M, Kozlowsky–Suzuki B, Viitasalo M (2002) Fate of cyanobacterial toxins in the pelagic food web: transfer to copepods or to faecal pellets? Mar Ecol–Prog Ser 241: 13–21
- Lehtonen KK, Kankaanpaa H, Leinio S, Sipia VO, Pflugmacher S et al. (2003) Accumulation of nodularin–like compounds from the cyanobacterium Nodularia spumigena and changes in acetylcholinesterase activity in the clam Macoma balthica during short–term laboratory exposure. Aquat Toxicol 64(4): 461–476
- Li XY, Liu YD, Song LR, Liu HT (2003) Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of micro-cystin–LR. Toxicon 42(1): 85–89
- Li L, Xie P, Chen J (2005) In vivo studies on toxin accumulation in liver and ultrastructural changes of hepatocytes of the phytoplanktivorous bighead carp i.p.–injected with extracted microcystins. Toxicon 46(5): 533–545
- Li XY, Chung IK, Kim JI, Lee JA (2004) Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to Microcystis under laboratory conditions. Toxicon 44(8): 821–827
- Liras V, Lindberg M, Nystrom P, Annadotter H, Lawton LA et al. (1998) Can ingested cyanobacteria be harmful to the signal crayfish (Pacifastacus leniusculus)? Freshw Biol 39(2): 233–242
- Liu YD, Song LR, Li XY, Liu TM (2002) The toxic effects of microcystin–LR on embryo–larval and juvenile development of loach, Misguruns mizolepis Gunthe. Toxicon 40(4): 395–399
- Lurling M (2003) Effects of microcystin–free and Microcystin containing strains of the cyanobacterium Microcystis aeruginosa on growth of the grazer Daphnia magna. Environ Toxicol 18(3): 202–210
- Lurling M, van der Grinten E (2003) Life-history characteristics of Daphnia exposed to dissolved microcystin-LR and to the cyanobacterium Microcystis

aeruginosa with and without microcystins. Environ Toxicol Chem 22(6): 1281-1287

- Magalhaes VF, Marinho MM, Domingos P, Oliveira AC, Costa SM et al. (2003) Microcystins (cyanobacteria hepatotoxins) bioaccumulation in fish and crustaceans from Sepetiba Bay (Brasil, RJ). Toxicon 42(3): 289–295
- Malbrouck C, Trausch G, Devos P, Kestemont P (2003) Hepatic accumulation and effects of microcystin–LR on juvenile goldfish Carassius auratus L. Comp Biochem Physiol C–Toxicol Pharmacol 135(1): 39–48
- Malbrouck C, Trausch G, Devos P, Kestemont P (2004) Effect of microcystin–LR on protein phosphatase activity and glycogen content in isolated hepatocytes of fed and fasted juvenile goldfish Carassius auratus L. Toxicon 44(8): 927–932
- Metcalf JS, Beattie KA, Pflugmacher S, Codd GA (2000) Immuno-crossreactivity and toxicity assessment of conjugation products of the cyanobacterial toxin, microcystin–LR. FEMS Microbiol Lett 189(2): 155–158
- Metcalf JS, Lindsay J, Beattie KA, Birmingham S, Saker ML et al. (2002) Toxicity of cylindrospermopsin to the brine shrimp Artemia salina: comparisons with protein synthesis inhibitors and microcystins. Toxicon 40(8): 1115–1120
- Mohamed ZA, Carmichael WW, Hussein AA (2003) Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ Toxicol 18(2): 137–141
- Negri AP, Bunter O, Jones B, Llewellyn L (2004) Effects of the bloom-forming alga Trichodesmium erythraeum on the pearl oyster Pinctada maxima. Aquaculture 232(1–4): 91–102
- Negri AP, Jones GJ (1995) Bioaccumulation of Paralytic Shellfish Poisoning (Psp) Toxins from the Cyanobacterium Anabaena–Circinalis by the Fresh– Water Mussel Alathyria–Condola. Toxicon 33(5): 667–678
- Nogueira ICG, Saker ML, Pflugmacher S, Wiegand C, Vasconcelos VM (2004) Toxicity of the cyanobacterium Cylindrospermopsis radborskii to Daphnia magna. Environ Toxicol 19(5): 453–459
- Nogueira ICG, Pereira P, Dias E, Pflugmacher S, Wiegand C et al. (2004) Accumulation of Paralytic Shellfish Toxins (PST) from the cyanobacterium Aphanizomenon issatschenkoi by the cladoceran Daphnia magna. Toxicon 44(7): 773–780
- Oberemm A, Becker J, Codd GA, Steinberg C (1999) Effects of cyanobacterial toxins and aqueous crude extracts of cyanobacteria on the development of fish and amphibians. Environ Toxicol 14(1): 77–88
- Ozawa K, Yokoyama A, Ishikawa K, Kumagai M, Watanabe MF et al. (2003) Accumulation and depuration of microcystin produced by the cyanobacterium Microcystis in a freshwater snail. Limnology 4(3): 131–138
- Palikova M, Kovaru F, Navratil S, Kubala L, Pesak S et al. (1998) The effects of pure microcystin LR and biomass of blue–green algae on selected immunological indices of carp (Cyprinus carpio L.) and silver carp (Hypophthalmichthys molitrix Val.). Acta Vet BRNO 67(4): 265–272

- Pereira P, Dias E, Franca S, Pereira E, Carolino M et al. (2004) Accumulation and depuration of cyanobacterial paralytic shellfish toxins by the freshwater mussel Anodonta cygnea. Aquat Toxicol 68(4): 339–350
- Pflugmacher S (2004) Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin–LR. Aquat Toxicol 70(3): 169–178
- Pinho GLL, da Rosa CM, Yunes JS, Luquet CM, Bianchini A et al. (2003) Toxic effects of microcystins in the hepatopancreas of the estuarine crab Chasmagnathus granulatus (Decapoda, Grapsidae). Comp Biochem Physiol C–Toxicol Pharmacol 135(4): 459–468
- Pires LMD, Karlsson KM, Meriluoto JAO, Kardinaal E, Visser PM et al. (2004) Assimilation and depuration of microcystin–LR by the zebra mussel, Dreissena polymorpha. Aquat Toxicol 69(4): 385–396
- Prepas EE, Kotak BG, Campbell LM, Evans JC, Hrudey SE et al. (1997) Accumulation and elimination of cyanobacterial hepatotoxins by the freshwater clam Anodonta grandis simpsoniana. Can J Fish Aquat Sci 54(1): 41–46
- Reinikainen M, Hietala J, Walls M (1999) Reproductive allocation in Daphnia exposed to toxic cyanobacteria. J Plankton Res 21(8): 1553–1564
- Reinikainen M, Lindvall F, Meriluoto JAO, Repka S, Sivonen K et al. (2002) Effects of dissolved cyanobacterial toxins on the survival and egg hatching of estuarine calanoid copepods. Mar Biol 140(3): 577–583
- Rohrlack T, Christoffersen K, Dittmann E, Nogueira I, Vasconcelos V et al. (2005) Ingestion of microcystins by Daphnia: Intestinal uptake and toxic effects. Limnol Oceanogr 50(2): 440–448
- Rohrlack T, Henning M, Kohl JG (1999a) Does the toxic effect of Microcystis aeruginosa on Daphnia galeata depend on microcystin ingestion rate? Arch Hydrobiol 146(4): 385–395
- Rohrlack T, Dittmann E, Henning M, Borner T, Kohl JG (1999b) Role of microcystins in poisoning and food ingestion inhibition of Daphnia galeata caused by the cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 65(2): 737–739
- Rohrlack T, Dittmann E, Borner T, Christoffersen K (2001) Effects of cell-bound microcystins on survival and feeding of Daphnia spp. Appl Environ Microbiol 67(8): 3523–3529
- Rohrlack T, Christoffersen K, Kaebernick M, Neilan BA (2004) Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria. Appl Environ Microbiol 70(8): 5047–5050
- Saker ML, Metcalf JS, Codd GA, Vasconcelos VM (2004) Accumulation and depuration of the cyanobacterial toxin cylindrospermopsin in the freshwater mussel Anodonta cygnea. Toxicon 43(2): 185–194
- Scheffer M, Rinaldi S, Gragnani A, Mur LR, vanNes EH (1997) On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78(1): 272–282
- Sipia VO, Kankaanpaa HT, Pflugmacher S, Flinkman J, Furey A et al. (2002) Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), mussels (Mytilus edulis, Dreissena polymorpha), and clams

(Macoma balthica) from the northern Baltic Sea. Ecotox Environ Safe 53(2): 305–311

- Sipia V, Kankaanpaa H, Lahti K, Carmichael WW, Meriluoto J (2001a) Detection of Nodularin in flounders and cod from the Baltic Sea. Environ Toxicol 16(2): 121–126
- Sipia VO, Kankaanpaa HT, Flinkman J, Lahti K, Meriluoto JAO (2001b) Timedependent accumulation of cyanobacterial hepatotoxins in flounders (Platichthys flesus) and mussels (Mytilus edulis) from the northern Baltic Sea. Environ Toxicol 16(4): 330–336
- Sipia VO, Karlsson KA, Meriluoto JAO, Kankaanpaa HT (2004) Eiders (Somateria mollissima) obtain nodularin, a cyanobacterial hepatotoxin, in Baltic Sea food web. Environ Toxicol Chem 23(5): 1256–1260
- Soares RA, Magalhaes VF, Azevedo S (2004) Accumulation and depuration of microcystins (cyanobacteria hepatotoxins) in Tilapia rendalli (Cichlidae) under laboratory conditions. Aquat Toxicol 70(1): 1–10
- Spoof L (2005). Miocrocystins and nodularins. Meriluoto J and Codd GA. Cyanobacterial monitoring and cyanotoxin analysis. Åbo Akademi University Press
- Svensen C, Strogyloudi E, Riser CW, Dahmann J, Legrand C et al. (2005) Reduction of cyanobacterial toxins through coprophagy in Mytilus edulis. Harmful Algae 4(2): 329–336
- Tencalla FG, Dietrich DR, Schlatter C (1994) Toxicity of Microcystis–Aeruginosa Peptide Toxin to Yearling Rainbow–Trout (Oncorhynchus–Mykiss). Aquat Toxicol 30(3): 215–224
- Thostrup L, Christoffersen K (1999) Accumulation of microcystin in Daphnia magna feeding on toxic Microcystis. Arch Hydrobiol 145(4): 447–467
- Vasconcelos VM, Sivonen K, Evans WR, Carmichael WW, Namikoshi M (1995) Isolation and Characterization of Microcystins (Heptapeptide Hepatotoxins) From Portuguese Strains of Microcystis–Aeruginosa Kutz Emend Elekin. Arch Hydrobiol 134(3): 295–305
- Vasconcelos V, Oliveira S, Teles FO (2001) Impact of a toxic and a non-toxic strain of Microcystis aeruginosa on the crayfish Procambarus clarkii. Toxicon 39(10): 1461–1470
- Vinagre TM, Alciati JC, Regoli F, Bocchetti R, Yunes JS et al. (2003) Effect of microcystin on ion regulation and antioxidant system in gills of the estuarine crab Chasmagnathus granulatus (Decapoda, Grapsidae). Comp Biochem Physiol C–Toxicol Pharmacol 135(1): 67–75
- Ward CJ, Codd GA (1999). Comparitive toxicity of four microcystins of different hydrophobicities to the protozoan Tetrahymena pyriformis. J. Appl. Microbiol. 86: 874–882
- Wiegand C, Pflugmacher S, Oberemm A, Meems N, Beattie KA et al. (1999) Uptake and effects of microcystin–LR on detoxication enzymes of early life stages of the zebra fish (Danio rerio). Environ Toxicol 14(1): 89–95
- Wilde SB, Murphy TM, Hope CP, Habrun SK, Kempton J et al. (2005) Avian vacuolar myelinopathy linked to exotic aquatic plants and a novel cyanobacterial species. Environ Toxicol 20(3): 348–353

- Williams DE, Craig M, Dawe SC, Kent ML, Holmes CFB et al. (1997) Evidence for a covalently bound form of microcystin–LR in salmon liver and dungeness crab larvae. Chem Res Toxicol 10(4): 463–469
- Work KA, Havens KE (2003) Zooplankton grazing on bacteria and cyanobacteria in a eutrophic lake. J Plankton Res 25(10): 1301–1306
- Xie LQ, Xie P, Ozawa K, Honma T, Yokoyama A et al. (2004) Dynamics of microcystins–LR and –RR in the phytoplanktivorous silver carp in a sub–chronic toxicity experiment. Environ Pollut 127(3): 431–439
- Xie LQ, Xie P, Guo LG, Li L, Miyabara Y et al. (2005) Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Environ Toxicol 20(3): 293–300
- Yokoyama A, Park HD (2003) Depuration kinetics and persistence of the cyanobacterial toxin microcystin–LR in the freshwater bivalve Unio douglasiae. Environ Toxicol 18(1): 61–67
- Zambrano F, Canelo E (1996) Effects of microcystin–LR on the partial reactions of the Na+– K+ pump or the gill of carp (Cyprinus carpio linneo). Toxicon 34(4): 451–458
- Zurawell RW, Kotak BG, Prepas EE (1999) Influence of lake trophic status on the occurrence of microcystin–LR in the tissue of pulmonate snails. Freshw Biol 42(4): 707–718

as µg g DW-1. Cc plication by 1/0.52 ity of studies only found). Concentral in natural waters o	nversion of we nversion of we (6 {Winberg, 1! used MC–LR ion in the 'sou r cyanobacteria	t weight to dry w 771). Ash conten as a standard in cce' applies to ei in the seston. Fo	ial toxins in a rang veight in animals u t of DW is neglect HPLC. Concentra ther purified toxin or abbreviatons see	e of aquatic b ising a factor (ed. MC is con tions are usua (experiments) 'list of abbrev	ota. Where of 0.1 and c amonly exp lly presente cultured c riations'.	possible concentrations are expressed onversion of C to DW requires multi- ressed as MC–LR eq, since the major- id as a range (lowest – highest values ells of cyanobacteria, dissolved toxins
Organism	Toxin	Exposure route	Conc. in organism (µg g ⁻¹ DW)	Conc. in source (µg g ⁻¹ DW)	Analysis method	Remark Reference
BIRDS (i) coots (Fulica atra) (ii) grebes (Podiceps nigricollis, P. cristatus)	ANA(a-s), MC	Natural routes: feeding in foodweb from lake with Anabaena bloom	(j) ANA - Coot: 0.021 Grebe: 0.90 (ii) MC - 0.0005-0.001	ANA: 4-3300 MC: 0.1-0.9	ELISA (MC) AChE assay (ANA)	 (i) Anabaena and its toxin Henriksen et al, 1997 found in stomach birds: cyanobacterial toxicosis? (ii) ratio ANAeq : MCeq 40 to > 1000
Lesser flamingo (Phoeniconaias minor)	MC-LR, RR, LF and YR, ANA(a)	Feeding on mats of cyanobacteria, as well as on plank- tonic Arthrospira	 (i) stomach: MC 1.96 (all 4 vari- ants); ANA 43.4 (ii) intestines: MC 0.36 (MC-LR only); ANA 7.62 (iii) faeces: MC 0.48 (all but MC- LF); ANA 2.45 	(i) mats - MC: 221-845 ANA: 10-18 (ii) plankton – MC: max 4600 ANA: max 223	HPLC, MALDITOF- MS	 (i) intoxication birds Krienitz et al, 2003; likely but lack of relevant Ballot et al, 2004 data on susceptibility (ii) multiple stress factors

Appendix A

Eider (Somateria mol- N lissima) FISH	ODLN	Feeding on mussels in Baltic sea	(i) 0.003-0.18 (ii) 0.1-5.8 μg per liver	ELISA and LC-MS		Sipiä et al, 2004
Round goby (NeogobiusM melanostomus)	Ŋ	Natural routes in lake	Goby liver: 0.6-3.0 91-820			Babcock-Jackson et al, 2002
Sticklebacks N (Gasterosteus aculeatus)	ODLN	Feeding on cope- pods pre-exposed to cyanobacteria	(j) 0.15 (ELISA) (ji) 0.8 (PPase)	ELISA and PPase assay		Ensgtröm-Öst et al, 2002
 (i) perch (Percia fluvi- M atilis) (ii) ruffe (Gymnocepha- lus cernuus) (iii) smelt (Osmerus ep- erlanus) 	2	Natural routes in lake foodweb	(i) perch liver: 17-51 7-3912 (ii) ruffe liver: 9-194 (iii) smelt liver: 59-874	HPLC	Apparent biomagnifica- tion based upon skewed representation	Ibelings et al, 2005
(i) silver carp (Hy- M pophthalmichthys mo- litrix), (ii) Carassius gibelio	IC-LR; MC-RR	Feeding on Micro- cystis cells	(i) homogenized tis- sues: < 5 (H. molitrix) < 0.8 (C. gibelio) (ii) faeces: 11 - 46 (H. molitrix) 21 (C. gibelio)		MC-RR levels in tissues >> MC-LR	Jang et al, 2004
Sea trout (Salmo trutta) N	NJOO	Gavage with single dose of Nodularia	(j) liver. 0.019-1.2; max 1.6 (ii) muscle: max. 0.125	ELISA and HPLC	Single oral dose: loss liver architecture 1-2d, partial recovery 4-8 d, complete after 8 d: damage reversi- ble	Kankaapää et al, 2002
Flounder (Platichthys N flesus)	ODLN, MC	Feeding on mussels in Baltic sea	(j) 0.02-0.1 TEH pre- bloom exposure (ii) 0.02-2.23 TEH (ELISA) (iii) nd-0.47 (LC-MS)	ELISA and LC-MS	 (i) NODLN variable be- tween individuals: peak conc. in sub-populations (ii) 50% livers small scale necrosis 	Kankaapää et al, 2005a

Flounder (Platichthys	NODLN	Natural routes in sea	aLiver: 0.82-6.37		LC-MS	No biotransformation	Karlsson et al, 2003
flesus)						products (e.g. glutathione adduct) found	
(i) northern pike (Esox lucieus(ii) white sucker (Ca-	MC	Feeding on MC containing prey (i.a. gastropods)	Liver: not detected	$1.2-6.1 \ \mu g \ L^{-1}$	HPLC		Kotak et al, 1996a
tostomus comersonii)		- - -					
Carp (Cyprinus carpio)	MC	Feeding on Micro- cystis scum in tanks	(i) hepatopancreas: 2.6(ii) muscle: 0.4				Li et al, 2004
Tilapia rendalli	MC	Natural routes in lake	 (i) viscera: 0 - 67.8 (ii) liver: 0 - 31.1 (iii) muscle: 0.003 - 0.026 	тах. 980 µg L ⁻¹	HPLC, ELISA	MC found in 75 % fish samples	Magalhães et al, 2001
Fish (unspecified)	MC	Natural routes in lake	Muscle: 0.01 – 0.4	$0.12-0.78 \mu g L^{-1}$	ELISA		Magalhães et al, 2003
Goldfish (Carassius au- ratus)	MC-LR	IP injection	Liver: 0.5 - 3		PPase	Time course accumulation] (first 48 h), depuration (48-96 h); patterns not af- fected by fastening	Malbrouck et al, 2003, 2004
Tilpapia (Oreochromis niloticus)	MC	On fish-farm to Mi- crocystis bloom	 (i) gut: 1.8 - 8.3 (ii) liver: 4.1 - 5.3 (iii) kidney: 3.6 - 4 (iv) muscle: 0.4 - 1.0 	1120	ELISA	At times MC in liver > gut	Mohamed et al, 2003
Flounder (Platichthys flesus)	NODLN and MC	Natural routes in Baltic sea	Max 0.4 (TEH)	150-8700 THE; < 2400 NODLN	ELISA and MALDI- TOF-MS		Sipiä et al, 2001, 2002
Tilapia rendalli	MC	 (i) Feeding on Mi- crocystis cells + fish food; one exp cells disrupted prior feed- ing 	 (i) liver: 2.8 (ii) muscle: 0.08 (iii) faeces: 0.07 (all max values) 	14.6	ELISA	(i) 15 or 42 d exposure (ii) accumulation MC less in presence alternative food (iii) depuration phase: only small percentage MC removed	Soares et al, 2004

Silver carp (Hy- pophthalmichthys mo- litrix)	MC-LR and RR	Feeding on Micro- cystis bloom in tanks	 (i) faeces: 44.5; MG MC-LR:RR = 0.75 MG (ii) intestines: 49 - 115; 0.5 MC-LR:RR = 0.17 (iii) blood (MC-RR): 0.4 - 50 (iv) liver (MC-RR): 8 - (iv) liver (MC-RR): 8 - (v) muscle (MC-RR): 0.5 - 1.4 	2: 286–866; 5-LR:RR = 7	PPase	 (i) in the various tissues and organs always MC- RR found, rarely MC-LR (ii) active degradation of MC-LR during digestion (?) 	Xie et al, 2004
Various fish species: phytoplanktivorous (Hypophthalalmichthys molitrix), herbivorous (Parabramis pekinen- sis), omnivorous sis), omnivorous (Carassius auratus), car- nivorous (Culter ilishae- formis)	MC-LR and RR	Natural routes in lake	(i) intestines: 22 (26 % 24(LR) (ii) blood: 14.5 (45 % LR) (iii) liver: 7.8 (iv) bile 6.3 (48 % LR) (v) kidney: 5.8 (30 % LR) LR) LR	0	HPLC	 (i) MC in carnivorous > omnivorous > phytoplank- tivorous fish (ii) fish at top of foodweb most at risk; general ten- dency MC to accumulate up the foodchain 	
Salmon (Salmo salar)	MC-LR	IP injection	(i) 2.6 - 263 (MeOH) (ii) 138 - 1181 (Le- mieux)		(i) PPase after MeoH ex- tract. (ii) Le- mieux (GC- MS)	Covalently bound MC made up ~ 74 % of total	Williams et al, 1997a
MACROINVERTEBR Mytilus galloprovin- cialis	MC	Grazing on Micro- (cystis cells	 (i) mussel: 10.7 during 3.4 accumulation rising to max of 16 on day 2 de- puration (ii) faeces: 140 	·μg / 10 ⁷ cells	ELISA	(i) no mussel mortality(ii) during depuration ini- tial increase, followed de- crease MC	Amorim & Vasconcelos (1999)
Zebra mussels (Dreissena polymorpha)	MC	Natural routes in lake	0.2 91-	-820			Babcock-Jackson et al, 2002

 (i) Proportion of MC-LR Chen & Xie, 2005 of total MC varied with type of tissue and the species; ratio of MC-LR. LR:MC: P. modestus decreased gonad (94 %) > stomach (61 %) > eggs (56 %) > HP (30 %) > muscle (5 %) > HP (30 %) > muscle (5 %) > HP (30 %) > cggs (39 %) > M. miponensis: stomach (71 %) > muscle (48 %) > HP (39 %) > cggs (39 %) > %) > gonad (57 %) > muscle (100 %) > nutestine (68 %) > stom-ach (58 %) > gonad (57 %) > 	modestus), i.e.MC trans- ferred to offspring MC hepatopancreas > di- Chen & Xie, 2005 gestive track: selective bioaccumulation?
LC-MS	HPLC
 (i) P.modestus - stomach: 4.53 hepatopancreas: 4.29 gonads: 1.17 eggs: 2.34 muscle: 0.13 gills: 0.51 (ii) M. nipponensis - stomach: 2.92 hepatopancreas: 0.53 gonads: 0.48 eggs: 0.27 muscle: 0.04 gills: 0.05 (iii) P. clarkia - stomach: 9.97 hepatopancreas: 0.08 gonads: 0.93 muscle: 0.05 gills: 0.27 	 (i) digestive track: 0.8- 240 4.54 -MC LR:RR=0.44 (ii) HP: 1.06-7.42 - LR:RR = 0.63 (iii) gonad: 0-2.62 - LR:RR=0.96 (iv) foot: 0.01
Natural routes in lake	Natural routes in lake
MC-LR and RR	MC-LR and RR
(i) freshwater shrimps (Palemon modestus; Macrobrachium nippo- nensis) (ii) red swamp crayfish (Procambarus clarkii)	Freshwater snail (Bellamya aeruginosa)

Zebra mussels MC-LR (Dreissena polymorpha)	Feeding on toxic Microcystis cells	 (i) 11 – feeding solely Microcystis (ii) 3.9 feeding on mix- ture Microcystis and green algae 	3.1	LC-MS; MMPB	 (i) maximum share covalently bound MC 38 % to- tal (ii) only 0.5 % offered MC found in mussels (iii) rapid depuration, after 3 wk nearly complete 	Dionisio Pires et al, 2004 r
Mysid shrimp (Mysis NODLN relicta)	Feeding on cope- pods pre-exposed to cyanobacteria	(i) 0.74 (ELISA) o (ii) 0.52 (PPase)		ELISA and PPase	 (i) time dependent accu- mulation in shrimps, not in fish (results ELISA) (ii) copepods as vectors to higher trophic levels 	Ensgtröm-Öst et al, 2002
Zebra mussels MC (Dreissena polymorpha)	Natural routes in lake foodweb	1-30	7-3912	HPLC		Ibelings et al, 2005
Black tiger prawns MC, NODLA (Penaeus monodon)	 I (i) natural routes in ponds (ii) oral uptake NODLN via food in experiments (iii) injection MC-LR 	 (i) ponds - HP (TEH) 0.006-0.08 (ii) experiment n(NODLN) - brain and heart: 0.36 hPP: 0.25 (0.83 peak level) gut: 0.1 gut: 0.1 gult: 0.14 muscle: 0.01 (ii) experiment (MC) - HP: 0.130 (neak) 	(i) ponds: TEH: 1.2 (ii) exp: 10 μg kg bw ¹	ELISA; HPLC	Rapid depuration from prawns	Kankaanpää et al, 2005b
Baltic Sea zooplankton: NODLN Acartia tonsa, Eurytemora affinis, Strombium sulcatum	Exposure to dis- solved NODLN (³ H- dihydronodularin)	A. tonsa: 0.37 µg g ⁻¹ C E.affinis: 0.60 S. aulcatum: 1.55	5 μg L ^{-I}		 (i) minimum BCF 12 - 18 for copepods; (ii) max BCF ciliate 22 (iii) possible vectorial transport with significant sublethal effects 	Karjalainen et al, 2003

(i) pike larvae (Esox lucius) (ii) mysid shrimps	NODLN	Fed with zooplank- ton pre-exposed to (i) Nodularia extract	(i) pike larvae (12h): 0.47 (ii) Neomysis: (12h):			Only 0.12 (pike) and 0.03 Karj % (shrimps) of ingested toxin was detected in	ialainen et al, 2005
(Neomysis integer)		(ii) purified NODLN (20 μg L ⁻¹)	0.31			animals	
Gastropods (Lymnea stagnalis, Helisoma trivolis, Physa gyrina)	MC	Grazing on (settled) lake phytoplankton	11 – 121	$\begin{array}{l} 1.2-6.1 \ \mu g \ L^{-1} \\ \sim 1220 \ \mu g \ g^{-1} \\ DW \end{array}$	HPLC	MC in seston not ex- Kota pressed on DW basis	ak et al, 1996a
Baltic clam (Macoma balthica)	NODLN	Exposure to dis- solved toxin and Nodularia cells in tanks	0.16 - 16.6 (24 h) – 30.3 (96 h) (TEH); < 5 % of this NODLN	10-50 μg L ⁻¹ (cells) 4-20 μg L ⁻¹ (dis- solved)	ELISA, HPLC, MALDI- TOF-MS	No NODLN-GSH conju- Lehtt gates detected	tonen et al, 2003
Signal crayfish (Paci- fastacus leniusculus)	MC	Exposure to toxic and non toxic Planktothrix agardhii	MC present but not quantified	3610		 (i) crayfish ingested 430 Liras µg MC – no effects (ii) possible vectorial transport to fish, birds, mink 	s et al, 1998
Crab (unspecified)	MC	Natural routes in lake	Muscle: 0.02 – 1.0	$0.12 - 0.78 \ \mu g \ L^{-1}$	ELISA	Mag	galhães et al, 2003
Freswhater mussel (Alathyria condola)	PST	feeding on toxic Anabaena	5.7	1580		Negr	ri & Jones, 1995
Pearl oyster (Pinctada maxima)	SAX	(i) natural routes in	0.73 in viscera diseased	Not detectable	HPLC; mouse assav: sodium	no mortality juvenile oys- Negr	ri et al, 2004
((ii) exposure juve-			channel and		
		nile oyster to Trichodesmium			saxiphilin binding assay		

						1
 freshwater snail Sinotaia histrica) freshwater clam Corbicula sandai) 	MC-LR and RR	 (i) natural routes in (i) S. histrica (lake) lake intestine 2.7 - 19.5 (ii) feeding on toxic (MC-LR + RR) Microcystis cells in HP 0 - 3.2 exp. (MC-RR only) (ii) C. sinai: nd (iii) S. histrica (exp.) HP max. 436 	51.8 – 284 H (lake) 20.1 µg L ⁻¹ (exp.)	PLC	 (i) lag phase in depuration Ozawa et al, 2003 from snail tissue; biologi- cal half life 8.4 d (ii) MC in lake snail still present next spring 	
Freshwater mussel (Anodonta cygnea)	PST	Feeding on toxic 0.26 Aphanizomenon - accumulation 14d, depuration 14d	1.9-2.6 H	PLC	 (i) Anodonta exposed to Pereira et al, 2004 1.4e⁹ cells L⁻¹ d⁻¹, removed 65 % these; clear- ance rate negatively re- lated to PST content (ii) slow-fast-slow depura- tion; s-shaped kinetics (8.2 % d⁻¹) 	
Freshwater clam (Ano- donta grandis)		 (i) exposure dis- Viscera 0.59 solved MC (i) gills 0.31 (ii) natural routes in (ii) muscle 0.36 lake 	MC 51-55 µg L ⁻¹ dissolved up to 8.3 µg L ⁻¹ in lake		 (i) toxin burden evenly Prepas et al, 1997 distributed over three body parts (ii) rapid depuration first 6d (~70% gone), stable for 15d afterwards (iii) suggestion of bioconcentration 	

Freshwater mussel (Anodonta cygnea)	CYN	Feeding on Cylin- (i) haemolymph 61.5 drospermopsis cul- (= 408 µg L ⁻¹) ture (ii) viscera: 5.9 (iii) mantle: 0.13 (iv) foot + gonads: 0.75 (v) whole body extract: 2.9 (all maximum conc. af- ter 10-16 d accumula- tion)	14-90 µg L'	HPLC	 (i) no adverse effects on mussels despite bioac- cumulation CYN in haemolymph to conc. higher than in water (ii) bi-phasic depuration, increase in CYN content from day 22-28 	Saker et al, 2004
Blue mussel (Mytilus	NODLN	Natural routes in the Max 2.15	Max 2400			Sipiä et al, 2001
(i) balthic clam (Macoma balthica) (ii) blue mussel (Myti- lus edulis)	NODLN and M	c Natural routes in the (i) mussels 1.5 (max of the sea TEH) sea (ii) clams 0.1-0.13	150-8700	ELISA and MALDI- TOF-MS	 (i) NODLN-GSH conju- gates confirmed with MS (ii) mussels MC 30 fold increase summer (iii) time lagged accumu- lation doen sites 	Sipiä et al, 2002
Blue mussels (Mytilus edulis)	NODLN	 (i) grazing on Nodu-(i) Mussels pre- laria exposure to Nodularia: 1 (ii) coprophagy (ex- 0.05-0.1 posure to feces of (ii) Mussels grazing on mussels grazing on Nodularia - Nodularia) digestive track 245 body 80 digestive track 245 body 80 gills 2 (iii) feces when feed- ing on Nodularia 95 (iv) Body after copro- phagy 0.065 (v) Feces coprophagy 1 (vi) Pf from (ii) 714 	Nodularia cul- ture 16 μg L ⁻¹	LC-MS	(i) high NODLN in PF in- dicative of selective feed- ing; (ii) cells Nodularia in PF may survive but growth inhibited	Svensen et al, 2005

Mytilus galloprovin- cialis	MC-LR	Grazing on Micro- cystis cells	10.5 (of which 96 % in 28 μg 10 ⁸ c digestive gland + stom- ach)	cells ⁻¹	Depuration bi-phasic and Vasconcelos I fairly rapid (13d)	995
Crayfish (Procamabarus clarkia)	MC	Feeding on toxic (and non toxic) Mi- crocystis cells	2.9 (max after 11 d), 2300 of which 53 % in intes- tine, 38 % HP and 9 % rest body	ELISA	Juvenile crayfish en- hanced mortality on non- toxic Microcystis: com- pounds other than MC more relevant to inverte- hrates (?)	t al, 2001
Dungeness crab larvae (Cancer magister)	MC-LR	Natural routes in foodweb	(i) 0.006 (after MeOH extraction) (ii) 84.4 (after Le- mieux)	(i) PPase afte MeoH ex- tract. (ii) Le- mieux (GC- MS)	r 10.000 fold greater MC Williams et al, concentration using MMPB after Lemieux ex- traction	1997a
Blue mussel (Mytilus edulis)	MC-LR	 (i) feeding on toxic Microcystis cells (ii) natural routes in foodweb 	 (i) 3369 decreasing to 113 after 4 d depuration (Lemieux) (ii) 2 - dropping to 0.14 over 53 d depuration (MeOH) 	(i) PPase afte MeoH ex- tract. (ii) Le- mieux (GC- MS)	rLess than 0.1 % of MC Williams et al, extractable with MeOH	, 1997b
Freshwater snail (Bellamya aeruginosa)	MC-LR, RR		(i) HP 1.06-7.42 (ii) digestive track 0.8- 4.54 (iii) 50nad 0-2.62 (iv) foot 0-0.06 (MC- LR only)	HPLC, LC-MS	 (i) bioaccumulation in HP Xie et al, 2005 (ii) ratio LP:RR increased from digestive track to HP to gonad (iii) suggestion LR more resistant to deg- radation? 	
Freshwater mussel (Unio douglasiae)	MC-LR	Exposure to Micro- cystis cells	HP: 27 - 50 µg (i) at 15 oC - 130 (ii) at 25 °C - 250		 (i) accumulation tempera- Yokoyama & 1 ture dependent (2003) (ii) depuration relatively fast; but slower at 15 than 25 °C; halted in winter (iii) no adverse effects on mussels 	Park

Pulmonate snails MC (Lymnea stagnalis, Helisoma trivolis, Physa gyrina) ZOOPLANKTON	Natural exposure in Up to 144 lakes of varying trophic status	0 – 1526 HPLC	Possible uptake routes via Zurawell et al, 1999 food and directly from water
Echinogammarus MC ischnus	Natural routes in 2 lake	91-820	Exposure of this detrivore Babcock-Jackson et al, via pseudofaeces Dreis- 2002 sena?
Community of different MC spp, i.a. Daphnia galeata	Natural routes in 0-1352 lake	HPLC	Ibelings et al, 2005
 (i) calenoid copepods NODLN (Eurytemora affinis, Acartia tonsa) 	Uptake of dissolved (i) E.affinis 1.14 NODLN from water(ii) A. tonsa 0.66 during 15 min - 6 d (iii) S. sulcatum 4.8	$5 \mu g L^{-1}$	(i) BCF copepods 12-18 Karjalainen et al, 2005(ii) ciliate 22(iii) vectorial transport to
(ii) ciliate (Strombidium sulcatum)	(maxima)		shrimps and planktiv. fish
Community of different MC spp., a/o Daphnia pulex	Grazing on lake Up to 67 phytoplankton	$1.2 - 6.1 \ \mu g \ L^{-1} \ HPLC$	Kotak et al, 1996
(i) Thamnocephalus, MC platyurus	(i) grazing on mix- tures of Cryptomo-	4.7 ng MC-LR HPLC per µg C ⁻¹	Kurmayer & Jüttner, 1999
(ii) Eudiaptomus gracili, (iii) Daphnia hyaline (iv) Cvelons abyssonum	nas and Planktothrix (ii) Planktothrix at 0 05 or 0.1 mg C. L. ⁴		
	- MC(+) or MC(-)		

emora affinis) fart and non-toxic 0.025 ng copepod' fart and non-toxic 0.025 ng 0.005 (0.10) (i) natural seston 0.007 (ELISA) (i) natural seston 0.007 (ELISA) (ii) natural seston 0.007 (ELISA) (ii) natural seston 0.007 (ELISA) (iii) na cute effects on 0.067 (iii) no acute effects on 0.067 (iv) vectorial transport to (iv) vector to	lanoid copepod (Eu-	NODLN	(i) feeding on Nodu	(i) fed with Nodularia:	ELISA and	(i) lower conc. when fed	Lehtiniemi et al, 2002
(i) natural seston 0.007 (ELISA) (ii) natural seston 0.007 (ELISA) (iii) 0.0005 to 0.101 (iii) (2005 to 0.101 (iii) teacul but not significant (iii) no acute effects on 0.0055 (iii) teach but not significant (iii) no acute effects on 0.0055 (iv) vectorial transport to (iv) vectorial parts over over over (iv) vectorial parts over over over over over (iv) vectorial parts over over over over over over over over	mora affinis)		laria and non-toxic flagellates	0.032 ng copepod ⁻¹ (background) rising to	PPase	with natural seston (dominated by non-tox	
$ \begin{array}{c} \label{eq:constraint} \label{eq:constraint} \\ \mbox{min} magna \\ \mbox{min} magna \\ \mbox{min} \\ \mbox{min} \\ \mbox{min} magna \\ \mbox{min} \\ $			(ii) natural seston	0.007 (ELISA) (ii) 0.0095 to 0.101		Aphanizomenon) (ii) ELISA and PPase dif-	
$ \begin{array}{ccccc} & (ii) \ facael \ pellets - & (ii) \ no \ actre \ effects \ on \ copeold \ despite \ accumulation \ reg \ pellet' \ (ELSA) \\ & (iv) \ den \ 0.0050 \\ & (iv) \ copeold \ despite \ accumulation \ facael \ pellets \ low \ on \ $				(PPase)		ferent but not significant	
nin magnaPST0.0067 ng peller ¹ (ELISA) (iv) vectorial transport to (iv) vectorial transport to (iv) vectorial transport to foodwebcopposis despite accumu- lationhnia magnaPST(i) grazing on (i) yestine ontent feacil phanizonono 0.065, 0.378 pmol PST 1170 pmol mL ⁻¹ (ii) yesphilzed ma-1)i) vectorial transport to foodwebhnia magnaPST(i) grazing on foodweb(i) eelles 643- pmol mL ⁻¹ HPLC-FLDBioaccumulation factor > Nogueira et al, 2004hnia magnaCYN(i) yesphilzed ma-1) for 12h feeding(ii) yesphilzed ma-1) intracelular HPLC-MSBioaccumulation factor > Nogueira et al, 2004(b) rotor intracelular HPLC-MSBioaccumulation factor > Nogueira et al, 2004(b) rotor intracelular HPLC-MShnia magnaCYNGrazing or Cylin- drospermopsis(i) 0.020 ng animal ⁻¹ toxin 129.6- toxin 129.6- toxin 124.4-Bioaccumulation factorshnia magnaCYN(ii) yesphilzed ma-1 toxin 129.6- toxin 124.4-(ii) extracelular toxin 124.4-hnia magnaCYN(ii) yesphilzed ma-1 toxin 124.4-(ii) extracelular toxin 124.4-hnia magnaCYN(ii) sectoreclular toxin 124.4-(ii) extracelular toxin 124.4-hnia magnaCYN(ii) toxin 124.4-(ii) toxic for soleforcrease in time)(iii) toxin 124.4-(iii) toxic for soleforcrease in time)(iii) toxic CYN(iii) toxic CYNforcrease in time)(iii) toxic CYNforcrease in time)(iii) toxic CYNforcrease in time)(iii) toxic CYNf				(iii) feacal pellets -		(iii) no acute effects on	
Image of the transmissionImage of the transmissionImage of the transmissionInit mageFST(i) grazing on(i) exposure Apha:(i) colive(i) init magnaFST(i) grazing on(i) exposure Apha:(i) colive(i) grazing on(i) exposure Apha:(i) colive(i) vortio or the freeding(i) pophilized mail(i) exposure Apha:(i) colive(i) vortio or the coprophagous animals(i) transmission0.065-0.378 pmol prst(i) routio or the coprophagous animals(i) transmission0.065-0.378 pmol prst(i) routio or the coprophagous animals(ii) transmission(ii) transcellular(ii) transcellular1 after 12h feeding(ii) transmission or Cylin-(i) 0.025 ng animal'(ii) transcellular1 after 12h feeding(iii) transcellular(ii) transcellular19.6-smaller than unity: 0.71(iii) transcellular(ii) transcellular(ii) extracellular(ii) extracellular(iii) transcellular(ii) transcellular(ii) extracellular(ii) extra the numity: 0.71(iii) transcellular(ii) transcellular(iii) transcentular(iii) transcentular <t< td=""><td></td><td></td><td></td><td>0.0067</td><td></td><td>copepods despite accumu</td><td></td></t<>				0.0067		copepods despite accumu	
Inia magnaPST(i) grazing on (i) yophilized ma- (ii) yophilized ma- (iii) yophil				ng pellet ' (ELISA)		lation	
hia magna PST (i) grazing on (i) exposure Apha: (i) cellis. 643- HPLC-FLD Bioaccumulation factor > Nogueira et al, 2004 Aphanizomenon 0.065-0.378 pmol PST 1170 pmol mL ⁻¹ ciprophagous animals (i) lyophilized ma- (ii) exposure lyophi (i.) lyophilized ma- (ii) exposure lyophi terial (1 mg mL ⁻¹) mimal ⁻¹ (ii) lyoph: 2745 (ii) lyophilized ma- (ii) exposure lyophi terial (1 mg mL ⁻¹) lized material: 0.007 finita magna CYN Grazing on Cylin (0.025 ng animal ⁻¹ (i) intracellular HPLC-MS Bioaccumulation factors Nogueira et al, 2004(b) architecture (1 mg mL ⁻¹) lized material: 0.007 finita magna CYN (ii) 0.020 ng animal ⁻¹ 236.4 ng mL ⁻¹ for strateclular (i) evels not high enough to intracellular (interse in the line) indicate bioaccumulation finite bioacumulation finite bioaccumulation finite				(iv) idem 0.0050 (PPase)		(iv) vectorial transport to foodweb	
hnia magna PST (i) grazing on (i) exposure Apha: (i) cells: 643- HPLC-FLD Aphanizomenon 0.065-0.378 pmol PST 1170 pmol mL ⁻¹ Bioaccumulation factor > Nogueira et al, 2004 $(1.2e^6 \text{ cells mL}^{-1})$ animal ⁻¹ (ii) lyophi. 2745 (ii) lyophilized ma- (ii) exposure lyophi pmol mL ⁻¹ (ii) lyophi 2745 (ii) lyophilized ma- (ii) exposure lyophi pmol mL ⁻¹ $(1.2e^6 \text{ cells mL}^{-1})$ azimal ⁻¹ (ii) lyophi 2745 (ii) lyophilized ma- (ii) exposure lyophi pmol mL ⁻¹ terial (1 mg mL ⁻¹) lized material: 0.007 Grazing on Cylin- (i) 0.025 ng animal ⁻¹ (in tracellular HPLC-MS Bioaccumulation factors Nogueira et al, 2004(b) strains (+/- CYN) (ii) 0.020 ng animal ⁻¹ (236, 4 ng mL ⁻¹ (24, h) and 0.46 (48, h); (ii) total CYN (iii) to				(acr 11)		(v) toxin content feacal	
huia magna PST (i) grazing on (i) exposure Apha: (i) cells: 643- HPLC-FLD Bioaccumulation factor > Nogueira et al, 2004 Aphanizomenon 0.065-0.378 pmol PST 1170 pmol mL ⁻¹ Bioaccumulation factor > Nogueira et al, 2004 (1.2e ⁶ cells mL ⁻¹) animal ⁻¹ (ii) lyophi. 2745 (ii) lyophilized ma- (ii) exposure lyophi- terial (1 mg mL ⁻¹) lized material: 0.007 Grazing on Cylin- (i) 0.025 ng animal ⁻¹ (i) intracellular HPLC-MS Bioaccumulation factors Nogueira et al, 2004(b) drospermopsis (24 h) (i) intracellular HPLC-MS Bioaccumulation factors Nogueira et al, 2004(b) strains (+/- CYN) (ii) 0.020 ng animal ⁻¹ 236.4 ng mL ⁻¹ (24 h) and 0.46 (48 h); (increase in time) (increase in time) (increas						pellets low: no vector to	
hnia magnaPST(i) grazing on (i) grazing on (i) grazing on (i) yophilized ma- (ii) yophilized ma- (iii) yophilized ma- (ii) with magna(i) cells: 643- (ii) HPLC-MSHPLC-FLD Bioaccumulation factor > Nogueira et al, 2004(b) maller than unity: 0,71 (i) 0.025 ng animal' drospermopsis(i) exposure lyophilicad ma- (i) yophilized ma- (i) yophilized ma- (i) 0.025 ng animal' (ii) normal' (ii) extracellular (ii) extracellular (ii) extracellular (ii) extracellular (ii) extracellular (ii) extracellular (ii) extracellular (ii) extracellular (ii) extracellular (ii) extracellular (iii) e						coprophagous animals	
hnia magna CYN CYN Grazing on Cylin- (i) lyophi. 2745 (ii) lyophilized ma- (ii) exposure lyophi- terial (1 mg mL^{-1}) lized material: 0.007 Grazing on Cylin- (i) 0.025 ng animal ⁻¹ drospermopsis (24 h) strains (+/- CYN) (ii) 0.020 ng animal ⁻¹ $236.4 \mathrm{mg} \mathrm{mL}^{-1}$ (24 h) and 0.46 (48 h); (ii) extracellular toxin 12.4 - toxin 12.4 - indicate bioaccumulation (iii) total CYN 234.2 - 278.4	hnia magna	PST	(i) grazing on Aphanizomenon	(i) exposure Apha: 0.065-0.378 pmol PST	(i) cells: 643- HPLC-FLD 1170 pmol mL ⁻¹	Bioaccumulation factor > 1 after 12h feeding	Nogueira et al, 2004
mia magna CYN Grazing on Cylin- (ii) kopohilized ma- (ii) exposure lyophi- terial (1 mg mL^{-1}) lized material: 0.007 Grazing on Cylin- (i) 0.025 ng animal ⁻¹ (i) intracellular HPLC-MS Bioaccumulation factors Nogueira et al, 2004(b) dtospermopsis (24 h) strains (+/- CYN) (ii) 0.020 ng animal ⁻¹ 236.4 ng mL^{-1} (24 h) and 0.46 (48 h); (ii) extracellular (ii) in time) 47.4 ng mL^{-1} (iii) in time) (iii) total CYN 234.2 - 278.4 ng mL^{-1} (increase in time) (iii) total CYN 234.2 - 278.4 ng mL^{-1} (increase in time)			$(1.2e^{6} \text{ cells mL}^{-1})$	animal ⁻¹	(ii) lyoph.: 2745	•	
hnia magna CYN Grazing on Cylin- (i) 0.025 ng animal ⁻¹ (i) intracellular HPLC-MS Bioaccumulation factors Nogueira et al, 2004(b) atrains (+/- CYN) (ii) 0.020 ng animal ⁻¹ 236.4 ng mL^{-1} (24 h) and 0.46 (48 h); (ii) extracellular (ii) extracellular (ii) extracellular (iii) extracellular (iii) extracellular (iii) extra comulation indicate bioaccumulation in time) (iii) extra comulation $234.2 - 278.4$ ng L^{-1} (iii) extra comulation L^{-1} (iii) extra comulation (iii) extra c			(ii) lyophilized ma- terial (1 mg mL ⁻¹)	(ii) exposure lyophi- lized material: 0 007	pmol mL ⁻¹		
$\begin{array}{rcl} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c$	nnia magna	CYN	Grazing on Cylin-	(i) 0.025 ng animal ⁻¹	(i) intracellular HPLC-MS	Bioaccumulation factors	Nogueira et al, 2004(b)
(i) extracellular levels not high enough to toxin $12.4 -$ indicate bioaccumulation 47.4 ng mL^{-1} (increase in time) (iii) total CYN 234.2 - 278.4 ng L ⁻¹			strains (+/- CYN)	(ii) 0.020 ng animal ⁻¹	236.4 ng mL ⁻¹	(24 h) and 0.46 (48 h);	
$\begin{array}{cccc} 47.4 \ \text{md} 12.4 - \\ 47.4 \ \text{md} 1^{-1} \\ (increase in \\ time) \\ (iii) \ tan CYN \\ 234.2 - 278.4 \\ \text{mg} L^{-1} \end{array}$			~	(48 h)	(ii) extracellular	levels not high enough to	
$\begin{array}{c} 4.74 \text{ ng mL} \\ \text{(increase in time)} \\ \text{(in tetal CYN)} \\ 234.2 - 278.4 \\ \text{ng L}^{-1} \end{array}$					toxin 12.4 –	indicate bioaccumulation	
\dot{time} (iii) total CYN 234.2 – 278.4 ng L ⁻¹					4/.4 ng mL (increase in		
(iii) total CYN 234.2 - 278.4 ng L ⁻¹					time)		
234.2 - 278.4 ng L ⁻¹					(iii) total CYN		
					234.2 – 278.4 ng L ⁻¹		

Daphnia magna	MC	(i) grazing on Mi-	Daphnia 0.2-24.5 µg g ⁻¹	(i) Microcystis: ELISA	(i) calculation shows MC T	Thostrup & Christof-
		crocystis alone or	DW (highest when ex- 2	2000 µg g DW ⁻¹	really accumulated in for	ersen, 1999
		mixed with	posed solely to Micro- ((ii) MC varied	body, not just gut content	
		Scenedesmus (3.2	cystis) l	between $5 - 156$	(ii) calculation shows	
		$mg C L^{-1}$)		μg L ⁻¹ in enclo-	transport to roach results	
		(ii) exposure to lake	51	sures	only in sublethal effects	
		water enriched with				
		Microcystis from				
		enclosures (8.9 mg				
		CL ⁻¹)				

Tword	T	T	Construction (deca)	Demoult	Defense
Exposed organism	II OXII	Exposure route	Concentration (dose) and effect	Kemark	Kelerence
BIRDS					
FISH					
Zebra fish (Danio rerio)	MC-LR	Purified MC, dissolved in water	(i) 0.5, 5 μ g L ⁻¹ : increased motility	(i) effects on behaviour dose de- pendent (reversal at higher conc.)	Baganz et al, 1998
			(ii) 15, 50 μg L ⁻ 1: decreased motility	(ii) LOEC < 0.5 μ g L ⁻¹	
			(iii) 50 µg L ^{-1:} reduced spawn- ing		
Brown trout	MC	i) purified MC	5, 50, 500 μg L ⁻¹ MC: cardio-	Purified MC no effect on (some)	Best
(Salmo trutta)		ii) aqueous extracts of Mi-	vascular effects	cardiac responses, in contrast to	et al, 2001
		C10C) 3(1)		cardiac output only affected by MC at higher doses	
Zebra fish (Danio	MC-LR;	In vivo exposure fish em-	LPS (up to $29.8 \ 10^6 \ \mathrm{EU} \ \mathrm{mg}^{-1}$	LPS from axenic bacteria or lake	Best et al, 2002
rerio)	LPS	bryos to dissolved toxins; LPS different bacterial ori-	DW) + MC (up to 12.6 ng mg DW ⁻¹): reduced mGST +	blooms reduced GST activity, in- terfered detoxication	
		gins (including cyanobacte- rial)	sGST		
Rainbow trout (On- corhynchus mykiss)	MC	Aqueous suspension whole or broken Microcystis cells	100 μg L ⁻¹ MC–LR: osmo- regulatory imbalance, in-	Interaction MC with LPS	Best et al, 2003
			creased liver mass		

Chapter 32: Cyanobacterial Toxins

Exposed organism	Toxin	Exposure route	Concentration (dose) and effect	Remark	Reference
Brown trout (Salmo trutta)	MC-LR	(i) purified MC (ii) lysed Microcystis cells	 i) lysed tox Microcystis, con- taining 41 – 68 µg L⁻¹ MC: ionic imbalance, reduced growth growth (less than toxic lysate) iii) lysed non-tox Microcystis: effects on growth (less than toxic lysate) 	Ammonia similar effects to MC	Bury et al, 1995
Carp (Cyprinus car- pio)	MC	Fish exposed to toxins via natural routes in the lake, including Microcystis scums	Up to 4000 μg g ⁻¹ DW: he- patic lesions	Lesions in > 50 % fish examined	Carbis et al, 1997
Carp (Cyprinus car- pio)	MC-LR	Gavage freeze dried Micro- cystis cells (single sublethal bolus)	400 μg kg ⁻¹ bw: pathological changes in hepatopancreas, kidney, gastrointestinal tract (i.a. apoptosis)	In carp – cyprinid – compared to salmonids liver pathology devel- ops faster and at lower MC con- centrations	Fischer & Dietrich, 2000
Rainbow trout (On- corhynchus mykiss)	MC	Gavage freeze dried Micro- cystis cells	5700 μg kg ⁻¹ bw: liver necrosis, hepatocyte apoptosis	Unbound MC results in fast ef- fects, including PP inhibition and liver necrosis; covalently binding to MC results slower effects, i.a. apoptosis	Fischer et al, 2000
(i) Hypophthalmich- thys molitrix(ii) Carassius gibelio	MC-LR; MC-RR	Feeding on cultured Micro- cystis cells	unspecified dose: reduced growth		Jang et al, 2004

Exposed organism	Toxin	Exposure route	Concentration (dose) and effect	Remark	Reference
Tilapia (Oreo- chromis sp)	MC-LR	Feeding on lyophilized Mi- crocystis bloom (crushed and non-crushed cells)	60 μg fish ⁻¹ day ⁻¹ MC-LR: oxidative stress in liver, kid- ney and gills	 (i) crushed cells more effect non-crushed on LPO and levels antioxidant enzymes (ii) time dependent development oxidative stress: not yet present after 14d; 21 dlipid peroxidation + enhanced antioxidant enzyme activities 	Jos et al, 2005
Sea trout (Salmo trutta)	NODLN	Gavage single dose Nodu- laria	210–620 μg kg ⁻¹ bw: rapid (1– 2 d) but reversible (4–8 d) liver damage	(i) rapid detoxication, cross reac- tion conjugates in ELISA(ii) no effects on swimming	Kankaanpää et al, 2002
Rainbow trout (On- corhynchus mykiss)	MC-LR	IP injection of purified MC	 (i) 1000 μg kg⁻¹: 100 % mor- tality (ii) 400 μg kg⁻¹: no mortality; increased ratio liver to body mass, liver necrosis; kidney lesions 	Fish less sensitive than mice: $LD_{30} = 400 - 1000 \ \mu g \ kg^{-1}$	Kotak et al, 1996b
Carp (Cyprinus car- pio)	MC-LR	In vitro exposure hepato- cytes to 10 µg L ⁻¹ MC-LR	Increase ROS, depletion GSH, increase SOD, CAT and GS– Px activity, GST unchanged: oxidative shock by exposure MC	Antioxoidant enxymes did not prevent oxidative shock: apop- tosis and necrosis hepatocytes	Li et al, 2003
Carp (Cyprinus car- pio)	MC	Feeding on Microcystis scum in tanks	50 μg kg ⁻¹ bw for 28 days: re- duced growth, increased liver enzyme activity, damaged hepatocytes,	Long term subchronic effects	Li et al, 2004

Exposed organism	Toxin	Exposure route	Concentration (dose) and effect	Remark	Reference
Loach (Misguruns mizolepis)	MC-LR	Dissolved MC-LR	MC–LR at 1, 3, 10, 100, 1000 $\mu g L^{-1}$: (i) mortalilty, delayed hatch- ing, liver (necrosis) and car- diotoxicity (ii) (late stage) embryos and larvae more sensitive than ju- venile fish: LC ₅₀ larvae = 164; juveniles = 593 $\mu g L^{-1}$	 (i) embryonic development loach affected by MC in contrast to ze- braffsh (ii) results dose dependent, i.e. increasing effects with increasing conc. MC. No mortality at the lower doses. 	Liu et al, 2002
Goldfish (Carassius auratus)	MC-LR	IP injection	125 µg kg ⁻¹ bw: no change ionic homeostasis, liver le- sions, changes liver enzyme activity	Liver damage reversible	Malbrouck et al, 2003
Goldfish (Carassius auratus)	MC-LR	IP injection of fed and fasted juvenile goldfish	 (i) 125 µg kg⁻¹ bw: inhibition PPase, complete after 6 h in fasted, less inhibition in fed fish (ii) recovery after 96 h (iii) GSH levels and GST un- affected 	Feeding status has effect on tox- icity MC, possibly by acting on bile formation and secretion	Malbrouck et al, 2004a
 (i) silver carp (Hy- pophthalmichthys molitrix) (ii) carp (Cyprinus carpio) 	MC-LR	 (i) ip injection purified MC (ii) cyanobacterial biomass per os / anus 	 (i) 400 µg kg⁻¹ bw (purified MC): no – minor effects (ii) 3 – 1,200 µg kg⁻¹ bw (biomass): changes blood in- dices and immunological changes 	(i) effects crude biomass much stronger purified toxin(ii) oxidative stress	Palikova et al, 1998

Reference	Oberemm et al, 1999
Remark	Crude cell extracts of several cyanobacteria gave severe effect (more so than purified toxin): cannot be attributed MC alone
Concentration (dose) and effect	(i) MC $0 - 50 \ \mu g \ L^{-1}$: no acute effects on embryonic development opment (ii) MC-RR > 0.5 $\mu g \ L^{-1}$; YR > 5 $\mu g \ L^{-1}$, LR > 50 $\mu g \ L^{-1}$; timing hatching affected (ii) morphological effects only at highest conc. MC-LR 10 mg L ⁻¹ (iii) SAX > 10 $\mu g \ L^{-1}$ delayed hatching malformations at 500 $\mu g \ L^{-1}$ (iv) ANA(a) 400 $\mu g \ L^{-1}$ hearth fects (v) far more pronounced ef- fects with crude extracts: mal- formations and mortality
Exposure route	(i) in vivo emersion (ii) exposure to dissolved purified toxin (iii) exposure crude cyanobacterial cell ex- tracts
Toxin	MC–LR, RR and YR, SAX, ANA(a)
Exposed organism	Seven fish (cypri- nids) and three am- phibian species

Exposed organism	Toxin	Exposure route	Concentration (dose) and effect	Remark	Reference
Rainbow trout (Oncorhynchus mykiss)	MC-LR	 (i) IP injection or oral dosage purified MC (ii) IP injection or oral dosage freeze dried Microcystis cells 	 (i) 550 μg kg⁻¹ bw MC (ip): severe liver damage, death (ii) 550 μg kg⁻¹ bw Microcys- tis (ip): severe liver damage, death (iii) 1200 μg kg⁻¹ bw MC (oral): no effects (iv) 1700 μg kg⁻¹ bw Micro- cystis (oral): no effects (v) 6600 μg kg⁻¹ bw Microcys- tis (oral): severe liver damage, death (vi) 550 μg kg⁻¹ bw Microcys- tis (s fimes oral dosage): 	Treatments included repeated (oral) exposure to MC, i.e. close to natural exposure but during 'limited' period of time (8 times at 12 h intervals) at 12 h intervals)	Tencalla et al, 1994
Zebra fish (Danio rerio) embryos	MC-LR	Purified dissolved MC	 (j) > 0.1 μg L⁻¹: increased sGST and GPx activity (ii) > 2.0 μg L⁻¹: effects on growth and survival 	Dose dependent relationship MC~GST	Wiegand et al, 1999
Carp (Cyprinus car- pio)	MC-LR	Purified dissolved MC	inhibition ATP-ase activity of Na ⁺ K ⁺ pump in gills, disrup- tion ion homeostasis	Harmful effects of dissolved MC (without ingestion of cells)	Zambrano & Ca- nelo, 1996
MACRO-INVER Brine shrimp (Ar- temia salina)	TEBRATES MC-LR, MCHtyR and NODLN	Purified dissolved toxin	0.5 µg L ⁻¹ : elevation GST ac- tivity		Beattie et al, 2003

Exposed organism	Toxin	Exposure route	Concentration (dose) and effect	Remark	Reference
(i) pike larvae (Esox lucius) (ii) mysid shrimps (Neomysis integer)	NODLN	 (i) purified NODLN (20 μg L⁻¹) (ii) crude extract Nodularia 	 (i) crude extract: pike larvae: decreased ingestion and faeces production rates shrimps: no effects on molting, faeces production, C:N or growth (ii) purified NODLN: no effects 	Purified NODLN no effects on pike larvae; crude cell extracts stronger effects	Karjalainen et al, 2005
Baltic clam (Macoma balthica)	NODLN	 (i) exposure to dissolved toxin (ii) exposure to toxic and non toxic Nodularia cells in tanks 	 4–20 µg NODLN per day: (i) conc. dependent neurotoxic effects (increase / decrease AChE activity when exposed to low and high NODLN respectively) (ii) some treatments low siphon activity 	Abundant unidentified com- pound with NODLN like spectral characteristics (found in both toxic and non-toxic Nodularia treatments)	Lehtonen et al, 2003
Brine shrimp (Ar- temia salina)	CYN and MC	(i) purified dissolved CYN and MC(ii) extracts Cylindrosperm- posis, Microcystis	(i) CYN LC ₅₀ decreased from 4.48 to $0.71 \mu g m L^{-1}$ between 24 and 72 h (ii) likewise MC LC ₅₀ from 4.58 to $0.85 \mu g m L^{-1}$	 (i) dose and time dependent mortality (ii) LC₃₀ cell extracts typically > than purified CYN (reduced bioavailabilty?) 	Metcalf et al, 2002
Estuarine crab (Chasmagnathus granulatus)	MC	Cell extracts Microcystis	Injected daily for 4–7 d with 17.6 ng MC: (i) increased en- zyme activity (GST, CAT) in hepatopancreas (ii) no change LPO – no oxi- dative damage (?) (iii) yet histological damage		Pinho et al, 2003

Exposed organism	Toxin	Exposure route	Concentration (dose) and effect	Remark	Reference
Estuarine crab (Chasmagnathus granulatus)	MC	Crabs injected twice with cell extracts Microcystis	 (i) decreased Na⁺, K⁺-ATPase activity anterior gills (ii) increased GST posterior gills (iii) increased TOSC 	Increased TOSC in response MC as protective mechanism against LPO (level unchanged by expo- sure to MC)	Vinagre et al, 2003
LOULLAINALON Moina macrocopa	Unidentified metabolites (possibly cyanopepto- lins A-D)	Freeze dried Microcystis	Inhibition of proteases		Agrawal et al, 2005
Thamnocephalus platyurus	[D-Asp ³ , (E)- Dhb ⁷]MC- RR, MC-LR, MC-YR, MC-RR, NODLN	Purified toxins	LC ₅₀ NODLN < [D-Asp ³ , (E)-Dhb']MC-RR < other MC	LC ₅₀ insufficient to study re- sponse of organisms to exposure; LC ₁₀ + LC ₅₀ required to get slope	Blom et al, 2001

Exposed organism	Toxin	Exposure route	Concentration (dose) and effect	Remark	Reference
Daphnia pulicaria, D. Pulex, D. hyaline, Diaptomus birgei	MC-LR, NODLN, ANA(a)	Exposure to: (i) purified toxins (ii) cell extracts (iii) toxic or non-toxic cyanobacterial strains	(i) species specific responses to toxin exposure; not all daphnids equally sensitive in terms feeding inhibition (ii) LC_{50} for MC after 24 h (varied from > 50 µg L ⁻¹ in D. pulicaria to < 1.0 in D.birgei); for NODLN > 20 and < 0.6 respectively (iii) LC_{50} decreased with longer exposure	 (i) feeding inhibition protects against toxic effects: less sensi- tive Daphnia stronger inhibiton (ii) zooplankters insensitive dis- solved MC, more so dissolved ANA(a) 	DeMott et al, 1991
Daphnia spp	МС	Feeding on mixtures Micro- cystis and Scenedesmus; 0, 50 or 80 % Microcystis in total food conc. of 0.5 mg C L^{-1}	 (i) rapid feeding inhibition (but recovery after continued exposure to same mixture) (ii) reduced growth and repro- duction (iii) reduction in growth/ingestion: direct toxic effects and feeding inhibition 	Clear differences between Daph- nia spp	DeMott, 1999
Temperate and tropical cladocerans (Ceriodaphnia corruta, Daphnia pulex; D. pulicaria, D similes, Moina micrura, Moinodaphnia macleayi)	МС	 (i) grazing on toxic Microcystis strains mixed with Ankistrodesmus, total conc. 1.0 mg C L⁻¹; (ii) acute and chronic exposure 	MC contents 2810–4080 μg g ⁻¹ DW: (i) decreased survival in pres- ence tox Microcystis inhibited feeding rate, even when just 5 % in mixture with greens (ii) non-toxic cyanobacterium as sole food:poor growth	 (i) species from low productivity sites – adapted to starvation – showed lowest sensitivity to toxic Microcystis (ii) small and large bodied fast growing spp prone to starvation and most sensitive to MC; small bodied slow growing spp most resistant and least sensitive 	Ferrão-Filho et al, 2000

Exposed organism	Toxin	Exposure route	Concentration (dose) and effect	Remark	Reference
Tropical cladocerans (Moina micrura, Ceriodaphnia cornuta)	MC	Grazing on: (i) large Microcystis colo- nics (ii) single cells and (small) colonies Microcystis	MC 2.0 – 16.0 μg L ⁻¹ : (i) toxic Microcystis inhibited growth reduced reproduction cladocerans; partly through feeding inhibition (ii) effects unicellular lab cul- tures stronger than colonial cultures on natural seston, es- pecially with large colonies (although very toxic 3.9 mg MC g DW ⁻¹)	Colony forming cyanobacteria: little effect despite high toxicity; possible explanation why field studies fail to demonstrate ef- fects of toxic blooms	Ferrão-Filho & Azevedo 2003
Daphnia magna	MC	Grazing on mixtures of Microcystis and Scenedesmus; max of 140,000 Microcystis cells mL^{-1} (1.0 mg C L ⁻¹)	 (i) reduced growth, reproduction and survival, increasing effects with increased proportion Microcystis cells (0; 50 or 100 %)0 (ii) pre-exposure (acclimation) reduced harmful effects: development of tolerance 		Gustafsson & Hans- son, 2004
Daphnia pulex	MC-LR	(i) acute exposure to Micro- cystis cells $0-2.43 \text{ mg CL}^{-1} = 0-$ $360,000 \text{ cells mL}^{-1}$ (ii) chronic exposure 30,000 cells mL^{-1}	MC–LR 7.6 10 ⁻⁵ ng cell ⁻¹ : (i) variation in acute tolerance (EC ₅₀) to toxic Microcystis (ii) increase temperature: de- crease EC ₅₀ (iii) chronic exposure, reduced survival and reproduction, clonal differences reversed compared to acute exposure	Suggestion made that more resis- tant clones show stronger feed- ing inhibition	Hietala et al, 1997

Exposed organism	Toxin	Exposure route	Concentration (dose) and effect	Remark	Reference
Calanoid copepods (Acartia bifilosa, Eurytemora affinis)	NODLN	Cultures of Nodularia added to enclosures	NODLN ~ 11 μ g mg DW ⁻¹ (3– 4 μ g mL ⁻¹): Baltic copepds feed, ingest, reproduce and survive in pres- ence toxic Nodularia, no nega- tive effects	Perhaps hatching success more sensitive to toxins (not meas- ured)	Koski et al, 2002
Eudiaptomus gracilis, Thamno- cephalus platyurus, Daphnia hyaline, Cyclops abyssorum	MC	Grazing on (artificially shortened) filaments Plank- tothrix	 (i) reduced survival Thamno- cephalus (ii) survival naturally co- existing zooplankton unaf- fected; (iii) Eudiaptomus high sensi- tivity but also strict food avoidance (iv) Daphnia and Cyclops greater physiological resis- tance to MC, less avoidance - ingested filaments 	 (i) Daphnia feeding rates increased (not so for copepods) when prior toexposure MC were extracted from filaments (MC acts as feeding deterrent) (ii) unidentified lipophilic toxin present (iii) high avoidance linked to high sensitivity 	Kurmayer & Jüttner (1999)
Daphnia pulex	MC-LR	Grazing on toxic Microcys- tis cells $(0 - 320,000 \text{ cells } \text{mL}^{-1}) +$ low or high density Scenedesmus $(20,000 \text{ or}$ $80,000 \text{ cells } \text{mL}^{-1})$	MC-LR 8.9 10 ⁻⁵ ng cell ⁻¹ : (i) decreased population den- sity (ii) delayed maturity (iii) increased number ephip- pia ind ⁻¹	Effects toxic Microcystis comparable to food of low quality or lack of food	Laurén Määttä et al, 1997

Remark Reference	ritional insufficiency Mi- this not responsible effects phnia eding inhibition and/or ounds other MC peptolines?) may play role (C alone cannot explain al effects on Daphnia	tion of Daphnia feeding Lürling & van der owth in presence of Grinten, 2003 desmus and MC(–) strain cystis: unknown toxic ounds	Nogueira et al, 2004
Concentration (dose) and effect	 (i) severe disturbance Daphnia (i) nut population development (in-crocy; creased mortality, decreased on Da reproduction) (ii) fe: (ii) MC(+) killed Daphnia (iii) fe: (iii) MC(-) had negative (iii) MC(i) as MC(-) had negative (iii) W effects on survival and harmf growth, even in presence 	(i) no effects dissolved MC Inhibi (ii) exposure cellbound MC: and gr reduced feeding and growth Scene (iii) reductions also in treat-Micro ment 50 % Microcystis of Micro MC(-) strain + 50 % Scenedesmus	1.2e ⁶ cells mL ⁻¹ containing 643–1170 pmol mL ⁻¹ PST: (i) reduced fitness, growth and survival
Exposure route	Grazing on MC(+) wt and MC(-) mutant + Scenedes- mus; Microcystis 0 –100 % of 5 mg C L ⁻¹	 (i) grazing on MC(+) and MC(-) strains of Microcys- tis in max conc. of 5 mg C L⁻¹ in mixtures with Scenedesmus + in some treatments in addition: (ii) exposure to purified, dis- solved MC, max 3.5 µg L⁻¹ 	Grazing on Aphanizomenon
Toxin	MC	MC-LR	PST
Exposed organism	Daphnia magna	Daphnia magna	Daphnia magna

Exposed organism	Toxin	Exposure route	Concentration (dose) and effect	Remark	Reference
Daphnia magna	CYN, uni- dentified hepatotoxin	Grazing on 2 different strains Cylindrospermopsis (+/- CYN); $1.8 - 3.6 10^6$ cells mL ⁻¹ ;	CYN 4.78 ng mg cells DW ⁻¹ : (i) reduced growth and in- creased mortality, also in comparison to starvation treatment, (ii) above also true for CYN(-) strain (iii) sGST + mGST activity increased	Unknown toxic compounds pre- sent in strain that does not pro- duce CYN	Nogueira et al, 2004(b)
Daphnia pulex; D. longispina	MC, uniden- tified toxins	Grazing on mixtures Scenedesmus and Microcys- tis cells (10,000 or 40,000 cells mL ⁻¹ $\sim 0.076 - 0.304$ mg C L ⁻¹)	 (i) increased allocation resources to reproduction (ii) lower dose resulted smaller clutch size D. Pulex; D. longispina no effect (iii) higher dose virtual inhibition reproduction D. Pulex; D. longispina reduced size neonates 	 (i) severe and dose dependent effects Microcystis on reproduction in Daphnia (ii) toxicity and food quality play a role 	Reinikainen et al, 1999
Estuarine calanoid copepods (Eurytemora affinis; Acartia bifilosa)	MC–LR, ANA(a), NODLN	Purified dissolved toxins, single and in combination	 (i) 1 μg mL⁻¹ MC or ANA no effect on egg hatching (ii) 0, 0.25, 0.5 and 1 μg mL⁻¹ ¹1: reduced survival for MC > 0.1 μg mL⁻¹ (iii) ANAa and NODLN only weak effects 		Reinikainen et al, 2002
Daphnia galeata	MC	Daphnia feeding on toxic (wt) and non toxic (mutant does not produce MC) Mi- crocystis strains	 (i) wt toxic to Daphnia: decreased swimming + death, mutant not toxic (ii) both wt and mutant inhibit ingestion rate 	Dose response relationship not between MC content of the food and effects in Daphnia but be- tween ingestion rate and effects	Rohrlack et al, 1999

Exposed organism	Toxin	Exposure route	Concentration (dose) and effect	Remark	Reference
Daphnia pulicaria	Microviridin J	 (i) Grazing on Microcystis strains containing 1.05 – 1.57 μg mm⁻³ microviridin (ii) Purified, dissolved mi- croviridin (0–12 mg L⁻¹) 	Lethal molting disruption	Microviridin is a protease inhibi- tor	Rohrlack et al, 2004
Daphnia spp.	MC	Daphnia feeding on toxic MC(+) wt and non-toxic (MC(-) mutant Microcystis strains	 (i) inhibition of feeding rate, equal inhibition for tox and non-tox Microcystis (ii) reduced survival time (LT₅₀) Daphnia when feeding on wt (iii) Daphnia feeding on mu- tant signs starvation 	 (i) MC major source of acute Daphnia poisoning (ii) clear relationship – dose- response – between LT₅₀ and MC ingestion rate 	Rohrlack et al, 2001
Daphnia galeata	MC	Daphnia feeding on MC(+) and MC(-) strain	Toxic strain 0.87 mg L ⁻¹ MC: (i) both tox and non-tox Mi- crocystis negatively affect the cohesion of midgut epithelium (within 9 h) (ii) tox strain: uptake MC in blood, increase 0.25 to 1 ng L ⁻¹ ($(G-9$ h) (iii) tox strain: decreased beat traction midgut, finally com- plete loss beat rates, death (32–41 h)	 (i) midgut disrupting factor is not MC, disruption stimulates uptake bioactive compounds from cyanobacteria in blood Daphnia (ii) results not easily translated to field 	Rohrlack et al, 2005
Daphnia magna	MC	 (i) Daphnia exposed to suspensions of toxic Microcystis cells (ii) Daphnia exposed to lake water (filtered or not) 	MC=2000 µg g DW ⁻¹ : reduced survival, fecundity and growth	Negative correlation between toxin content and growth (strong) and between toxin con- centration and fecundity (weak)	Thostrup & Christoffersen, 1999