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The success of ideal hydrodynamics
Tp

Hydro: U Heinz & P.Kolb    Data: STAR PHENIX

spectra for both central collision and noncentral collisions :



The success of ideal hydrodynamics
STAR, PHENIX, PHOBOS

2v

GeVpnnfmb Tch 2~5.1),5.0/(,7 max ≤≥≤-Ideal hydro describes the data well at 

-It also gives the correct mass splitting of       in low      region2v Tp

Elliptic flow coefficient     in noncentral collisions: 



Where ideal hydro fails

?

STAR, PHENIX, PHOBOS

?
?

lower energy:

peripheral collisions: forward rapidity:

(Teaney 02,Hirano04)

?

3D hydro: T.Hirano PRC02

Alt,et alz PRC 03

-Hadronic stage is highly viscous

-Glauber + ideal hydro + hadron cascade ?
-CGC  + viscous hydro + hadron cascade ?

2v-ideal hydro overpredicst during  hadronic
stage

CGC initialization leaves room for QGP viscosity

comment:



Lower bound for        from quantum mechanics
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Quantum mechanics excludes the possibility of an absolutely ideal fluid:

Example: shear viscosity of a dilute gas 

dy
du

A
F η=

Shear viscosity     - classical definition:η

Shear viscosity - microscopic view:

s/η



The QGP shear viscosity

- Weakly coupled QCD prediction:

5.1~15.0/ =sη

P.Arnold,G.Moore & L.Yaffe  ‘00,’03

- Strongly coupled AdS/CFT prediction:
AdS/CFT correspondence: gauge/gravity duality 

However, the QGP is a strongly coupled system.

4d gauge theory at strong coupling 5d gravity at weak coupling
N=4 SYM 5

5 SAdS ×Type IIB superstring theory on

D.T. Son et al. ’01,’0508.04/1/ ≈≥ πη s
(not  related to real QCD)

Kubo formula:
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Kinetic theory:
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To extract the QGP viscosity from experimental data, we need viscous hydrodynamics
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Ideal hydrodynamics
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Ideal hydrodynamics:

Conservation laws

S.Bass

-A macroscopic tool to describe the expansion of QGP or hadronic matter
Hydrodynamics:

),( npεε =Input:  “EOS”

5 equ.  14 independent variables

- or provide more equations? (viscous hydro)
- reduce # of independent variables  (ideal hydro)
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Microscopically 



Viscous hydrodynamics -
 

Theory 
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Landau frame: 0=μW



Viscous hydrodynamics -
 

Theory 

0=μ
μφ u0=ν

μνπ u 0=μ
μπ

0=μ
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Tensor decomposition in frame of μu
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3
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Landau frame: 0=μW

general conservation laws:

we need more eqs. for μμνπ q,,Π
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-1st order theory, Navier-Stokes formalism: 

-2st order theory, Israel-Stewart formalism:
a) phenomenologically:

b) from kinetic theory

-2st order theory, Őttinger-Grmela formalism:
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I-S formulism: phenomenological approach
μν

ν
μμμ βαβ eqeq TNpS +−= TuT /,/ μμβμα ==-Relativistic, equilibrium:

),( μνμμ δδ TNQ+
-Relativistic, off equilibrium: )()( μν

ν
μμμ βαβ eqeq TNpS +−= μνδT+μδN+

0≥∂ μ
μ ST
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order and higher 
order corrections



-a simple case for second order theory
A. Muronga 00-04    W. Israel,  J.Stewart 79

(without heat flow& bulk pressure)
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I-S formulism: phenomenological approach
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I-S formalism -
 

Kinetic theory approach
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I-S formalism -
 

Kinetic theory approach
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-acting                     on both side and expand        to the 2nd order          I-S formalism:βαω ppd∫ fδ
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Compare I-S eqns. from different approaches
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I-S eqns. from 2nd law of thermodynamics (phenomenological)

-they are identical with each other for a pure massless QGP phase (conformal fluid )
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calculated in kinetic theory approach.
πτη ,- are totally free parameters in the phenomenological approach, but could be

I-S eqns. from kinetic theory:

I-S eqn. (I)

I-S eqn. (II)

-for non-conformal fluid (with a phase transition), it is better to use I-S eqn. (I)
-Numerically, the differences between I-S eqn. (I) and I-S eqn. (II) are small if the 
system size and initial energy density are not too small

full I-S eqn



Conformal 2nd
 

order formulism
-For a conformal fluid, conformal symmetry constrains the form of the 2nd order 
viscous eqns.: Baier, Romatschke, Son, Starinets

 

& Stephanov,   arXiv:0712.2451[hep-th]

-flat space: 0=κ

-to preserve the conformal symmetry,                             must 
appear simultaneously
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full I-S eqn



Conformal 2nd
 

order formulism
-For a conformal fluid, conformal symmetry constrains the form of the 2nd order 
viscous eqns.: Baier, Romatschke, Son, Starinets

 

& Stephanov,   arXiv:0712.2451[hep-th]

-flat space: 0=κ

-to preserve the conformal symmetry,                             must 
appear simultaneously
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,/6 sTητ π = 01 =λ

-for strongly coupled N=4 plasma,
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(2+1)-d viscous 
hydrodynamics

-Bjorken approximation:  / tzv z =
3+1     2+1),,,( ητ yx coordinates

-For simplicity, assuming: 0,0 =Π=μN
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(2+1)-d viscous hydrodynamics

-Song & Heinz: simplified I-S eqn. full I-S eqn. SM-EOS Q EOS LEOS I

(Au+Au,  Cu+Cu,

 

system size effects,

 

full I-S eqn.

 

vs.

 

simplified I-S eqn.,  EOS L etc,  in preparation)
PLB’08 & arXiv:0712.3715[nucl-th] Cu+Cu,  simplified I-S eqn., 130MeVTdec =

-Huovinen & Molnar: full I-S eqn. EOS I
QM08 talk: comparing the results from viscous hydro and from transport model

-Dusling & Teaney: Őttinger-Grmela (O-G) eqn. EOS I
Au+Au,PRC’08 decoupling by scattering rate, arXiv:0803.1262

 

[nucl-th],

 

(dilepton

 

production)

-Romatschke & Romatschke: full I-S eqn. EOS I EOS L*

Au+Au,PRL’07 150MeVTdec = (EOS L* here is the quasi-particle one based on lattice QCD)

-Chaudhuri: simplified I-S eqn. EOS Q

Au+AuarXiv:0708.1252

 

[nucl-th], arXiv:0801.3180

 

[nucl-th], arXiv:0803.0643

 

[nucl-th] 

EOS I

- verification of the codes individually developed by different groups

- effects from different EoS, systems sizes and freeze-out procedures
simplified I-S eqn. vs. full I-S eqn.,    I-S eqn. vs. O-G eqn.

- effects from different 2nd order formalisms

&

Issues:



- ideal hydro vs. viscous hydro

- viscous hydro in different I-S formalisms

Will show numerical results for:

- system size effects:

Cu+Cu,  simplified I-S eqn., Song & Heinz, PLB07 & arXiv:0712.3715[nucl-th] 

Simplified Israel-Stewart equation
 

vs. full Israel-Stewart equation:

- entropy production

As                 , simplified I-S eqn. and  full I-S eqn. approach the 
same Navier-Stokes limit 

0→πτ

For EOS with a phase transition, the differences between 
simplified I-S eqn. and full I-S eqn. are small  (but not for EOS I!)

ε/2v multiplicity scaling: ideal vs. viscous,  simplified vs. full I-S



EOS

EOS



Causal viscous hydro in (2+1)-d
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used in Song & Heinz, PLB07 & arXiv:0712.3715[nucl-th]& the one in preparation 

full I-S eqn[ ] ]ln5[
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-also the eqns

 

used in P&U Romatschke

 

PRL07, Song & Heinz, in preparation 

3+1     2+1),,,( ητ yx coordinates Heinz, Song & Chaudhuri, PRC06

-Viscous effects:   Ideal hydro vs. viscous hydro, Cu+Cu,  

numerical results
simplified I-S eqn

-Comparisons between simplified I-S eqn full I-S eqn

Song & Heinz, PLB07 & arXiv:0712.3715[nucl-th]



Viscous vs. ideal hydro: temperature & entropy

-slowing down of cooling process due to decelerated longitudinal expansion initially , 

-viscous effects are larger in early and middle stages, but neglectable in late stage

MeV130fm/c,6.0,GeV/fm30 0
3

0 === decTe τInitial & final conditions: (viscous & ideal)

Other viscous hydro parameter: Shear viscosity& relaxation time sTs /3,4/1/ ητπη π ==

but faster cooling in middle and late stages due to stronger transverse expansion

Simplified I-S eqn Song & Heinz, PLB07 & arXiv:0712.3715[nucl-th]



Viscous vs. ideal hydro: radial flow & spectra

-More radial flow, flatter spectra
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-the viscous effects to the hadron spectra could be absorbed by starting viscous
hydro later with lower initial energy density

Simplified I-S eqn Song & Heinz, PLB07 & arXiv:0712.3715[nucl-th]



Viscous vs. ideal hydro: momentum anisotropy &

-Elliptic flow is very sensitive to even minimal shear viscosity.

2v

-Both the evolution corrections (viscous corrections to    )  and spectra corrections
(viscous corrections  to     ) have significant effects to      , for low       region evolution
correction dominant.

2v Tp
0f

fδ

Simplified I-S eqn Song & Heinz, PLB07 & arXiv:0712.3715[nucl-th]

-momentum anisotropy: >+<
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-viscous effects are small at later stage ( fixed        )s/η
(full)(ideal)



Sensitivity to initialization of mnπ

- is insensitive to different initializations of mnπ2v

-viscous effects are smaller (or even negligible) in late stage  ( fixed         )s/η

yyxxyyxx ππππ −=Δ+=Σ ,

-after ~1fm/c (several relaxation times), viscous pressure loses memory of initial cond

Song & Heinz, PLB07 & arXiv:0712.3715[nucl-th]

mnmn ησπ 2= 0=mnπvs.



Comparison with Romatschke
 

07 results

- different systems & EOS: CuCu, b=7, SM-EOS Q vs. Au+Au, min bias, EOS Lattice

- different Isreal-Stewart eqns. used:  simplified I-S eqn. vs. full I-S eqn.

25--30%

P. &U.Romatschke
PRL 07

Song & Heinz
PLB 08

70--80%

simplified I-S eqn.
full I-S eqn.

Effect of using different I-S eqns.?



Simplified I-S eqn.  vs. full I-S eqn.:
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full I-S eqn.:

important for preserving the conformal symmetry
(Baier et al. ‘07)



Code testing: VISH2+1 vs. Romatschke
 

code

full I-S eqn.

simplified I-S eqn.

ideal hydro

- for identical initial conditions, EOS (EOS I here), transport eqns. (full I-S eqn. or  
simplified I-S eqn.), the two codes agree well with each other  

30-50%

- But: the additional terms in the full I-S eqn. bring big differences for the late-stage 
momentum anisotropy and final elliptic flow ?!

together with P.Romatschke



the same Navier-Stokes limit as               , but the full I-S eqn. shows much weaker 
sensitivity to 

simplified I-S eqn.
 

vs. full I-S eqn.
 

EOS I

- for EOS I, the additional terms in full I-S eqn. bring 30-50% difference in the late-time   
momentum anisotropy and final v2 suppression 

- numerical simulations also show that simplified I-S eqn. and full I-S eqn. approach  
0→πτ

Momentum anisotropy evolution: simplified I-S eqn. vs. full I-S eqn. with different      : πτ

Au+Au, b=7 fm Cu+Cu, b=7 fm

πτ



simplified I-S eqn.
 

vs. full I-S eqn.:
 

EOS Q

- simplified I-S eqn. vs. full I-S eqn. only: 5-10% differences  (for SM-EOS Q)

Au+Au, b=7 fm Cu+Cu, b=7 fm

- for smaller systems, the difference between full and simplified I-S eqns. increases

- for simplified I-S eqn. the sensitivity to the value of the relaxation time is stronger

Momentum anisotropy evolution: simplified I-S eqn. vs. full I-S eqn. with different      : πτ



simplified I-S eqn.
 

vs. full I-S eqn.:
 

EOS L

Momentum anisotropy evolution: simplified I-S eqn. vs. full I-S eqn. with different      :πτ

Au+Au, b=7 fm Cu+Cu, b=7 fm

- for EOS Q and EOS L, viscous effects are largely similar

- for realistic EOS with a phase transition, the difference between simplified and full I-S
eqns. for the viscous suppression of v2 are small if the systems are not too small and 
the initial energy density is not too low



Comparison with Romatschke
 

07 results

25--30%

P. &U.Romatschke
PRL 07

Song & Heinz
PLB 08

70--80%

simplified I-S eqn.
full I-S eqn.

System size effects and EOS ?

- different systems & EoS: CuCu, b=7, SM-EOS Q vs. Au+Au, min bias, EOS Lattice

- different Isreal-Stewart eqns. used:  simplified I-S eqn.  vs. full I-S eqn.



Different effects contributing to v2
 

suppression
system size, EOS, different I-S equations:

-system size: CuCu b=7fm vs. AuAu b=7fm: 
20-30% effect

70%
40%

Simplified I-S eqnSimplified I-S eqn



Different effects contributing to v2
 

suppression
system size, EOS, different I-S equations:

-system size: CuCu b=7fm vs. AuAu b=7fm: 
20-30% effect

-EOS: SM-EOS Q vs. EOS L: ~10% effect

-different I-S eqns: simplified I-S eqn. vs. full 
I-S eqn.: ~5% effects  (EOS Q and EOS L only )

70%
40%

30%
full I-S eqn

Simplified I-S eqn

Simplified I-S eqn

Simplified I-S eqn

EOS



Different contributions to the suppression of v2
System size, EOS, different I-S equations:

- system size: CuCu b=7fm vs.  AuAu b=7fm: 
20-30% effect
- EoS:  SM-EOS Q vs. EOS L: ~10% effect

- different I-S eqn.: simplified vs. full I-S eqn.:  
~5% effect  (EOS Q and EOS L only )

70%
40%

30%

Comment: To extract QGP viscosity from 
exp. data by using viscous hydro, one 
needs a better description of EoS (Lattice 
EoS + chemical non-equil. HRG EoS)

simplified I-S eqn. simplified I-S eqn.

simplified I-S eqn. full I-S eqn.

Considering all of these effects, the final suppres-
 sion

 
of v2

 

for Au+Au with EOS L and the full I-S 
eqn., for minimal shear viscosity                , is ~25%,

 approaching the results of P. & U. Romatschke
 (PRL 99, 172301 (2007)).  

08.0/ =sη



System size effects 



ideal hydro limit:             a saturation value around 0.21-0.23 (EOS Q; depends on cs)ε/2v
low energy limit: )/)(/1(/2 dydNSv ch∝ε Voloshin

 

PLB’00

Multiplicity scaling of v2
 

: Experiment 
Voloshin

 

‘07

- viscous hydro works for near equilibrium systems, which lie between the low energy 
and  ideal hydro limits (how does shear viscosity change the scaling of ideal hydro?)

ε/2v- is insensitive to the type of initialization used (CGC or Glauber model )

Central & semi- 
central collisions:
200 GeV Au+Au
62.5 GeV Au+Au
200 GeV Cu+Cu

Compare these 
above data with 
viscous hydro



Multiplicity scaling of v2
 

/ε EOS I      

- freeze-out condition introduces time scale, breaking scale invariance of id. hydro eqns. 
- Cu+Cu and Au+Au systems are not identical after a rescaling

Ideal hydrodynamics:  multiplicity scaling of v2 /ε is weakly broken: 

Viscous hydrodynamics:  additional scale breaking by shear viscosity, resulting in fine 
structure of v2 /ε:

Viscous effects are larger for smaller systems and lower collision energies

- for similar initial energy density, Cu+Cu curves are slightly below the Au+Au curves
- at fixed            , the                          curves are slightly above the                          ones 

dy
dN

S
ch1 3

0 GeV/fm15=e 3
0 GeV/fm30=e

full I-S eqn

Preliminary



good candidate to constrain         (insensitive to Glauber-type vs. CGC initialization)

Multiplicity scaling of v2
 

/ε EOS L 

- experimental data show qualitatively similar fine ordering as viscous hydro prediction

- to reproduce slope of v2 /ε vs. (1/S)dN/dy, a better description of the highly viscous
hadronic stage is needed:  viscous hydro + hadron cascade

- the experimental v2 /ε vs. (1/S)dN/dy scaling (slope and fine structure) is another

- this requires, however, experimental and theoretical improvements: reduced error bars,
accounting for T-dependence of                near Tc , modeling hadronic phase with realistic cascadess /,/ ζη

full I-S eqn

s/η

Preliminary



Entropy production 



Entropy production (I)

simplified I-S eqn. full I-S eqn.

- for each EoS, see good scaling of with (1/S)dN/dy (for both simplified and full I-S eqns) 

- for EOS L, the simplified I-S eqn. gives 5-10% more entropy production than the full I-S

- larger viscous effects in smaller systems and at lower collision energies:
entropy production increases as                     decreases)dydNS ch /)/1(



Entropy production (II)

- simplified vs. full I-S eqn.: entropy production approaches the same Navier-Stokes 
limit as we let 0→πτ
- for the full I-S eqn., entropy production is very insensitive to πτ

simplified I-S eqn.

full I-S eqn.



Entropy production (III)

- simplified vs. full I-S eqn.: entropy production approaches the same Navier-Stokes 
limit as we let 0→πτ
- for the full I-S eqn., entropy production is very insensitive to πτ

simplified I-S eqn.

full I-S eqn.

)(2]ln5[
2
1 ν

α
μαα

α
μν ωππ −∇−+ uTD[ ]μνμν

π
αβ

νβμα ησπ
τ

π 21
−−=ΔΔ D



Entropy production (IV)

- Is the the 2nd order expansion formalism enough to describe the more viscous 
fluids created in smaller collision systems or at lower energies? 

First order All order
summation

- effects of higher order terms on entropy production

--Lublinsky

 

& Shuryak

 

PRC2007



full I-S eqn. vs. parton
 

cascade model
Important insight from comparing viscous hydro with parton cascade model:

Molnar & Huovinen

 

QM08
full I-S eqn.

- 2nd order viscous hydro: I-S eqn. is obtained from Boltzman eqn. by expanding to     
2nd order in

PCM Viscous hydro

- amazingly, the two approaches give results that agree well with each other

- parton cascade model: evolves directly                    with Boltzmann eqn.)p,,x( vv tf

fδ

It appears that the 2nd order I-S equation is  still sufficient for semi-central 
collisions starting with high enough initial energy density

EOS I



- entropy production: the full I-S eqn. is much less sensitive to      , leaving less 
ambiguity in the extraction of         due to the choice of 

Summary and discussion (I)
- Elliptic flow is very sensitive to even minimal shear viscosity

- Viscous effects are larger in smaller systems and at lower collision energies:
- 20-30% more v2 suppression in Cu+Cu b=7 fm than Au+Au b=7fm (similar initial ecc. )

- more entropy production in smaller systems and at lower collision energies 

- fine structure in the multiplicity scaling curves for            predicted by viscous hydro 
agrees qualitatively with experimental data and can be used to constrain the  QGP 
shear viscosity 

ε/2v

-

 

Simplified I-S equation vs. full I-S equation:
- approach same Navier-Stokes limit for            (entropy prod., momentum anisotropy etc.)0→πτ
- for non-conformal fluids (EOS Q, EOS L) both eqns. are OK (~5-10% difference)  
if the system size and initial energy density are not too small (the approx. behind the 
simplified I-S eqn. are “OK” (~90-95% reliable) for EOS L and EOS Q)

πτ

- for conformal fluids (EOS I) the full I-S eqn. (which preserves the conserve conformal 
symmetry) works but the simplified I-S eqn. fails

πτs/η



- T-dependent          :         ~?%

Summary and discussion (II)

s/η

- resolve the ambiguities among different 2nd order formalisms used by different

b) I-S formalism vs.  O-G formalism (Dusling & Teaney )    ~ ? %
a) simplified I-S (Song & Heinz 07-08) vs. full I-S eqn. (P.&U.Romatschke)

groups when simulating causal viscous hydrodynamics

-

 

Extracting the QGP shear viscosity requires a better understanding of all 
sources of uncertainty from both sides, theory and experiment:  

… …  … …

- bulk viscosity: with vs. without bulk viscosity   ~?%

- a realistic EOS: EOS L vs. SM-EOS Q  ~10% (for      and          ) 2v ε/2v
- realistic initial conditions: CGC vs. Glauber-type initialization ~15-30% (for     )2v

- For causal viscous hydro, one needs to consider at least the following aspects:

~5-10%
(EoS L & EOS Q)



Thank You



I-S formalism -
 

Kinetic theory approach

νλ
λν

λ
λ εεεδ pptpttptxf ),x(),x(),x(),,( ++=

)1)(,(),( += pxfpxf eq ),( pxfδ
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-acting                     on both side and expand        to the 2nd order          I-S formalism:βαω ppd∫ fδ
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Baier et al. ‘06, W.Israel, J.Stewart ‘79
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Causal viscous hydro in (2+1)-d
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the transport equations for energy momentum tensor are explicit written as:

σ
σ uuuu mnnmnmnm ∂Δ−∇+∇=∇ ><

3
1][

2
1

Vortices terms are neglected, 

0, =m
mnT mnnmmn pguupT −+= )(ε mnπ+
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nkml D ησπ
τ

π
π

21
−−=ΔΔ simplified I-S eqn

-also the eqns

 

used in Song & Heinz, PLB07 & arXiv:0712.3715[nucl-th]& the one in preparation 

full I-S eqn[ ] ]ln5[
2
121 α

α
π

πησπ
τ

π uTDD mnmnmn
lk

nkml ∇−+−−=ΔΔ

0, =m
mnT mnnmmn pguupT −+= )(ε mnπ+

-also the eqns

 

used in P&U Romatschke

 

PRL07, Song & Heinz, in preparation 

3+1     2+1),,,( ητ yx coordinates Heinz, Song & Chaudhuri, PRC06
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