Search for a new resonance decaying into ttbar

$$p\bar{p} \to X^o \to t\bar{t}$$

Valentin Necula

for the CDF and D0 collaborations

PANIC 2005, Santa Fe NM

- Introduction
- Run I results
- Run II results
- Summary

Introduction

- No resonance production is expected in SM
- Why is Top so heavy ?
 - o Indication of coupling to New Physics?
 - o Third generation 'special'?
- Theoretical models predict it
 - o Leptophobic topcolor assisted technicolor
 - Couples predominantly to third generation quarks

Harris, Hill, Parke hep-ph/9911288

- o And many others...
- Top production is relatively unknown experimentally, needs investigation
- Second Second
 - Search for a bump in the reconstructed invariant mass spectrum

Event Selection & Sample Composition

- Analysis is done in the "lepton + jets" channel
- Selection:
 - o 1 high Pt lepton
 - o High missing transverse energy (neutrino)
 - o At least 4 high Et jets
- Sample composition :
 - o SM ttbar, W + multijets
 - about 90% or more
 - o QCD, Dibosons, Single Top
 - Minor backgrounds

ttbar invariant mass reconstruction : D0

Unknown quantities : 4 quark momenta and neutrino 3-momentum

Solution : find most likely values based on jet energy resolutions And kinematical constraints like W, Top masses using a kinematic fit

ttbar invariant mass reconstruction : CDF

Q Run I : similar to DO

Run II :

Assume the top mass to be known, Mtop = 175 GeV For each event, for each combination, build the posterior probability density: $\pi^{post}(p_b, p_{\bar{b}}, p_q, p_{\bar{q}}, \vec{p_{\nu}} | \vec{j_1}, \vec{j_2}, \vec{j_3}, \vec{j_4}, \vec{p_l})$

$$\pi^{post}(\{p\}|\{j\}) \propto \pi^{prior}(\{p\}) \cdot T(\{j\}|\{p\})$$

The *prior* is the ttbar differential cross-section

Parton-to-jet transfer functions Probability of measuring jet energy j knowing parton energy p

The posterior allows the derivation of the event Mtt probability density:
$$\label{eq:post} \begin{split} \rho^{post}(x|\{j\}) &= \int \{dp\}\pi^{post}(\{p\}|\{j\}) \cdot \delta(x-M_{t\bar{t}}(\{p\})) \\ \text{We 'project' the multidimensional posterior on one 'dimension' of our choice, Mtt in this case} \end{split}$$

We average over all jet-parton assignments allowed by b-tagging information The mean Mtt value defines the 'reconstructed' event Mtt.

$$\mathcal{M}_{t\bar{t}} = <\rho^{post}(x|\{j\}) >$$

Example of event Mtt distributions

Red : true value from Monte Carlo.

Valentin Necula PANIC 2005 Santa Fe, NM

Run I Results : D0

Phys. Rev. Lett. 92, 221804 (2004)

Run I Results : CDF

Phys. Rev. Lett. 85, 2062 (2000)

New Run II Results : D0

Valentin Necula PANIC 2005 Santa Fe, NM

New Run II Results : CDF

New Run II Results : CDF

Summary

	Run I	Run II
DO	Method : Kinematical fit	Method : Kinematical fit
	B-tags : any	B-tags : 1 or more
	Limit : 560 GeV	Limit : 680 GeV
CDF	Method : Kinematical fit	Method : Matrix Element
	B-tags : any	B-tags : any
	Limit : 480 GeV	Limit : 700 GeV

- No evidence for a new resonance found
- © Cross section limits were improved compared to Run I
- Leptophobic Z' model :
 - o New limit $M_{Z'}$ > 700 GeV for $\Gamma_{Z'}$ = 0.012 $M_{Z'}$
- More data will be added soon !

Expected sensitivity for the future

Run II in progress, we will be able to test for smaller New Physics contamination soon !

Valentin Necula PANIC 2005 Santa Fe, NM