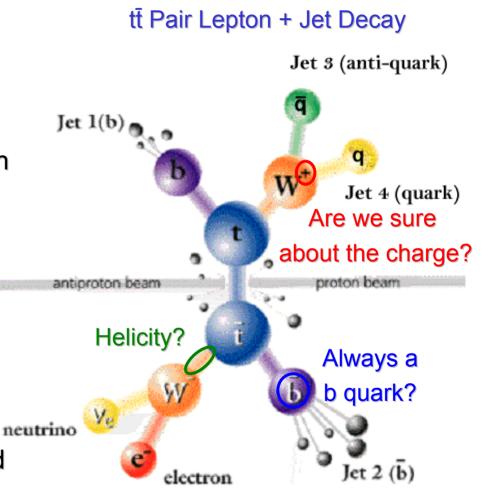
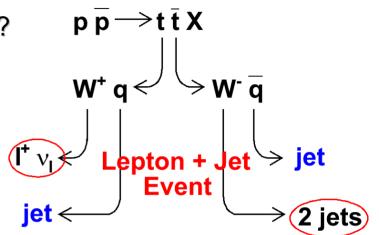
Top Properties Control Charles Plager 25 UCLA a For the CDF and Dg t Collaborations PANIC 2005 October 24-28, 2005

Tractricious


- The Tevatron
- The CDF and DØ Detectors
- Review of the Top Quark
- Top Branching Fraction
- Top Charge
- W Helicity in Top Decay
- Summary

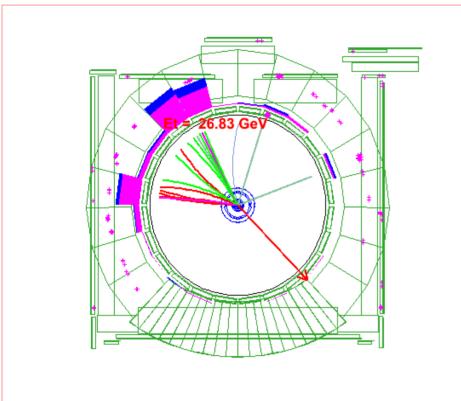
- The top quark was discovered (in pairs) by CDF and D0 in 1995.
- The Golden quark (~ 175 GeV/c²)
 - Only fermion with mass near EW scale; 40 times heavier than the bottom quark
- Very wide (1.5 GeV/c²)
 - The top quarks decay before they can hadronize.
 - We can study the decay of the bare quark.
- Fundamental question: Is it the neutrine truth, the Standard Model truth, and nothing but the truth?

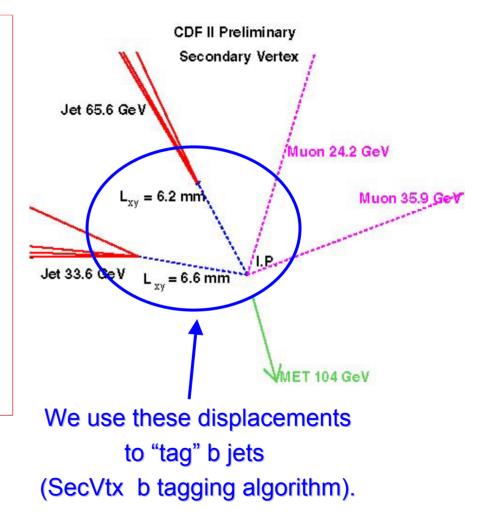


- Does *t* always decay to *Wb*? not *Ws* or *d*?
- To date, we have only confirmed seeing top produced in pairs.
- For this analysis, we use two distinct samples (classified by W decays):
 - Dilepton events
 - Lepton + jet events

Dileptons

- Two high p_T leptons (e, μ)
- Two high E_T jets
- Large missing transverse energy




Lepton + Jets

- One high p_T lepton (e, μ)
- (Three or) Four high E_T jets
- Large missing transverse energy

Top Dilepton Event at CDF

$$\mathcal{R} = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)}$$

• According to what we know about the CKM matrix, BR(t \rightarrow Wb) ~ 100%.

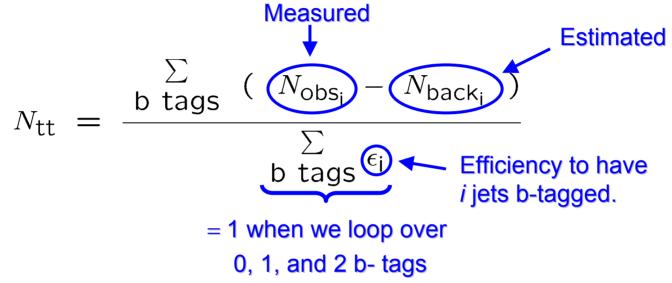
•
$$\mathcal{R} = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2} \stackrel{?}{=} |V_{tb}|^2$$

- We can measure R by looking at the *relative* rates of top candidate events with zero, one, or two b-tagged jets.
- Assuming no background and that b-jets are identified with efficiency ε_{b} ,

$$- N_0 = N_{tt} (1 - R \varepsilon_b)^2 \equiv N_{tt} \varepsilon_0,$$

$$- N_1 = 2 N_{tt} R \varepsilon_b (1 - R \varepsilon_b) \equiv N_{tt} \varepsilon_1,$$

$$- N_2 = N_{tt} (R \epsilon_b)^2 \equiv N_{tt} \epsilon_2.$$


- The R measurement is therefore:
 - Sensitive to R $\varepsilon_{\rm b}$,
 - Over determined, and
 - Largely independent of N_{tt} and $\sigma(t\bar{t})$.
- ϵ_{b} is measured separately (~40% for CDF).

Assuming no background:

$$\mathcal{R} \cdot \epsilon_b = \frac{2}{N_1/N_2 + 2}$$
$$= \frac{1}{2N_0/N_1 + 1}$$
$$= \frac{1}{\sqrt{N_0/N_2 + 1}}$$

• We first need to estimate the total number of tt candidates:

Our likelihood is:

 $\mathcal{L}(\mathcal{R}) = \prod P(N_{\text{obs}_i}|N_{\text{exp}_i})$ where $N_{\text{exp}_i} = N_{\text{tt}} \cdot \epsilon_i + N_{\text{back}_i}$

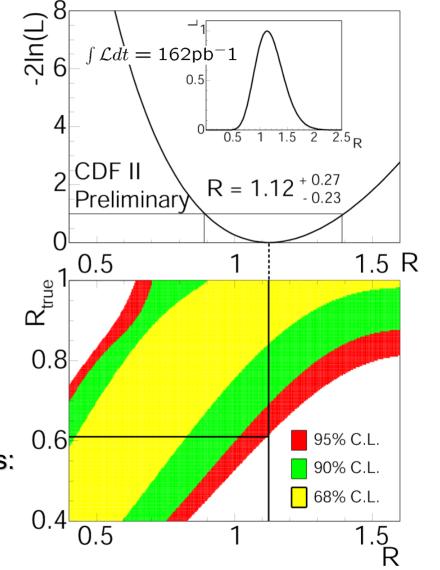
• Remember:

 ϵ_i and therefore N_{tt} depend on R ϵ_b .

CDF Dilepton and L+J Numbers

Lepton + Jets (L+J)	0-tag	1-tag	2-tag	
$\epsilon_i \ (R=1)$	0.45 ± 0.03	0.43 ± 0.02	0.12 ± 0.02	
a priori background	N/A	4.2 ± 0.7	0.2 ± 0.1	$\int \partial u = 1$
ANN background	62.4 ± 9.2	5.8 ± 5.1	$0.1^{+1.0}_{-0.1}$	$\int \mathcal{L}dt = 162 \text{pb}^{-1}$
Total expected	80.4 ± 5.2	21.5 ± 4.1	5.0 ± 1.4	
Observed	79	23	5	
Dileptons (DIL)	0-tag	1-tag	2-tag	
$\epsilon_i \ (R=1)$	0.47 ± 0.03	0.43 ± 0.02	0.10 ± 0.02	
a priori background	2.0 ± 0.6	0.2 ± 0.1	negl.	
Total expected	6.1 ± 0.4	4.0 ± 0.2	0.9 ± 0.2	
Observed	5	4	2	

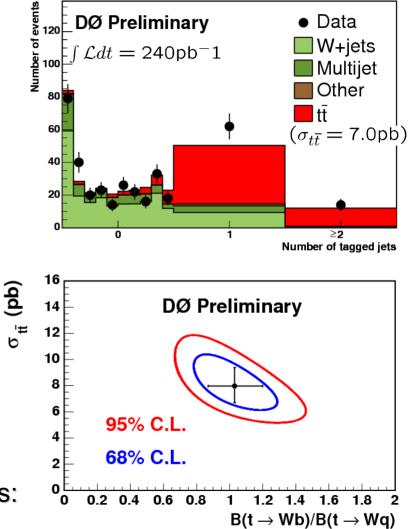
- In addition to using a priori background estimates, we also use an artificial neural net in the L+J sample.
 - Our best 0-tag estimate
- We see very good agreement bin by bin.



- We use both the Dilepton and the Lepton + Jets data samples.
- Uses $\int \mathcal{L}dt = 162 \text{pb}^{-1}$
- $\mathcal{R} = 1.12^{+0.27}_{-0.23}$ (stat. + syst.)
- We use a Feldman-Cousins construction to find our final answer:

 $\mathcal{R} > 0.61$ at the 95% C.L.

• Assuming three generations of quarks: $|V_{tb}| > 0.79$ at the 95% C.L.

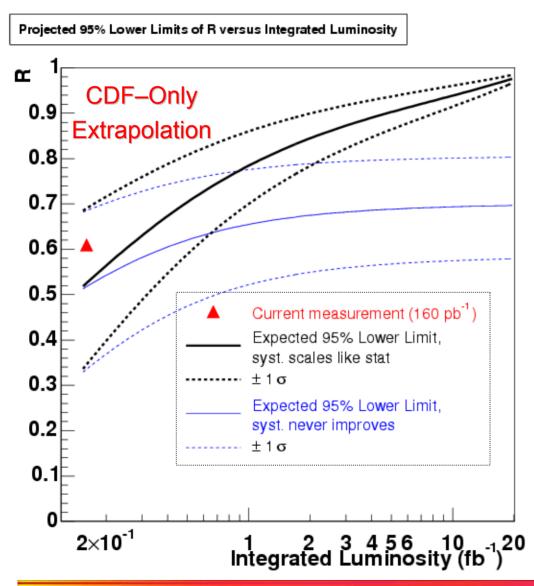

The DØ ${\mathcal R}$ Measurement

- Uses 240 pb⁻¹ lepton + jets sample
- DØ Likelihood depends on both $\mathcal R$ and $\sigma_{t\overline{t}}$.
- DØ uses "SVT" Displaced secondary vertices (similar to CDF)
- Uses lepton + jets events
 - Likelihood discriminant in 0-tag sample

$$\mathcal{R} = 1.03^{+0.19}_{-0.17} \text{ (stat + syst)}$$

$$\sigma_{t\bar{t}} = 7.9^{+1.7}_{-1.5} \text{ (stat + syst)}$$

 ± 0.5 (lumi) pb


- Using a flat prior in \mathcal{R} , DØ finds $\mathcal{R} > 0.64$ at the 95% C.L.
- Assuming three generations of quarks: $|V_{\rm tb}| > 0.80$ at the 95% C.L.

$\operatorname{Our} \mathcal{R} \operatorname{Reach}$

- Quick-and-dirty back of the envelop calculation.
- Assume R = 1 (3 gen).
- Ignores innovation.
- If we keep systematic uncertainties down, can be a very promising measurement.

So What?

Could we test 3 generations?

If $|V_{ts}| = 0.1$ and three generations, \Rightarrow R = 0.99

If four generations and, for example, $|V_{tb}| = 0.5$, $\rightarrow R = 0.96$

Could CDF and DØ **together** see evidence of this at the Tevatron?

Charles Plager

PANIC 2005, October 24-28, 2005 Top Properties @ Tevatron 11

DØ Top Charge

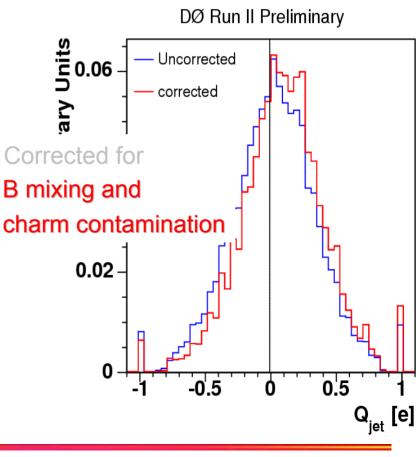
BRAND NEW RESULTS Old!

Why check top charge?

- Is it really top?
- t → W b could mean that top has charge –4/3.

How do we check top charge?

- Double b-tagged lepton + jets sample.
 - Use kinematic fit to pair lepton with correct b jet. → 17 events.
- Use an algorithm for determining the "charge" of b jets.

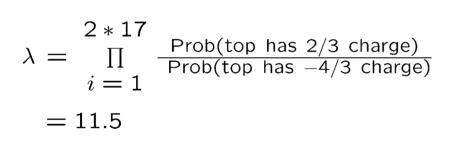

$$q_{\text{jet}} = \frac{\sum q_{\text{track}} * p_T^{0.6}}{\sum p_T^{0.6}}$$

• Two entries per event:

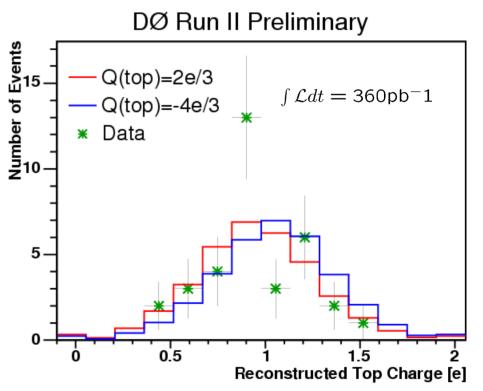
 $Q_1 = |+q_{\text{lepton}} + q_{\text{lepton b jet}}|$

 $Q_2 = |-q_{\text{lepton}} + q_{\text{other b jet}}|$

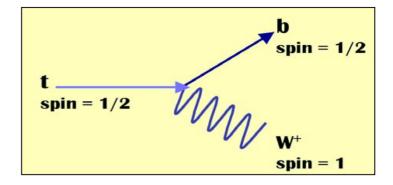
Jet Charge Tagging on $b\overline{b}$ sample with other jet tagged with μ flavor.

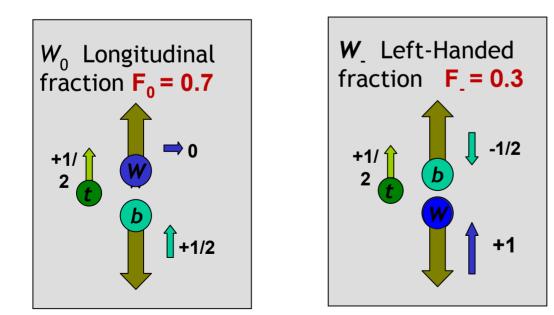

Charles Plager

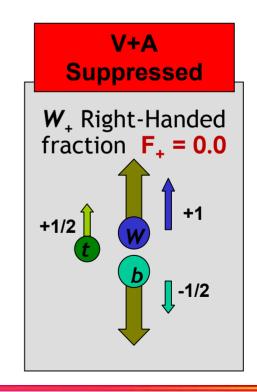
PANIC 2005, October 24-28, 2005


Top Charge, cont.

- Create two templates:
 - top with 2/3 charge and background
 - top with -4/3 charge and background
- Use likelihood ratio:


- Using pseudo-experiments, the probability of seeing λ = 11.5 or greater when the top charge = -4/3
 → Less than 6.3% probability.
- CDF result with 1 fb⁻¹ coming...

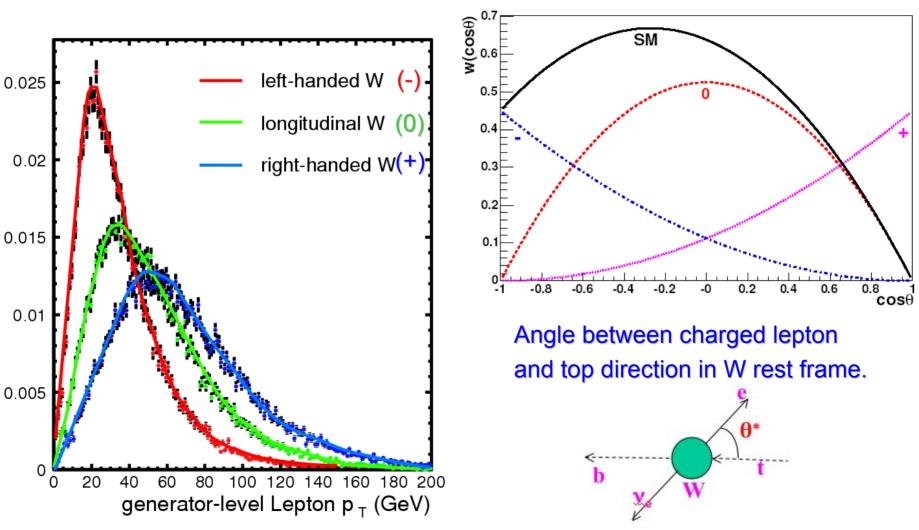




- Examines the nature of the tWb vertex, probing the structure of weak interactions at energy scales near EWSB
- Stringent test of V-A interaction in SM: Standard Model expectations:
 F₀ = 0.7, F₁ = 0.3 and F₁ = 0.0

Charles Plager

PANIC 2005, October 24-28, 2005


Top Properties @ Tevatron 14

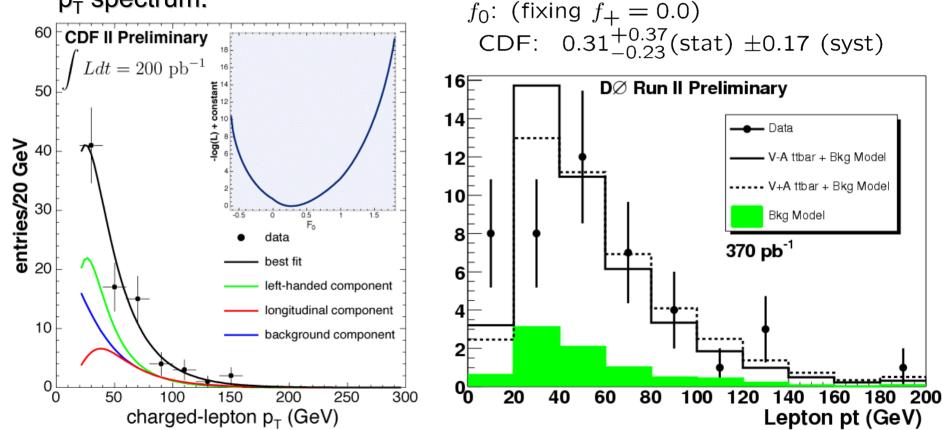
 $\cos(\theta^*)$

Lepton p_T

Charles Plager

PANIC 2005, October 24-28, 2005

Top Properties @ Tevatron 15



Lepton p_T

D0:

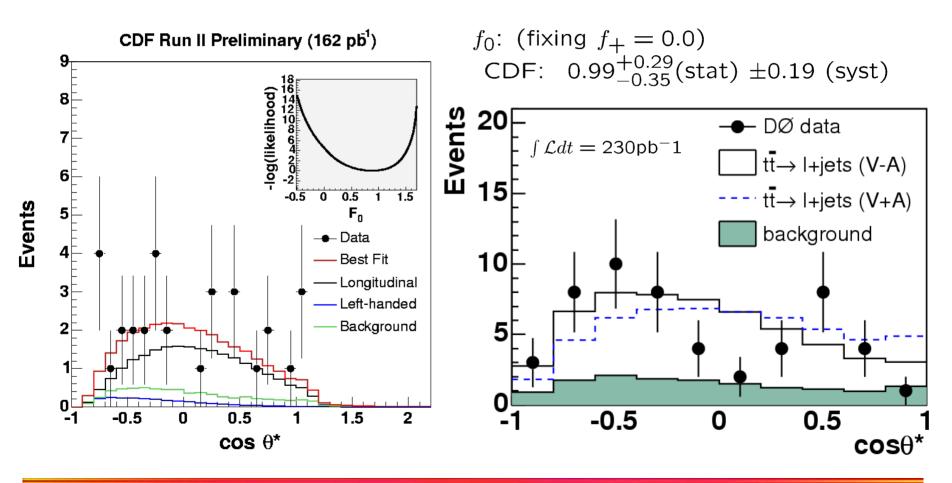
- SM: f₀ = 0.7, f₊ = 0.0
- CDF's f₀ result is low due to "softer" than expected dilepton p_T spectrum.

Charles Plager

 f_+ : (fixing $f_0 = 0.70$)

 0.13 ± 0.20 (stat + syst)

CDF: $-0.18^{+0.14}_{-0.12}$ (stat) ± 0.12 (syst)



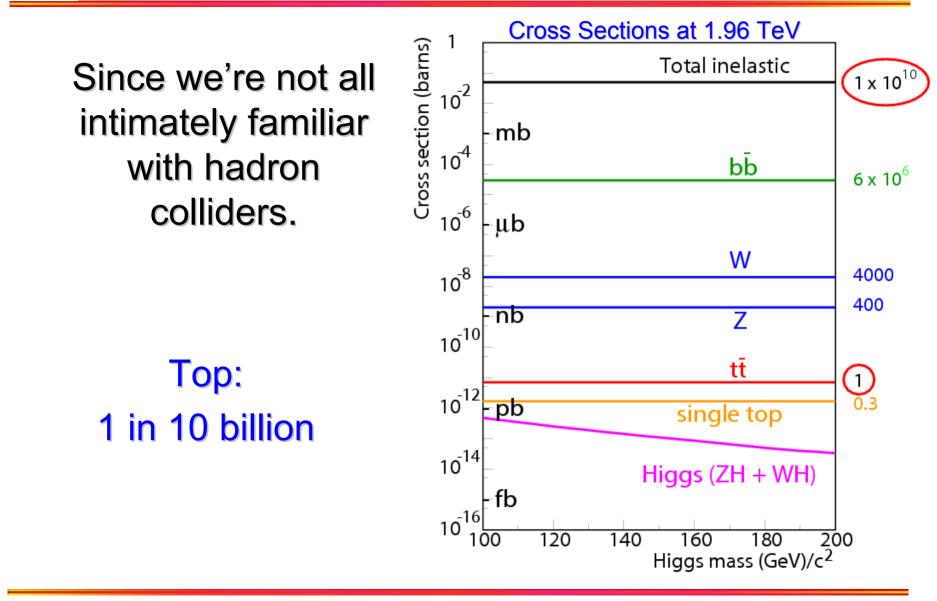
• SM: $f_0 = 0.7$, $f_+ = 0.0$

 $\begin{array}{ll} f_+: \mbox{ (fixing } f_0 = 0.70) \\ \mbox{D0:} & 0.00 \pm 0.13 ({\rm stat}) \ \pm 0.07 ({\rm syst}) \\ \mbox{CDF:} & 0.23 \pm 0.16 ({\rm stat}) \ \pm 0.08 \ ({\rm syst}) \end{array}$

• CDF and DØ combinations of p_T and $cos(\theta^*)$:

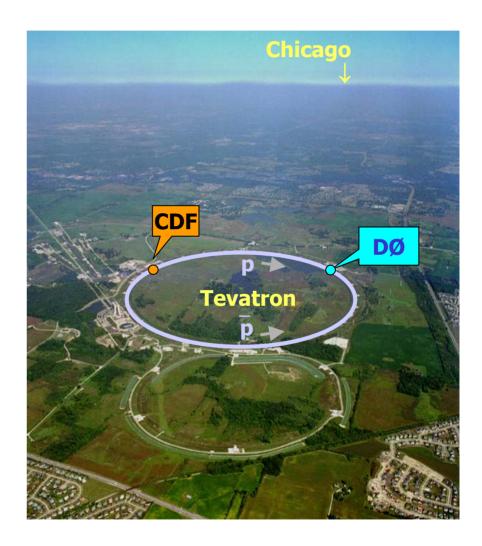
 $\begin{array}{ll} f_+: \mbox{ (fixing } f_0 = 0.70) \\ \mbox{D0:} & 0.04 \pm 0.13 ({\rm stat}) \pm 0.07 ~{\rm (syst)} & \mbox{or} < 0.25 ~{\rm at} ~{\rm the} ~95\% ~{\rm C.L.} \\ \mbox{CDF:} & 0.00 \pm 0.20 ({\rm stat} + {\rm syst}) & \mbox{or} < 0.27 ~{\rm at} ~{\rm the} ~95\% ~{\rm C.L.} \\ \end{array}$

f₀: (fixing $f_+ = 0.0$) CDF: $0.74^{+0.22}_{-0.34}$ (stat + syst) or $f_0 \in [0.18, 0.95]$ at the 95% C.L.

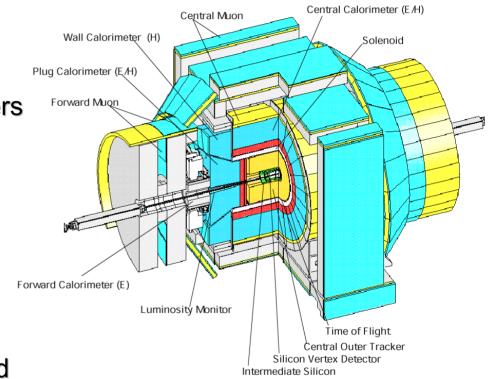

- Lots of exciting top physics happening at the Tevatron.
- Top branching fraction
 - CDF and DØ agree:
 - $|V_{tb}| > 0.8$ at the 95% C.L.
 - Assumption about number of generations
 Can explicitly test in future.
- Top charge
 - Very exciting new DØ result!
 - CDF 1 fb⁻¹ soon.
- W Helicity
 - (Most) everything looks like Standard Model.

Backup Slides

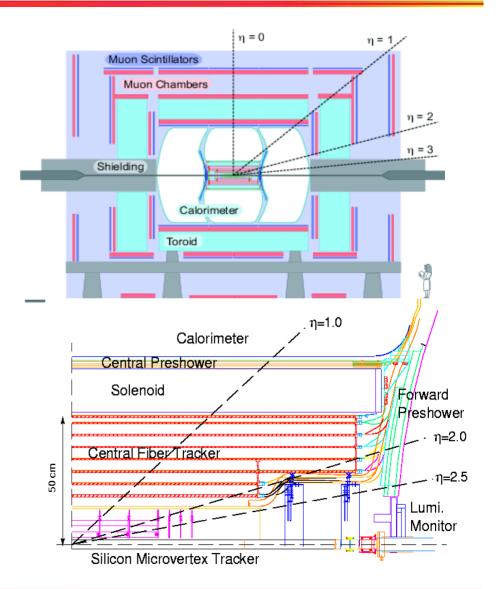
Charles Plager


PANIC 2005, October 24-28, 2005 Top Properties @ Tevatron 21

The TeVatron

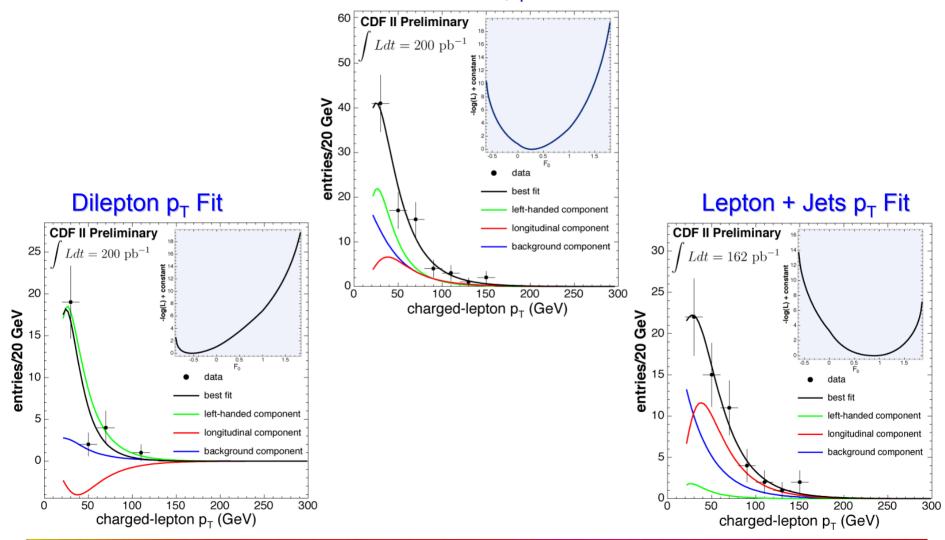

- Proton-antiproton collisions at 1.96 TeV (Run I: 1.8 TeV)
- Peak Luminosity: > $1.4 \cdot 10^{32}$ cm⁻² s⁻¹.
- What's new for Run II?
 - Main Injector: 150 GeV proton storage ring.
 - Recycler: Antiproton storage ring
 - Working well.
 - Electron Cooling established.
- Total Integrated luminosity:
 - Currently, over 1 fb⁻¹.
 - Should have between 4 fb⁻¹ and 9 fb⁻¹ by 2009.

The Run II CDF Detector


- Similar to most colliding detectors:
 - Inner silicon tracking
 - Drift Chamber
 - Solenoid
 - EM and Hadronic Calorimeters
 - Muon Detectors
- New for Run II:
 - Tracking: 8 layer silicon and drift chamber
 - Trigger/DAQ
 - Better silicon, calorimeter and muon coverage

The Run II DØ Detector

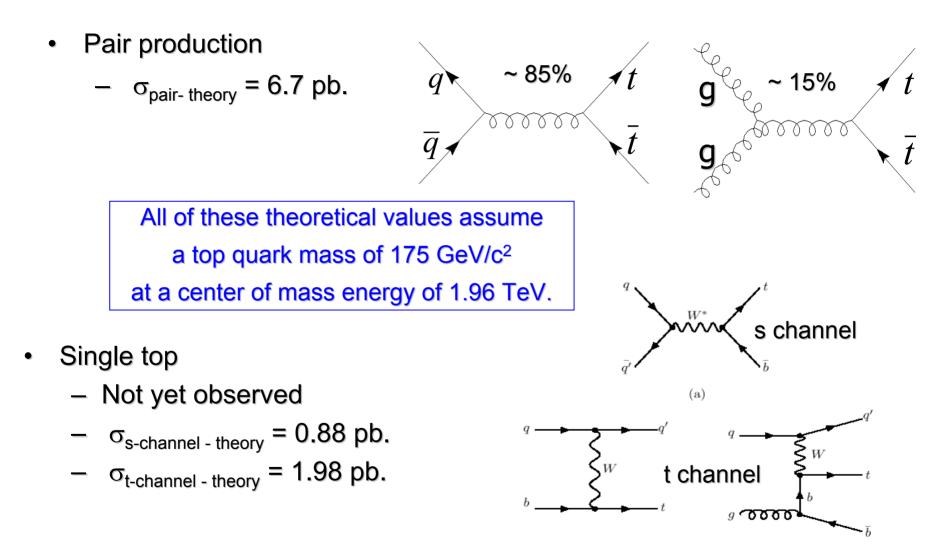
- New central tracking inside 2 T solenoid
 - Silicon vertex detector
 - b-tagging
 - Scintillating fiber tracker
- New forward muon system
- New readout / trigger electronics


Charles Plager

PANIC 2005, October 24-28, 2005 Top Properties @ Tevatron 24

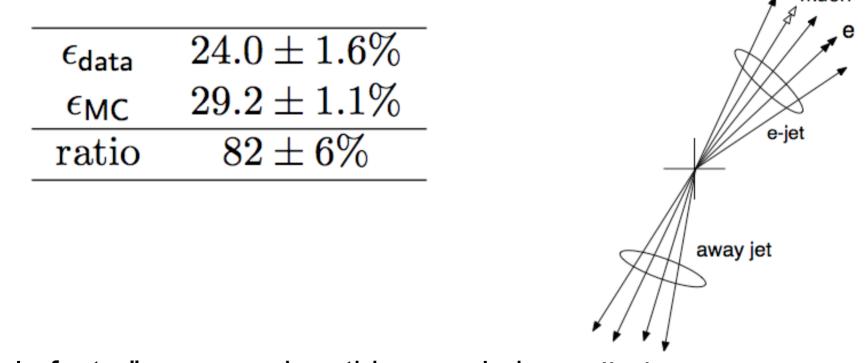
CDF W Helicity from p_T

Combined p_T Fit


Charles Plager

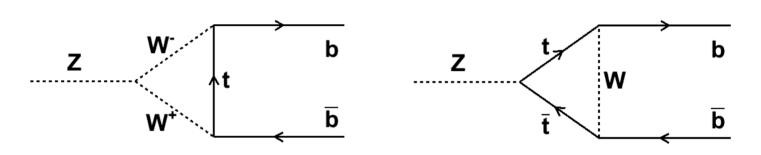
PANIC 2005, October 24-28, 2005

Top Properties @ Tevatron 25



Calibrating the b-tagging Efficiency

Measure ratio of single- and double-tagged events in b-enriched sample with soft (p_T >8 GeV) electrons



"Scale factor" measured on this sample is applied to other samples, even if the efficiencies differ

J. Swain and L. Taylor (hep-ph/9712420) looked at V_{tb} by looking at EW corrections to Z → bb (no assumption of unitarity):
 |V_{tb}| = 0.77^{+0.24}_{-0.17}

