(Some thoughts on) Neutrino properties and oscillation experiments

Alexander Friedland

Los Alamos National Lab

PANIC 05 Neutrino Satellite Meeting

A long-long time ago...

- ...some people were suspecting that neutrinos could have unusual properties:
 - v's could be massive and oscillate
 - Pontecorvo (1957); Gribov & Pontecorvo (1969),...
 - v's could have non-standard interaction with matter
 - Wolfenstein (1978);...
 - v's could have magnetic moments and precess in the solar magnetic fields

Cisneros (1971); Okun, Voloshin & Vysotsky (1986)...

• Then humans learned some more about neutrinos...

> (state of things circa 2000)

• ... and more!

Oct 30, 2005, PANIC 05 Neutrino Satellite Meeting

Now that we know so much...

• What can we say about neutrinos?

- They do have masses, they mix, they oscillate \square
- Do they have non-standard interactions? ?
- Do they have magnetic moments??
- Anything else? (Majorana/Dirac, sterile states, etc, etc, not in this talk)

 By searching for nonstandard properties we may be probing new physics above the EW scale

Some neutrino interactions are very poorly known

 Parameterize additional contributions due to heavy scalar/vector exchange as

 $L^{NSI} = -2\sqrt{2}G_F(\bar{\nu}_{\alpha}\gamma_{\rho}\nu_{\beta})(\epsilon_{\alpha\beta}^{f\tilde{f}L}\bar{f}_L\gamma^{\rho}\tilde{f}_L + \epsilon_{\alpha\beta}^{f\tilde{f}R}\bar{f}_R\gamma^{\rho}\tilde{f}_R) + h.c.$

• Well established only for the μ -neutrino $\epsilon_{e\mu} \lesssim 10^{-3}, \; \epsilon_{\mu\mu} \lesssim 10^{-3} - 10^{-2}$

 poorly known for the e-neutrino and <u>especially</u> the τ-neutrino (not using SU(2))

 $-0.4 \ < \ \epsilon_{ee}^{uuR} \ < \ 0.7$, $|\epsilon_{ au e}^{uu}| \ < \ 0.5$, $|\epsilon_{ au e}^{dd}| \ < \ 0.5$,

 $|\epsilon_{\tau\tau}^{uuR}| < 3$ S. Davidson et al, JHEP 0303, 011 (2003)

Oct 30, 2005, PANIC 05 Neutrino Satellite Meeting

Flavor-changing NSI: effects on solar neutrino energy spectrum

 Transition from "vacuum regime" (low E_v) to matter dominated regime (high E_v) deviates from the canonical MSW profile

$$\epsilon_{e\tau} \equiv \sum_{f=u,d,e} \epsilon_{e\tau}^{f} n_{f} / n_{e}$$
$$\epsilon_{e\tau}^{f} \equiv \epsilon_{e\tau}^{fL} + \epsilon_{\alpha\beta}^{fR}$$

Flavor-changing NSI: effects on solar neutrino energy spectrum

 Survival probability at SNO could show more or less energy dependence, dependence, depending on the sign of the NSI!

• Low-energy bin critical!

$$\epsilon_{\alpha\beta} \equiv \sum_{f=u,d,e} \epsilon_{\alpha\beta}^{f} n_{f} / n_{e}$$
$$\epsilon_{\alpha\beta}^{f} \equiv \epsilon_{\alpha\beta}^{fL} + \epsilon_{\alpha\beta}^{fR}$$

NSI can even lead to a new solution: LMA-0...

• Choose a point that cancels the d/n effect: $\varepsilon_{ee}^{d} = \varepsilon_{ee}^{u} = -0.025,$ $\varepsilon_{e\tau}^{d} = \varepsilon_{e\tau}^{u} = 0.11,$ $\varepsilon_{\tau\tau}^{d} = \varepsilon_{\tau\tau}^{u} = 0.08.$

...with completely non-trivial and testable properties

<u>KamLAND</u>

Solar neutrino experiments

A. F., C. Lunardini, C. Peña-Garay, PLB594:347,2004 [hep-ph/0402266]

Oct 30, 2005, PANIC 05 Neutrino Satellite Meeting

Atmospheric neutrinos and NSI

- It was thought that such large NSI are excluded by the atmospheric ν data but that was based on a 2-family $\nu_{\mu} \leftrightarrow \nu_{\tau}$ analysis
- The atmospheric analysis DOES NOT reduce to a 2x2 ν_{μ} - ν_{τ} system!
 - 3-family analysis finds that large NSI ($\epsilon_{e\tau} \sim \epsilon_{\tau\tau} \sim 1$) can be consistent with the data

A. F., C. Lunardini, M. Maltoni, PRD 70:111301,2004 [hep-ph/0408264] A. F., C. Lunardini, PRD 72:053009,2005 [hep-ph/0506143]

Allowed NSI range: fit and predictions

Effect of NSI on the oscillation fit

• The best-fit region shifts to smaller θ and larger Δm^2 : $\cos 2\theta \simeq s_{\beta}^2/(1+c_{\beta}^2)$; $\Delta m^2 \simeq \Delta m_m^2(1+\cos^{-2}\beta)/2$

 $\epsilon_{e\tau} = 0, \epsilon_{\tau\tau} = 0;$ $\epsilon_{e\tau} = 0.30, \epsilon_{\tau\tau} = 0.106;$ $\epsilon_{e\tau} = 0.60, \epsilon_{\tau\tau} = 0.424;$ $\epsilon_{e\tau} = 0.90, \epsilon_{\tau\tau} = 0.953.$

Testing the NSI

- Lower threshold at SNO, to look for the upturn in P_{ee}
- ⁷Be line (Borexino, KamLAND?), to see if the flux is lower, as predicted by LMA-0
- Pep neutrinos!
- Atmospheric mixing angle should be probed by MINOS: will test the large NSI possibility
- NO-LOSE situation: confirmation of the standard scenario would place strong bounds on the NSI. In the opposite case, new physics at the 10²-10³ GeV!

Neutrino magnetic moment: basics

Dimension 5 operator

 $\mathcal{L}_{EM} = -\frac{1}{2} \mu_{ab} (\nu^{\alpha})_a (\sigma^{\mu\nu})_{\alpha}{}^{\beta} (\nu_{\beta})_b F_{\mu\nu} + \text{h.c.}$ $= i \mu_{ab} (\tilde{\chi})_a \vec{\sigma} (\nu)_b (\vec{E} + i\vec{B}) + \text{h.c.}$

 Majorana neutrino: flavor-diagonal moments vanish identically (spinors anticommute); flavor-changing (transition) moments are allowed

Ultrarel. v precesses in an external magnetic field if either the magnetic or electric moments are non-zero

Neutrino magnetic moment: bounds

- Direct bounds: μ < 1× 10⁻¹⁰ μ_B (NUMU experiment, Phys. Lett. B564, 190, 2003)
- * BBN bound: wrong helicity v production (*Dirac only*) $\mu \lesssim 5 \times 10^{-10} \mu_B$ (Fukugida&Yazaki, PRD36,3817,1987)
- SK spect. distort. μ < 1.5× 10⁻¹⁰ μ_B (Beacom&Vogel, PRL83,5222,1999)
- CMB: Searches for spectral distortion caused by v decay: µ ≤ 0.3×10⁻¹⁰ µ_B (eV/m_v)^{2.3} (Ressel&Turner)
 Astrophysics: red giant cooling, µ ≤ 3×10⁻¹² µ_B (G. Raffelt, PRL64, 2856, 1990)

Use KamLAND?

- Interaction with solar magnetic fields: $\nu_e \to anti-\nu_\mu$ (Majorana neutrinos)
- Flavor oscillations: anti- $v_{\mu} \rightarrow$ anti- v_{e}
- KamLAND is VERY sensitive to anti- v_e from the Sun
 - looks for events above 8.3 MeV where there are no reactor antineutrinos; if any excess over predicted background observed, should be due to conversions of solar ⁸B neutrinos
 - Current bound: \lesssim 3 \times 10⁻⁴ v_e \rightarrow anti- v_e conversion (KamLAND: Phys. Rev. Lett. 92, 071301 (2004))
 - E. Torrente-Lujan, 2003;
 - B. C. Chauhan, J. Pulido and E. Torrente-Lujan, 2003;
 - O. G. Miranda, T. I. Rashba, A. I. Rez and Valle, 2004

If in the Sun, where?

- Two places with very different physics:
 - convective zone (r > 0.7 R_{SUN})
 - Magnetic fields KNOWN TO EXIST
 - sunspots, flares, prominences, etc
 - generated by turbulence and shear
 - 11-year (22-year) solar cycle
 - radiative zone (r < 0.7 R_{SUN})
 - No active mechanism to generate fields
 - Only hints that magnetic field may exist
 - High conductivity (very long Ohmic decay time)
 - possible primordial fields (T.G.Cowling, 1945)

 weaker upper bounds than in the CZ, B < 5-7 MG (A.F., A. Gruzinov, Astrophys. J., 601, 570, 2004)

Radiative zone: no antineutrino production, even for $\mu_v \sim 10^{-11} \,\mu_B$

Oct 30, 2005, PANIC 05 Neutrino Satellite Meeting

Paradox?

• It is well-known that we should have large $v_e \rightarrow anti-v_{\mu}$ conversion if the RSFP resonance condition

$$\frac{\Delta m^2}{2E_{\nu}}\cos 2\theta = \sqrt{2}G_F(n_e - n_n),$$

is satisfied

For measured $\Delta m^2 \simeq$ 8 * 10⁻⁵ eV², ⁸B neutrinos (~ 10 MeV) <u>it is satisfied</u>

Resolution: correct resonance condition

- Check if *mass* eigenstates in matter cross
- Instead of the classical condition, $\frac{\Delta m^2}{2E_w}\cos 2\theta = \sqrt{2}G_F(n_e - n_n),$
- the correct condition is

$$\frac{\Delta m^2}{2E_{\nu}} = \sqrt{2}G_F(n_e - n_n) \sqrt{\frac{n_e^2 - (n_e - n_n)^2}{n_e^2 \cos^2 2\theta - (n_e - n_n)^2}}.$$

 The two agree only for zero θ! The dependence on θ is completely different! In particular, the resonance disappears for

$$\cos 2\theta_{\rm crit} \simeq (1 - n_n/n_e)$$
 $\tan^2 \theta_{\rm crit} \sim (0.09 - 0.33).$

Resolution: correct resonance condition

- Large mixing pushes levels apart!
- No resonant neutrinoantineutrino conversion

Convective Zone, Model I: Uniform Kolmogorov turbulence

 Assume magnetic field scales in a way typical for turbulent systems

 $B_\lambda \propto \lambda^lpha, \ lpha \sim 1/3$ (Kolmogorov)

- Estimate the field on the largest scales (0.1 R_{\odot}) of the turbulence from equipartition: $B_{L_{\text{max}}} \sim \rho^{1/6} L_{\odot}^{1/3} r^{-2/3} \sim 10 \text{kG}$
- The effect comes out too small! $P(\nu_e \rightarrow \bar{\nu}_e) \sim \cos^2 \theta (\mu B_{\lambda_{osc}})^2 L \lambda_{osc} \sim 10^{-5}$

Convective Zone, Model II: Isolated flux tubes

- Plausible that the field in the CZ has a ``fibril'' nature, i.e., it is expelled by the turbulence and combines in isolated flux tubes. It was argued (E. Parker, 1984) that the total energy of the CZ (thermal + gravitational + magnetic) is reduced by the fibril state by avoiding the magnetic inhibition of convection
- Sunspot flux 10²⁰ Mx, assume 100 kG fields \rightarrow 300 km, close to optimal (neutrino oscillation length)!
- Comparing with total flux through the CZ, 10²⁴ Mx, neutrino encounters only several tubes

$$P(\nu_e
ightarrow \overline{
u}_e) \sim (a \text{ few}) imes 10^{-4}$$

Summary on magnetic moment

- Given the measured large value of the solar neutrino mixing angle, possible magnetic fields in the solar radiative interior *cannot affect neutrino evolution*
- Correct "magnetic resonance" condition derived
- "Bounds" based on the CZ spin-flip are greatly exaggerated: did not treat magnetic field correctly
- Makes sense that KamLAND has not seen any antineutrinos from the Sun. May be on the edge of probing the optimistic scenario.

Convective Zone fields: basics

- Fields created and destroyed during each solar cycle by convection + differential rotation. The exact picture still an active subject of research. Nevertheless,
 - Sunspots (B \sim sev. kG) usually come in pairs of opposite polarity; thought to be manifestations of large-scale magnetic structures residing in the CZ.
 - Total flux that emerges on the surface during the solar cycle is around 2 \times 10²⁵ Mx; total toroidal flux in the CZ at sunspot maximum \sim 10²⁴ Mx (tubes emerge more than once)
 - $\bullet\,$ Turbulent equipartition B \sim 10 kG
 - Stronger fields (B \sim 100 kG), if exist, must have a small filling fraction (total flux + energy arguments)

Neutrino in turbulent fields

- "Noisy" background field resets oscillation phase \rightarrow random walk in the flavor space
 - transitions that are normally (in smooth fields) suppressed by large diagonal mass splitting become allowed

 $P \sim (\mu B \lambda_{\rm OSC})^2$ smooth field

 $P \sim \begin{cases} (\mu B \lambda_{\rm corr})^2 L / \lambda_{\rm corr}, & \lambda_{\rm corr} \lesssim \lambda_{\rm osc} \\ (\mu B \lambda_{\rm osc})^2 L / \lambda_{\rm corr}, & \lambda_{\rm corr} \gtrsim \lambda_{\rm osc}, \text{ sharp edge} \\ \text{exp. suppressed,} & \lambda_{\rm corr} \gtrsim \lambda_{\rm osc}, \text{ smooth edge} \end{cases}$

Balantekin&Loreti 1994, Burgess&Michaud 1996, ...

Oct 30, 2005, PANIC 05 Neutrino Satellite Meeting