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MODELS 

A semi-implicit time integration scheme tested earlier with a spectral model is now adapted to  a grid point model 
of the primitive equations. Predictions prepared by the implicit method compare quite favorably with the forecasts 
produced by an explicit technique. The implicit model runs about four times faster; and after 5 days of integration, the 
forecasts differ by less than 20 m. 

1. INTRODUCTION 

Motion in compressible fluids can generate time 
oscillations extending over a very broad spectrum of 
frequencies. Numerical models concerned with a simula- 
tion of the essential features of the fluid motion need to 
carry only that part of the frequency spectrum that 
directly affects the large-scale circulations. 

The filtering approximations used in the early atmos- 
pheric models eliminated both sound and gravity waves, 
but they produced equations that became difficult to 
integrate. Current models retain the gravity modes, 
provide greater accuracy, and do not require any trans- 
formation of the basic equations for the numerical 
calculations. 

Unfortunately, the primitive equations models will not 
give stable solutions with long time steps. The short 
10-min steps used in these models reduce the truncation 
errors to a level two orders of magnitude lower than 
the error level associated with the spatial resolution. 

Scientists in the Soviet Union devoted a considerable 
amount of time to studies of stable integration algorithms. 
The work of Marchuk (1965) in this field deserves special 
attention. I n  the United States, Holton (1967) and 
Kurihara (1965) also tested simple implicit models with 
success. All of these schemes allow long time steps and 
retain the main advantages of the primitive equations 
formulation. The particular method discussed in this 
report differs only slightly from one of the techniques 
proposed by Kurihara (1965). 

9. THE METHOD OF INTEGRATION 

Oscillatory systems generally behave in accordance 
with relatively simple physical laws. Trigonometric 
functions or complex exponential functions represent this 
type of motion adequately, and a first-order differential 
equation will describe the time variations accurately. 
This equation will be given the following form 

aF  
a t  -=iuF 

where the constant w represents the frequency of the 
oscillation. Using the method of Kurihara (1965), we will 
arbitrarily break clown this frequency into two components 
a and p: 

a+P=w,  (2) 

and we will use the following finite-diff erence algorithm 
to approximate eq (1) : 

(3) 
We must note here that, in the absence of the p term 

in the above equation, we have a centered time step. 
When a vanishes, we have a fully implicit step; and we 
may consider that p represents that part of the frequency 
w that we will treat implicitly. 

For simple wave motion, we will use the prediction 
operator X that transforms F(t)  into F ( t + A t ) .  In terms 
of this operator, (3) becomes an algebraic equation 

(1 -$A 1 )  X 2  - 2 k A t X -  (1 f $A t ) = 0, (4) 

and this equation gives the two solutions 

The properties of the two solutions depend on the 
condition 

a2At2 5 1 fp2At2. (6) 

Tf this condition is satisfied, the magnitude of the two 
roots will be unity, and the numerical integration will 
remain stable. 

Consider now a high-frequency perturbation where the 
restoring influence of gravity is accounted for by P while 
the advective effect of a basic current U is included in a :  

k2U2AtZ 5 1 +k2ghoAt2. (7) 

Here, ho represents the mean depth of the fluid, and k 
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is the wave number of the perturbation. The condition 
given above will be satisfied if 

IUI 5 Jgho, (8) 

and clearly this condition presents no problem in the 
atmosphere. If we make an allowance for the rotation 
of the earth in the model or let the temperature vary 
with latitude, thesc changes will alter the phase speed of 
gravity waves. If we incorporate these effects in a, then 
the left-hand side of eq (6) will increase, but not suffi- 
ciently to violate this condition. We conclude that the 
proposed treatment of the gravity waves will remain 
stable under nearly all conditions. 

We may now consider the meteorological perturbations. 
Since gravity has little effect on the phase spced of these 
waves, wc may delete the corresponding term from eq (7). 
With centered finite differences of second order in space, 
this equation becomes 

(9) 
At2 
a2 

7/* - sin2 (kd) 5 1 

where d is the mesh length of the grid. This condition is 
the criterion normally used with filtered models. 

The above analysis suggests that all terms in the 
meteorological equations should be evaluated explicitly 
with only a few exceptions. Gravity waves operate 
through the pressure gradient term and the divergence 
term. These two quantities should be averaged in time 
as proposed in the /? term of eq (3). 

3. THE MODELING EQUATIONS 
We will use the primitivc meteorological equations and 

assume that the atmosphere is incompressible and inviscid. 
Shuman and Stackpole (1969) proposed that the resulting 
equations bc written in the following form 

K=+ (u2+vU"), (10) 

a4 aK at& 
at - ax ax 

m -+Qv-m-, _-- 

av a#J aK 
a?/ aY 

-- at- - m --Qu-m -J 

and 

that they call the invariant form of the meteorological 
equations. This set of equations is valid in any conformal 
projection, and the variables are defined as: x and y are 
the coordinates of the projection, u and v are the com- 
ponents of the wind vector along the axes of the coordinate 
system, 9 is the geopotential, m the map scale, K the 
kinetic energy, and Q is the absolute vorticity. 

FIGURE 1.-Rectangular 47X 51 grid point network. The dashed 
line W represents the solid malls in the fluid. The full line B repre- 
sents the boundary of the grid, and I represents the first set of 
interior points. 

One advantage of the invariant form is that the gra- 
dient of the map scale is incorporated into the evaluation 
of vorticity and divergence. 

4. THE INITIALIZATION 

The numerical integration \rill be performed on the grid 
shown in figure 1. It is assumed that the fluid is bounded 
by solid walls located along the dashed line W .  The 
stream function + is the only field used as initial data. 
Since this stream function normally gives flow through 
the wall, Ire replace i t  by a modified version #'. We first 
define the average value of the stream function along a 
closed curve 

- $+as 

@ 
+=-. (15) 

The average value along the wall is then obtained from 
the averages around the rectangles B and I :  

(16) 

By using a distance R of five grid lengths, the stream 
function is modified as 

where r is the shortest distance to the wall. An influence 
region of five grid lengths keeps the boundary region 
smooth and does not produce unreasonable values for 
vorticity near the boundaries. 
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All finite-difference calculations will use the three basis for the filtered baroclinic model used in Canada. 
algorithms Unfortunately, our operational initialization scheme - F" = [ F(af )Aa) +F( a - $ha)] , does not use the same finite-difference approximations as 

those appearing in eq (33). We use eq (33) in the present (20) 

1 set of experiments simply to obtain fields balanced under 
the same conditions as those used in the model. 

With these modifications, the winds are perfectly non- 
divergent initially and a t  the end of the first time step. 

(22) This property virtually eliminates the gravity waves from 
the integration. On the other hand, the geopotential used 
by the model differs slightly from the originally analyzed 
geopotential. These discrepancies will vanish when we 

-2 (23) adapt our operational initialization scheme to the model 
described here. 

F "--ACY - - [ F(CY + +Aa) -F(cY- +A.)] , 

F2"=$[F(a+Aa) +F(a-Aa)] 

where CY stands for any one of the independent variables. 

(21) 
and 

The winds are then calculated as 

u=-m$'u, 

U U*=--, 
m 

21 V*=-, 
m 

(24) 5. THE MODEL EXPERIMENTS 

(25) The semi-implicit numerical integration scheme was 
tested by comparison with an explicit model. A model 
developed by Shuman and Stackpole (1969) was used for 
this purpose. By using the operators defined earlier, we 
can write this model as 

(26) 

(36) 

(37) 

The numerical integration of these equations is straight- 
forward. 

--L -2 -2y -2-- 
Vt=-4y--&U - K y  , The intermediate variables U* and V* are evaluated and 

in the middle of the grid squares while U and V are grid -t -2%, -2y -y -2y-y -xy-2 2y 
point values. The model uses the variables U and V; and &= - m* [4 (U2+V':)+U 4z+v 4yl . 
to obtain values a t  the boundary points, we use the 
following conditions along the malls parallel to the y axis: 

and 

- d=O 
vz=O. 

For the implicit model, we will use equations 

(38) 
-2Y --Y - (29) 

(30) U*:=-G:2t+QV -K2, 

A similar procedure is applied to the other two walls. 

equation: 
To obtain the geopotential 4, we use the balance 

(31) 
m2 K = y  (U2+ V2) ,  

We solve eq (33) for 6 by relaxation with the following 
condition along the walls parallel to  the y axis: 

-x-2 

A= f v (34) 

A similar condition is used along the two other walls. 
The stream function used for this model is not produced 

from an analysis of the wind observations. It is determined 
by applying an initialization scheme to an analysis of the 
geopotential. This conversion is performed on a routine 

--t -2% -zy -z 
V*t=-~$y -QU -Ky) 

and 

-2y - zy -y -z -xy-y --Zy-x xy 
-m2 [(+-dd (U,+Vy)+U & + V  4yl 

(39) 

(40) 

In these equations, 4o is a constant and is assigned a 
value of 56000 m2  for predictions of the 500-mb flow. 
The actual value of this constant is not very important 
as long as i t  is near the mean value of C$ over the grid. 

The implicit model operates in terms of the variables 
U* and V* internally. The mind components U and V 
are obtained from eq (27) and (28) when required. Both 
models use the boundary conditions defined by eq (29), 
(30), and (34). 

The numerical procedure used to perform the time 
step in the implicit model has already been described by 
Robert (1969). It mill be repeated here for convenience: 
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FIGURE 2.-The 5-day forecast of the 500-mb geopotential produced 
by the explicit model. 

- - f i t  
V.:+$Y =b, 

and 
-A" - ~ -  

(43) 

We fist calculate a, b ,  and G and then perform the 

-y -x 2 + rn'h (U*, + v*,> =e.  

transformations 

-21 
U* +A&''= U * ( t - A t )  + A t a = A ,  (44) 

Fzt +At;: = v* ( t -A t )  +At b = B , (45) 
and 

~~ -y -y- 
~2+Atm2$,,(U*,+V*,) = $ ( t - A t ) + A t c = C .  (46) 

Eliminating the divergence from the above equations 
gives 

-xz 2t -2 m 2 A t 2 & , ( & - ~ y u )  -@ =- C + m 2 A t + , ( A : f ~ ~ ) .  (47) 

We solve this equation for T'' and then me solve eq (44) 

and (45) for U"" and FZt. Finally, we produce the 
predictions 

U*(t+At)=2U*2t-  U * ( t - A t ) ,  (4% 
-2t V * ( t + A t )  =2V* - V * ( t  - A t ) ,  (49) 

FIGURE 3.-The 5-day forecast of the 500-mb geopotential produced 
by the semi-implicit model. 

and 
&+At) =2G2-4(t - A t ) .  (50) 

A time step of 10 min is used for the explicit mode 
compared to 60 min for the implicit version. The numerical 
integration proceeds about four times faster with the 
implicit scheme. 

6. RESULTS 

A 5-day integration is performed from the 500-mb chart 
of 00 GMT 011 Feb. 21, 1969. The prediction produced by 
the explicit model appears in figure 2 .  A similar prediction 
made with the implicit model is given in figure 3. The two 
predictions are almost identical. There are no differences 
exceeding 20 m. 

The result is quite interesting. It shom that the 
implicit model duplicates the explicit model very well. 
I t  also shows that the errors arising from time truncation 
remain quite small even after an integration of the order 
of 5 days. 

Both models were integrated to 20 days with calcula- 
tions of total mass, total energy, and mean square poten- 
tial vorticity. Only slight variations of these quantities 
mere detected during the integration. A slight amount of 
decoupling between the even and odd time steps appears 
after about 10 days in both models, but this is only a 
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minor problem that could be eliminated with a very weak 
filter. 

7. CONCLUSION 
The semi-implicit time integration scheme has been 

tested successfully with a spectral barotropic model of the 
primitive meteorological equations, a grid point barotrQpic 
model, and a three-level spectral model (Robert 1970). 
I n  all cases, the truncation errors associated with the 60- 
min time step remain an order of magnitude smaller than 
the errors associated with space truncation. 

Implicit integration schemes are ivell worth considering 
for atmospheric models because of the substantial economy 
in computing that arises. In Canada, it appears that this 
numerical procedure will become an essential part of our 
models, enabling us to integrate the primitive equations 
in a period of time short enough for all operational 
applications. 
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