Table 3-1START Surface Soil Analytical Data (mg/kg)Limited Removal Assessment

-	Number:	99010401	99010402	99010403	99010404
San	nple Date:	1/7/1999	1/7/99	1/7/99	1/7/99
Chemical	PRGs				
	(mg/kg)				
Naphthalene	4	150	ND	12,000	2,800
2-Methylnaphthalene	—	83	ND	9,300	1,300
Acenaphthylene	—	11	0.53	ND	93
Acenaphthene	29	180	0.60	ND	1,700
3-Nitroaniline		ND	0.42	ND	ND
Dibenzofuran		100	ND	ND	1,000
Fluorene	28	150	0.67	ND	1,500
Phenanthrene		450	2	ND	ND
Anthracene	590	420	3	30,000	3,700
Carbazole	0.03	ND	ND	3,300	530
Fluoranthene	210	420	16	18,000	2,800
Pyrene	210	410	13	14,000	2,400
Benzo(a)anthracene ¹	0.08	190	7	5,500	960
Chrysene ¹	8	200	13	16,000	1,200
Benzo(b)fluoranthene ¹	0.2	ND	14	3,400	890
Benzo(k)fluoranthene ¹	2	230	9	3,200	430
Benzo(a)pyrene ¹	0.4	120	12	3,500	760
Indeno(1,2,3-cd)pyrene ¹	0.7	73	7	1,200	300
Dibenz(a,h)anthracene ¹	0.8	16	ND	590	26
Benzo(g,h,i)perylene	—	60	6	890	220
Total ² PAHs	_	3,080	104	108,280	19,779
Total ² CPAHs		829	68	33,390	4,566

Notes:

PRGs - USEPA Region 9 Preliminary Remediation Goals, Migration to Groundwater (Dilution Attenuation Factor 1) (USEPA, 2000).

Shading indicates value exceeds PRGs.

ND - Not detected at method reporting limits.

¹ Carcinogenic PAH.

 $^{2}\,$ When calculating total values, zero was used for those constituents identified as less than the detection limit.

Table 3-2Polynuclear Aromatic Hydrocarbons in Excavation PitSoil Samples (mg/kg) from Removal Action Sampling

Sample L USEPA Sample	e ID No.:		99MEX01S 99094051	В	9	9MEX023 9909405	-	ç	9MEX033 9909405		99MEX04S 99094054	
Sample Dep			9–10			9–10			9–10		9–10	
Samp	ole Date:		2/23/99			2/23/99			2/24/99		2/24/99	
Compound	PRGs											
Naahthalana	(mg/kg)		140,000		<	4,300	1.1		71,000		 280,000	-
Naphthalene	4	<	56,000	U		4,300 720	U JQ	<	34,000	U	2,500	JQ
Acenaphthylene	29			U	<		U U			U		JQ
Acenaphthene Fluorene	29 28		83,000		<	4,300 610	-		60,000		230,000	
	20		72,000				JQ		68,000		150,000	
Phenanthrene			240,000			2,500	JQ		170,000		560,000	
Anthracene	590		120,000			8,000	10		40,000		190,000	
Fluoranthene	210		290,000			3,600	JQ		110,000		410,000	
Pyrene	210		240,000			4,400			85,000		410,000	
Benzo(a)anthracene ¹	0.08		10,000			8,200			31,000	JQ	120,000	
Chrysene ¹	8		150,000			62,000			32,000	JQ	170,000	
Benzo(b)fluoranthene ¹	0.2		74,000			21,000			18,000	JQ	67,000	JL
Benzo(k)fluoranthene ¹	2		64,000			16,000			26,000	JQ	90,000	
Benzo(a)pyrene ¹	0.4		67,000			18,000			20,000	JQ	53,000	JL
Indeno(1,2,3-cd)pyrene ¹	0.7		35,000	JQ		14,000			10,000	JQ	18,000	
Dibenzo(a,h)anthracene ¹	0.8		13,000	JQ		5,300			4,300	JQ	9,000	
Benzo(g,h,i)perylene	_		31,000	JQ		10,000			86,000	JQ	6,900	
Total ² PAHs	—	1,629,000				174,330			831,300		2,766,400	
Total ² CPAHs	<u> </u>	413,000				144,500			141,300		527,000	

Notes:

¹ Carcinogenic PAH.

² When calculating total values, zero was used for those constituents identified as less than the detection limit. Italicized values are detection limits that exceed the criteria.

Shading indicates value exceeds PRGs.

J - The analyte was positively identified. The associated numerical result is an estimate.

L - Low bias.

Q - The result is estimated because the concentration is below the Contract Required Quantitation Limits.

U - The analyte was not detected. The associated numerical value is the sample quantitation limit.

Table 3-3 Polynuclear Aromatic Hydrocarbons in Exposed Riverbank Soil Samples (mg/kg) from Removal Site Assessment

Samp	le ID No.:	HA-1-0	HA-1-1	HA-2-0	HA-2-1	HA-3-0	HA-3-1	HA-4-0	HA-4-1	HA-5-0 ³	HA-5-0	HA-5-1	HA-6-0	HA-6-1	HA-7-0	HA-7-1
Sample Dep	oth (feet):	0–1	1–2	0–1	1–2	0–1	1–2	0–1	1–2	0–1	0–1	1–2	0–1	1–2	0–1	1–2
Sam	ple Date:	2/10/99	2/10/99	2/10/99	2/10/99	2/10/99	2/10/99	2/10/99	2/10/99	2/10/99	2/10/99	2/10/99	2/10/99	2/10/99	2/10/99	2/10/99
Compound	PRGs (mg/kg)															
Naphthalene	(ing/kg) 4	< 0.300	< 0.300	< 0.300	0.682	< 3.30	10.3	471	1,740	3,070	2,320	7,840	3.57	19.6	2.59	< 0.300
Acenaphthylene	_	< 0.300	< 0.300	< 0.300	0.342	< 3.30	< 3.30	< 30.3	177	60.5	140	435	4.38	4.03	1.50	0.540
Acenaphthene	29	< 0.300	< 0.300	< 0.300	1.94	< 3.30	7.26	65.0	757	1,660	1,240	3,080	38.1	29.3	6.25	2.22
Fluorene	28	< 0.300	0.556	< 0.300	1.96	< 3.30	8.07	342	667	1,180	883	2,220	40.5	23.3	5.20	3.35
Phenanthrene	—	< 0.300	2.79	< 0.300	8.73	< 3.30	38.3	272	2,240	3,060	2,740	119	177	< 0.300	16.0	14.7
Anthracene	590	< 0.300	3.32	< 0.300	3.49	5.41	34.6	865	620	1,010	682	6,810	86.5	108	13.3	8.02
Fluoranthene	210	< 0.300	3.67	0.428	8.44	10.9	56.8	347	1,780	1,950	1,640	4,140	81.9	75.5	25.6	23.7
Pyrene	210	< 0.300	2.93	0.426	7.17	9.87	50.4	971	1,300	1,380	<mark>1,350</mark>	3,370	148	64.1	18.8	24.6
Benzo(a)anthracene 1	0.08	< <u>0.300</u>	1.76	< <u>0.300</u>	3.05	16.0	34.3	796	527	565	550	49.7	80.7	2.39	23.3	13.8
Chrysene 1	8	0.546	3.70	0.324	4.77	33.7	56.6	260	505	555	519	2,220	93.4	35.5	13.4	16.8
Benzo(b)fluoranthene 1	0.2	0.349	2.17	< 0.300	2.94	31.1	42.2	377	512	360	416	121	65.0	2.06	0.828	13.6
Benzo(k)fluoranthene 1	2	< 0.300	0.814	< 0.300	1.10	10.9	15.1	260	170	145	142	984	22.9	37.6	18.6	16.1
Benzo(a)pyrene ¹	0.4	< 0.300	2.50	< 0.300	2.57	23.5	33.9	128	441	260	406	963	54.5	22.3	12.3	8.21
Indeno(1,2,3-cd)pyrene ¹	0.7	< 0.300	0.664	< 0.300	0.870	10.8	13.3	372	259	84.1	159	446	15.7	8.05	6.37	2.99
Dibenzo(a,h)anthracene 1	0.8	< 0.300	0.325	< 0.300	0.417	3.63	5.46	128	78.0	26.3	54.4	134	6.83	3.86	1.84	1.08
Benzo(g,h,i)perylene	_	0.864	0.720	< 0.300	1.28	9.87	11.9	37.0	217	60.5	178	571	11.9	7.53	5.30	2.30
Total ² PAHs	_	1.8	26	1.2	50	166	418	5,991	11,990	15,426	13,419	33,503	931	443	171	152
Total ² cPAHs	_	0.85	12	0.32	16	130	201	2,321	2.492	1.995	2.246	4,918	339	112	77	73

All samples were analyzed using USEPA Method 8100, except for HA-5-0 which was analyzed using USEPA Method 8100 and USEPA Method 8270 GC/MS.

Italicized values are detection limits that exceed the criteria.

Shading indicates value exceeds PRGs.

ND - Not detected at detection limits.

PRGs - USEPA Region 9 Preliminary Remediation Goals, Migration to Groundwater (Dilution Attenuation Factor 1) (USEPA, 2000).

¹ Carcinogenic PAH.

² When calculating total values, zero was used for those constituents identified as less than the detection limit.

Sam	ple ID No.:	GP-1-4	GP-1-18	GP-2-8 ³	GP-2-8	GP-2-16	GP-2-25	GP-3-4	GP-3-20	GP-3-25
Sample De Sar	epth (feet): nple Date:	4–5 2/10/99	18 2/10/99	8 2/11/99	8 2/11/99	16 2/11/99	25–27 2/11/99	4 2/10/99	20–21 2/10/99	25 2/10/99
Compound	PRGs (mg/kg)									
Naphthalene	4	< 0.300	< 0.300	23.1	172	<mark>9.57</mark>	633	< <u>30.3</u>	<mark>19.3</mark>	1.66
Acenaphthylene	—	< 0.300	< 0.300	< 0.1	10.4	< 0.300	30.4	< 30.3	1.90	< 0.300
Acenaphthene	29	< 0.300	< 0.300	10.1	42.8	< 0.300	255	30.9	9.72	< 0.300
Fluorene	28	< 0.300	< 0.300	8.77	34.2	< 0.300	153	200	9.21	< 0.300
Phenanthrene	—	< 0.300	< 0.300	32.6	118	0.538	< 3.30	46.4	< 0.300	< 0.300
Anthracene	590	< 0.300	< 0.300	5.37	24.5	< 0.300	626	< 30.3	29.5	< 0.300
Fluoranthene	210	< 0.300	< 0.300	23.3	83.2	< 0.300	310	134	19.8	< 0.300
Pyrene	210	< 0.300	< 0.300	15.1	60.1	< 0.300	262	74.5	14.0	< 0.300
Benzo(a)anthracene1	0.08	< <u>0.300</u>	< <u>0.300</u>	6.05	23.1	< <u>0.300</u>	94.0	70.9	6.04	< <u>0.300</u>
Chrysene ¹	8	< 0.300	< 0.300	3.58	15.3	< 0.300	56.3	93.7	4.75	0.302
Benzo(b)fluoranthene1	0.2	< <u>0.300</u>	< <u>0.300</u>	5.71	24.3	< <u>0.300</u>	68.6	79.0	5.54	< <u>0.300</u>
Benzo(k)fluoranthene1	2	< 0.300	< 0.300	2.13	3.46	< 0.300	24.5	< <u>30.3</u>	1.83	< 0.300
Benzo(a)pyrene ¹	0.4	< 0.300	< 0.300	4.09	21.3	< 0.300	59.2	70.7	4.81	< 0.300
Indeno(1,2,3-cd)pyrene ¹	0.7	< 0.300	< 0.300	1.87	8.88	< 0.300	18.1	< <u>30.3</u>	2.10	0.880
Dibenzo(a,h)anthracene1	0.8	< 0.300	< 0.300	< 1.0	< <u>3.30</u>	< 0.300	7.46	< <u>30.3</u>	0.771	< 0.300
Benzo(g,h,i)perylene	_	< 0.300	< 0.300	1.79	1.79	0.420	16.2	< 30.3	1.91	< 0.300
Total ² PAHs	_	0	0	144	651	11	2,614	800	131	2.8
Total ² cPAHs		0	0	23	96	0	328	314	26	1.2

Notes:

All samples were analyzed using USEPA Method 8100, except for those noted which were analyzed using USEPA Method 8100 and USEPA Method 8270 GC/MS. Italicized values are detection limits that exceed the criteria. Shading indicates value exceeds PRGs. PRGs - USEPA Region 9 Preliminary Remediation Goals, Migration to Groundwater (Dilution Attenuation Factor 1) (USEPA, 2000). ¹ Carcinogenic PAH.

² When calculating total values, zero was used for those constituents identified as less than the detection limit.

Sample D	ple ID No.: epth (feet): mple Date:	GP-5-4 4–8 2/11/99	GP-5-13 ³ 13 2/11/99	GP-5-13 13 2/11/99	GP-6-9 9–11 2/12/99	GP-6-13 13 2/12/99	GP-10-2 2 2/12/99	GP-10-5 5–6 2/10/99	GP-10-13 13 2/10/99
Compound	PRGs (mg/kg)								
Naphthalene	4	524	16.0	<mark>7.34</mark>	< 0.300	< 0.300	<mark>68.6</mark>	<mark>67.5</mark>	<mark>26.8</mark>
Acenaphthylene	—	35.7	< 0.1	< 0.300	< 0.300	< 0.300	103	11.7	4.07
Acenaphthene	29	324	3.32	1.95	< 0.300	< 0.300	353	39.4	21.4
Fluorene	28	205	1.36	0.611	< 0.300	< 0.300	216	33.9	22.9
Phenanthrene	—	13.7	1.02	0.429	< 0.300	< 0.300	396	< 0.300	< 0.300
Anthracene	590	817	0.177	< 0.300	< 0.300	< 0.300	2,380	122	70.5
Fluoranthene	210	425	0.315	< 0.300	< 0.300	< 0.300	2,860	11.1	34.1
Pyrene	210	360	0.266	< 0.300	< 0.300	< 0.300	2,120	5.40	23.1
Benzo(a)anthracene1	0.08	6.69	< 0.1	< <u>0.300</u>	< <u>0.300</u>	< <u>0.300</u>	193	4.70	8.15
Chrysene ¹	8	161	< 0.1	< 0.300	< 0.300	< 0.300	2,200	30.9	7.01
Benzo(b)fluoranthene1	0.2	15.2	< 0.1	< <u>0.300</u>	< <u>0.300</u>	< <u>0.300</u>	144	2.54	5.90
Benzo(k)fluoranthene ¹	2	110	< 0.1	< 0.300	< 0.300	< 0.300	1,530	27.0	1.97
Benzo(a)pyrene ¹	0.4	83.7	< 0.1	< 0.300	< 0.300	< 0.300	1,140	21.7	4.80
Indeno(1,2,3-cd)pyrene ¹	0.7	29.2	< 0.1	< 0.300	< 0.300	< 0.300	644	7.63	2.00
Dibenzo(a,h)anthracene ¹	0.8	10.6	< 0.1	< 0.300	< 0.300	< 0.300	223	2.51	0.799
Benzo(g,h,i)perylene	—	22.6	< 0.1	< 0.300	< 0.300	< 0.300	523	4.82	1.7
Total ² PAHs	_	3,143	22	10	0	0	15,094	393	235
Total ² cPAHs	—	416	0	0	0	0	6,074	97	31

Notes:

All samples were analyzed using USEPA Method 8100, except for those noted which were analyzed using USEPA Method 8100 and USEPA Method 8270 GC/MS. Italicized values are detection limits that exceed the criteria. Shading indicates value exceeds PRGs. PRGs - USEPA Region 9 Preliminary Remediation Goals, Migration to Groundwater (Dilution Attenuation Factor 1) (USEPA, 2000). ¹ Carcinogenic PAH.

² When calculating total values, zero was used for those constituents identified as less than the detection limit.

Sam	ple ID No.:	GF	P-11-5	GF	P-11-15	GP-14-5	GP	-14-13	GP	-15-13	GF	P-16-12	G	P-17-5	GP	-17-11
-	epth (feet): mple Date:		5–9 12/99		5–17 /12/99	5 2/11/99	2/	13 11/99		3–15 11/99	-	2–16 12/99	2/	5 11/99		1–15 11/99
Compound	PRGs (mg/kg)	-														
Naphthalene	4		1,450		2,830	1.84		21.9	<	0.300		1.32	<	0.300		1,890
Acenaphthylene	_		63.2		116	0.555		9.50	<	0.300	<	0.300	<	0.300		88.1
Acenaphthene	29		477		923	1.94		61.8	<	0.300		0.973	<	0.300		683
Fluorene	28		346		640	2.13		66.2	<	0.300		0.644	<	0.300		557
Phenanthrene	_		1,020		1,940	7.23	<	0.300	<	0.300		0.973	<	0.300		1,700
Anthracene	590		699		837	0.691		246	<	0.300	<	0.300	<	0.300		215
Fluoranthene	210		592		1,070	3.51		13.0	<	0.300	<	0.300	<	0.300		856
Pyrene	210		475		851	2.27		56.9	<	0.300	<	0.300	<	0.300		568
Benzo(a)anthracene1	0.08		191		331	0.581		1.37	<	0.300	<	0.300	<	0.300		206
Chrysene ¹	8		266		491	0.344		20.0	<	0.300	<	0.300	<	0.300		197
Benzo(b)fluoranthene1	0.2		145		243	< <u>0.300</u>		1.34		0.394	<	0.300	<	0.300		124
Benzo(k)fluoranthene1	2	<	30.3		90.9	< 0.300		11.7	<	0.300	<	0.300	<	0.300	<	30.3
Benzo(a)pyrene ¹	0.4		121		207	< 0.300		7.76	<	0.300	<	0.300	<	0.300		103
Indeno(1,2,3-cd)pyrene ¹	0.7		38.9		65.5	< 0.300		2.10	<	0.300	<	0.300	<	0.300	<	30.3
Dibenzo(a,h)anthracene1	0.8	<	30.3	<	30.3	< 0.300		0.988	<	0.300	<	0.300	<	0.300	<	30.3
Benzo(g,h,i)perylene	_		33.7		56.5	< 0.300		2.04		0.527	<	0.300	<	0.300	<	30.3
Total ² PAHs	_		5,918		10,692	21		523		0.92		3.9		0		7,187
Total ² cPAHs	_		762		1,428	0.93		45		0.39		0		0		630

Notes:

All samples were analyzed using USEPA Method 8100, except for those noted which were analyzed using USEPA Method 8100 and USEPA Method 8270 GC/MS. Italicized values are detection limits that exceed the criteria. Shading indicates value exceeds PRGs. PRGs - USEPA Region 9 Preliminary Remediation Goals, Migration to Groundwater (Dilution Attenuation Factor 1) (USEPA, 2000). ¹ Carcinogenic PAH.

² When calculating total values, zero was used for those constituents identified as less than the detection limit.

Sam	ple ID No.:	GP-18-5	GP-18-13	GP-23-12 ³	GP-23-12	GP-25-7	GP-25-13	GP-26-5	GP-26-13	GP-28-13
Sample De Sar	epth (feet): nple Date:	5–8 2/12/99	13 2/12/99	12–15 2/12/99	12–15 2/12/99	7–11 2/12/99	13 2/12/99	5–9 2/12/99	13 2/12/99	13–16 2/12/99
Compound	PRGs (mg/kg)									
Naphthalene	4	0.453	< 0.300	0.0164	< 0.300	0.357	4.48	< 0.300	< 0.300	< 0.300
Acenaphthylene	_	< 0.300	< 0.300	< 0.01	< 0.300	2.54	0.345	< 0.300	< 0.300	< 0.300
Acenaphthene	29	0.384	< 0.300	< 0.01	< 0.300	28.8	3.75	< 0.300	< 0.300	< 0.300
Fluorene	28	0.772	< 0.300	< 0.01	< 0.300	26.3	3.17	< 0.300	< 0.300	< 0.300
Phenanthrene	_	1.55	0.518	0.0199	< 0.300	< 0.300	8.52	< 0.300	< 0.300	< 0.300
Anthracene	590	9.06	0.605	< 0.01	< 0.300	94.0	3.33	< 0.300	< 0.300	< 0.300
Fluoranthene	210	1.29	0.32	0.0173	< 0.300	1.81	8.59	< 0.300	< 0.300	< 0.300
Pyrene	210	1.20	< 0.300	0.0130	< 0.300	3.48	6.59	< 0.300	< 0.300	< 0.300
Benzo(a)anthracene1	0.08	0.732	< 0.300	< 0.01	< <u>0.300</u>	0.475	3.20	< 0.300	< 0.300	< <u>0.300</u>
Chrysene ¹	8	1.10	< 0.300	< 0.01	< 0.300	11.3	4.00	< 0.300	< 0.300	< 0.300
Benzo(b)fluoranthene1	0.2	0.668	< <u>0.300</u>	< 0.01	< <u>0.300</u>	6.57	2.78	< 0.300	< 0.300	0.376
Benzo(k)fluoranthene1	2	< 0.300	< 0.300	< 0.01	< 0.300	2.45	1.19	< 0.300	< 0.300	< 0.300
Benzo(a)pyrene ¹	0.4	1.08	0.568	< 0.01	< 0.300	6.97	2.28	< 0.300	< 0.300	0.778
Indeno(1,2,3-cd)pyrene ¹	0.7	< 0.300	< 0.300	< 0.01	< 0.300	1.52	0.830	< 0.300	< 0.300	< 0.300
Dibenzo(a,h)anthracene1	0.8	< 0.300	< 0.300	< 0.01	< 0.300	0.529	< 0.300	< 0.300	< 0.300	< 0.300
Benzo(g,h,i)perylene	—	< 0.300	< 0.300	< 0.01	< 0.300	1.29	0.633	< 0.300	< 0.300	0.409
Total ² PAHs	—	18	2.0	0.07	0	188	54	0	0	1.6
Total ² cPAHs	—	4	0.57	0	0	30	14	0	0	1.2

Table 3-4 Polynuclear Aromatic Hydrocarbons in Upland Soil Samples (mg/kg) from Removal Site Assessment

All samples were analyzed using USEPA Method 8100, except for those noted which were analyzed using USEPA Method 8100 and USEPA Method 8270 GC/MS. Italicized values are detection limits that exceed the criteria. Shading indicates value exceeds PRGs. PRGs - USEPA Region 9 Preliminary Remediation Goals, Migration to Groundwater (Dilution Attenuation Factor 1) (USEPA, 2000). ¹ Carcinogenic PAH.

² When calculating total values, zero was used for those constituents identified as less than the detection limit.

Sam	ole ID No.:	GP-30-5	GP-30-11	GP-31-5	GP-31-13	MW-1D- 32.5	MW-1D- 52.5 ³	MW-1D- 52.5	MW-1D- 55	MW-1D- 62.5 ³	MW-1D- 62.5
Sample De Sar	pth (feet): nple Date:	5 2/12/1999	11–15 2/12/1999	5 2/12/99	13–17 2/12/99	32.5–35 3/1/1999	52.5 3/1/99	52.5 3/1/1999	55 3/1/1999	62.5–64.5 3/1/1999	62.5 3/1/1999
Compound	PRGs (mg/kg)		2,12,1000	2/12/00	2/12/00	0, 1, 1000	0/1/00	0/1/1000	0/1/1000	0, 1, 1000	0/1/1000
Naphthalene	4	< 0.300	< 0.300	< 0.300	< 0.300	68.6	5.87	4.6	4.94	3.18	3.33
Acenaphthylene	_	< 0.300	< 0.300	< 0.300	< 0.300	4.26	< 0.1	0.384	0.308	< 0.05	< 0.3
Acenaphthene	29	< 0.300	< 0.300	< 0.300	< 0.300	34.6	2.65	3.02	2.46	1.18	1.92
Fluorene	28	< 0.300	< 0.300	< 0.300	< 0.300	29.6	2.76	2.82	2.24	1.07	1.72
Phenanthrene	_	< 0.300	< 0.300	< 0.300	< 0.300	88.0	8.36	8.70	6.68	3.09	5.09
Anthracene	590	< 0.300	< 0.300	< 0.300	< 0.300	11.5	1.49	1.80	1.75	0.805	1.06
Fluoranthene	210	< 0.300	< 0.300	< 0.300	< 0.300	45.8	4.46	4.55	3.36	1.58	2.57
Pyrene	210	< 0.300	< 0.300	< 0.300	< 0.300	30.2	3.14	3.04	2.26	1.10	1.73
Benzo(a)anthracene1	0.08	< <u>0.300</u>	< <u>0.300</u>	< 0.300	< <u>0.300</u>	9.51	1.23	1.08	0.811	0.459	0.611
Chrysene ¹	8	< 0.300	< 0.300	< 0.300	< 0.300	7.95	1.08	1.11	0.914	0.444	0.685
Benzo(b)fluoranthene1	0.2	< <u>0.300</u>	< <u>0.300</u>	< <u>0.300</u>	< <u>0.300</u>	5.42	0.812	1.02	0.904	0.360	0.650
Benzo(k)fluoranthene1	2	< 0.300	< 0.300	< 0.300	< 0.300	< <u>3.3</u>	0.3	1.12	1.47	0.123	0.901
Benzo(a)pyrene ¹	0.4	< 0.300	< 0.300	< 0.300	< 0.300	4.18	0.512	2.00	2.44	0.227	1.58
Indeno(1,2,3-cd)pyrene ¹	0.7	< 0.300	< 0.300	< 0.300	< 0.300	< <u>3.3</u>	0.242	0.557	0.783	0.128	0.516
Dibenzo(a,h)anthracene ¹	0.8	< 0.300	< 0.300	< 0.300	< 0.300	< <u>3.3</u>	< 0.1	< 0.3	< 0.3	< 0.5	< 0.3
Benzo(g,h,i)perylene	_	< 0.300	< 0.300	< 0.300	0.528	< 3.3	0.203	2.17	2.83	0.109	1.86
Total ² PAHs	_	0	0	0	0	340	33	38	33	14	24
Total ² cPAHs		0	0	0	0	27	4.2	6.9	6.4	1.7	4.9

Table 3-4 Polynuclear Aromatic Hydrocarbons in Upland Soil Samples (mg/kg) from Removal Site Assessment

All samples were analyzed using USEPA Method 8100, except for those noted which were analyzed using USEPA Method 8100 and USEPA Method 8270 GC/MS. Italicized values are detection limits that exceed the criteria. Shading indicates value exceeds PRGs. PRGs - USEPA Region 9 Preliminary Remediation Goals, Migration to Groundwater (Dilution Attenuation Factor 1) (USEPA, 2000).

¹ Carcinogenic PAH.

² When calculating total values, zero was used for those constituents identified as less than the detection limit.

Sample De	ole ID No.: pth (feet): nple Date:	MW-2D- 15 ³ 15–17 3/2/1999	MW-2D- 50 ³ 50–52 3/2/1999	MW-3D- 25 ³ 25–27 3/2/1999	MW-3D- 35 ³ 35 3/2/1999	MW-3D- 45 ³ 45 3/2/1999	MW-4D- 5 ³ 5–7 3/3/1999	MW-4D- 45 ³ 45 3/3/1999
Compound	PRGs (mg/kg)	-					Background	Background
Naphthalene	(iiig/kg) 4	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	0.0179	< 0.02
Acenaphthylene	_	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	0.0393	< 0.02
Acenaphthene	29	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	0.0313	< 0.02
Fluorene	28	< 0.01	< 0.02	< 0.02	0.0107	< 0.01	0.0921	< 0.02
Phenanthrene	—	< 0.01	< 0.02	0.0321	0.0534	0.0348	0.595	< 0.02
Anthracene	590	< 0.01	< 0.02	< 0.02	0.0146	0.0122	0.164	< 0.02
Fluoranthene	210	< 0.01	< 0.02	0.0214	0.0262	0.0179	0.345	< 0.02
Pyrene	210	< 0.01	< 0.02	< 0.02	0.0175	0.0122	0.366	< 0.02
Benzo(a)anthracene ¹	0.08	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	0.162	< 0.02
Chrysene ¹	8	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	0.137	< 0.02
Benzo(b)fluoranthene1	0.2	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	1.28	< 0.02
Benzo(k)fluoranthene ¹	2	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	0.0474	< 0.02
Benzo(a)pyrene ¹	0.4	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	0.132	< 0.02
Indeno(1,2,3-cd)pyrene ¹	0.7	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	0.0822	< 0.02
Dibenzo(a,h)anthracene1	0.8	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	0.0152	< 0.02
Benzo(g,h,i)perylene	—	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	0.0849	< 0.02
Total ² PAHs	—	0	0	0.05	0.12	0.08	2.4	0
Total ² cPAHs		0	0	0	0	0	1.9	0

Notes:

All samples were analyzed using USEPA Method 8100, except for those noted which were analyzed using USEPA Method 8100 and USEPA Method 8270 GC/MS. Italicized values are detection limits that exceed the criteria. Shading indicates value exceeds PRGs. PRGs - USEPA Region 9 Preliminary Remediation Goals, Migration to Groundwater (Dilution Attenuation Factor 1) (USEPA, 2000).

¹ Carcinogenic PAH.

² When calculating total values, zero was used for those constituents identified as less than the detection limit.

Sample	ID No.:		PW-1- 99-30		PW-2- 299-30	GPW-3- 0299-30	GPW-5- 0299-15	GWP-10- 0299-15	GPW-14- 0299-18	GPW-15- 0299-18	GPW-16- 0299-15	GPW-18- 0299-15	-	PW-23- 299-15	GPW-26- 0299-15		W-28- 99-18
Sample Donth	(fact).	-	.5-30		299-30 6.5–30	0299-30 26.5–30	15	15	18	18		0299-15 14.5–18	U	299-15	15	02	18
Sample Depth	. ,	-	10/99		6.5-30 /11/99	26.5-30	2/11/99	2/10/99	2/11/99	2/11/99	15 2/12/99	2/12/99		/12/99	2/12/99	2/4	2/1999
Sampi	e Date:	2/	10/99	2	/11/99	2/10/99	2/11/99	2/10/99	2/11/99	2/11/99	2/12/99	2/12/99	-	/12/99	2/12/99	2/1	2/1999
Compound	PRGs											Background					
North the laws	(µg/L)		0.070		0.040	400	0.450	E 000	E 070	00.0	2 500	44.4		0.000	0.00	_	40.7
Naphthalene	6.2		0.379		2,010	199	<mark>6,450</mark>	5,200	<mark>5,070</mark>	88.0	3,500	11.4		0.933	9.22		19.7
Acenaphthylene			0.100	<	0.500	< 0.100	18.3	4.90	6.50	0.520	2.32	0.320	<	0.100	0.267		0.720
Acenaphthene	370		0.189		10.0	0.758	453	250	532	37.2	109	9.08		1.24	14.7		30.9
Fluorene	240		0.189		7.00	0.695	216	187	438	36.4	42.8	8.32		1.54	15.8		26.7
Phenanthrene	—		0.547		17.8	2.67	325	252	858	76.1	38.0	22.1		5.92	38.5		67.6
Anthracene	1,800		0.189		2.80	0.779	51.0	35.9	67.8	7.82	4.53	5.68		1.14	7.91		8.44
Fluoranthene	1,500		0.526		5.10	2.11	114	93.8	342	22.6	13.6	8.68		2.90	13.4		19.6
Pyrene	180		0.421		3.10	1.39	68.8	59.0	167	12.7	9.79	5.94		1.83	8.84		13.5
Benzo(a)anthracene ¹	0.092		0.126		1.00	0.526	19.4	22.0	64.7	3.90	2.74	1.34		0.248	2.13		2.20
Chrysene ¹	9.2		0.211		1.90	0.632	22.0	18.1	41.6	3.78	2.00	1.56		0.229	3.69		2.56
Benzo(b)fluoranthene ¹	0.092		0.105		1.50	0.421	12.1	14.1	37.1	2.32	2.11	0.680	<	0.100	1.11		0.920
Benzo(k)fluoranthene ¹	0.92	<	0.100	<	0.500	0.147	4.50	4.30	11.1	0.860	0.737	0.240	<	0.100	0.422		0.340
Benzo(a)pyrene ¹	0.0092	<	0.100		1.10	0.253	8.25	8.70	22.1	1.46	1.37	0.420	<	0.100	0.711		0.600
Indeno(1,2,3-cd)pyrene ¹	0.092	<	0.100		1.60	0.105	3.00	3.30	8.30	0.660	0.632	0.140	<	0.100	0.289		0.220
Dibenzo(a,h)anthracene ¹	0.0092	<	0.100	<	0.500	< <u>0.100</u>	1.00	1.10	2.70	0.200	< <u>0.500</u>	< <u>0.100</u>	<	0.100	< <u>0.100</u>	<	0.100
Benzo(g,h,i)perylene	_	<	0.100		1.60	0.105	2.25	2.90	6.70	0.540	0.526	0.120	<	0.100	0.222		0.160
Total ² PAHs	-		2.9		2,065	210	7,769	6,157	7,676	295	3,730	76		16	117		194
Total ² CPAHs	_		0.44		7.1	2.1	69.5	71	188	13	9.6	4.4		0.48	8.4		6.8

Table 3-5 Polynuclear Aromatic Hydrocarbons in Geoprobe Boring Groundwater (µg/L) from Removal Site Assessment

All samples were analyzed using USEPA Method 8270 GC/MS.

Italicized values are detection limits that exceed the PRGs.

Shading indicates value exceeds PRGs.

PRGs - USEPA Region 9 Preliminary Remediation Goals, Tap Water (USEPA, 2000).

¹ Carcinogenic PAH.

² When calculating total values, zero was used for those constituents identified as less than the detection limit.

Sample ID No.:		M	W-1S	M١	W-1D	Μ	W-2S	M	N-2D	M٧	V-3S	M\	N-3D	M۱	N-4S	M٧	V-5S ³	M۱	N-4D
Sample Dep	oth (feet):		6.66	8	3.92	4	4.62	ę	.08	4.	.40	6	6.90	2	2.89	2	2.89	7	.23
Sam	ple Date:	3/1	0/1999	3/ [,]	10/99	3/	10/99	3/	10/99	3/1	0/99	3/1	10/99	3/	9/99	3/	9/99	3/	9/99
Compound	PRGs																		
-	(µg/L)																		
Naphthalene	6.2		7,430		3,090	<	0.3	<	0.3	۷	0.3	۷	0.3		2.04		1.90	<	0.3
Acenaphthylene			11.7	<	10	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1
Acenaphthene	370		462		256	<	0.1	<	0.1	<	0.1	<	0.1		5.22		5.12	<	0.1
Fluorene	240		279		164	<	0.1	<	0.1	<	0.1	<	0.1		1.62		1.60	<	0.1
Phenanthrene	—		402		207	<	0.1		0.156	<	0.1		0.176	<	0.1	<	0.1		0.137
Anthracene	1,800		44.9		25.4		0.156	<	0.1	<	0.1	<	0.1		0.267		0.286	<	0.1
Fluoranthene	1,500		89.8	<	30	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Pyrene	180		48.8	<	30	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3	<	0.3
Benzo(a)anthracene ¹	0.092		13.7	<	10	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1
Chrysene ¹	9.2	<	10	<	10	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1
Benzo(b)fluoranthene ¹	0.092	<	10	<	10	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1
Benzo(k)fluoranthene ¹	0.92	<	10	<	10	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1
Benzo(a)pyrene ¹	0.0092	<	10	<	10	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1
Indeno(1,2,3-cd)pyrene ¹	0.092	<	10	<	10	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1
Dibenzo(a,h)anthracene ¹	0.0092	<	10	<	10	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1	<	0.1
Benzo(g,h,i)perylene		<	10	<	10	<	0.1	<	0.1	<	0.1	۷	0.1	<	0.1	<	0.1	<	0.1
Total ² PAHs			8,782		3,742		0.16		0.16		0		0.18		9.1		8.9		0.14
Total ² CPAHs	_		14		0		0		0		0		0		0		0		0

Table 3-6 Polynuclear Aromatic Hydrocarbons in Monitoring Well Groundwater (µg/L) from Removal Site Assessment

Notes:

All samples were analyzed using USEPA Method 8270 GC/MS.

Italicized values are detection limits that exceed the PRGs.

Shading indicates value exceeds PRGs.

PRGs - USEPA Region 9 Preliminary Remediation Goals, Tap Water (USEPA, 2000).

¹ Carcinogenic PAH.

² When calculating total values, zero was used for those constituents identified as less than the detection limit.

³ MW-5S is duplicate sample of MW-4S.

Table 3-7 Polynuclear Aromatic Hydrocarbons in St. Joe River Surface Sediments (µg/kg) START Site Integrated
Assessment Samples	

U	SEPA Sam	e Location: ple ID No.:	RV10S 990841	15	RV09 99084	114	9	RV01S 90841	01	99	V02S	02	RV035 990841	03	RV04 99084	104	RV05SI 9908410)5	RV06SD 99084111		RV073 990842	12		RV08SD 99084113	
	Sa	mple Date:	2/13/9	9	2/13/	99	1	2/13/9	9	2	2/13/9	9	2/13/9	9	2/13/9	99	2/13/99)	2/13/99		2/13/9	9		2/13/99	
	LEL	SEL																							
Compound	(µg/kg	(µg/kg	Backgro	und	Outfa	lls			Wet	land									River						
	dry wt.)	%OC ³)																							
Naphthalene	—	_	1,400		< 360	U	<	550	U	<	430	U	< 500	U	< 500	U	6,100		97,000		21,00)	1	89,000,000	
Acenaphthylene	—	_	< 500	U	70	JQ	<	550	U	<	430	U	< 500	U	< 500	U	320	JQ	1,000	JQ	< 16,00			160,000	JQ
Acenaphthene	—	—	91	JQ	310			41	JQ	<	430	U	49	JQ	300	JQ	,	JH	100,000		16,00		_	4,300,000	JL
Fluorene	190	160,000	86	JQ	400			38	JQ	<	430	U	48	JQ	420	JQ	2,500	JH	74,000	JQ	13,00) JQ		3,800,000	JL
Phenanthrene	560	950,000	330	JQ	1,60	D JH	<	550	U	<	430	U	170	JQ	1,700)	6,500		220,000		39,00			5,700,000	JL
Anthracene	—		360	JQ	4,80			110	JQ	<	430	U	140	JQ	1,600)	8,000		83,000		9,500	JQ		6,400,000	JL
Fluoranthene	750	1,020,000	380	JQ	7,70			120	JQ		43	JQ	170	JQ	1,700)	9,000		200,000		32,00			3,500,000	JL
Pyrene	490	850,000	550		9,20	0		130	JQ		54	JQ	190	JQ	1,400)	<mark>8,000</mark>		160,000		42,00)		2,800,000	JL
Benzo(a)anthracene 1	320	1,480,000	270	JQ	5,40	0		62	JQ		24	JQ	100	JQ	710		5,000		71,000		23,00)		980,000	
Chrysene ¹	340	460,000	590		9,30	D		110	JQ		26	JQ	200	JQ	1,300)	9,100		72,000		42,00)		1,400,000	
Benzo(b)fluoranthene ¹	_		560		6,60	D		46	JQ		25	JQ	84	JQ	410	JQ	3,200		41,000		22,00)		270,000	JQ
Benzo(k)fluoranthene 1	240	1,340,000	540		4,70	0		39	JQ	<	430	U	88	JQ	460	JQ	3,500		33,000		26,00)		300,000	JQ
Benzo(a)pyrene ¹	370	1,440,000	410	JQ	4,80	0		48	JQ		24	JQ	91	JQ	470	JQ	3,600		42,000		26,00)		360,000	
Indeno(1,2,3-cd)pyrene ¹	200	320,000	140	JQ	2,80	D JH	<	550	U	<	430	U	35	JQ	200	JQ	1,400	JH	12,000	JQ	29,00)		120,000	JQ
Dibenzo(a,h)anthracene ¹	60	130,000	41	JQ	820	JH	<	550	U	<	430	U	< <u>500</u>	U	82	JQ	270	JQ	5,700	JQ	4,200	JQ		60,000	JQ
Benzo(g,h,i)perylene	170	320,000	95	JQ	2,20	D JH	<	550	U	<	430	U	29	JQ	150	JQ	850	JH	10,000	JQ	7,900	JQ		78,000	JQ
Total ² PAHs	4,000	10,000,000	<mark>5,843</mark>		60,70	0		744			196		1,394		<mark>10,90</mark>	2	69,840		1,221,700		352,60	0	1	19,228,000	
Total ² CPAHs	_	_	2,551		34,42	20		305			99		598		3,632	2	26,070		276,700		172,20	0		3,490,000	_

Samples were collected from the top 6 inches of sediment.

Sediment Screening Values are not chemical specific ARARs. They are to be considered.

LEL - Lowest Effect Level from Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario (Ontario Ministry of the Environment, 1993).

SEL - Severe Effect Level (ug/g organic carbon) from Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario (Ontario Ministry of the Environment, 1993).

Italicized values are detection limits that exceed the criteria.

Shading indicates value exceeds LEL.

Shading indicates value exceeds SEL.

H - High bias.

J - The analyte was positively identified. The associated numerical result is an estimate.

L - Low bias.

Q - The result is estimated because the concentration is below the Contract Required Quantitation Limits.

U - The analyte was not detected. The associated numerical value is the sample quantitation limit.

¹ Carcinogenic PAH.

² When calculating total values, zero was used for those constituents identified as less than the detection limit.

³ No TOC data available.

Table 3-8 Semivolatile Organic Compounds in St. Joe River Type 1 Surface Sediment (µg/kg)) from Integrated Assessment Addendum Sampling
---	--

		ample Number: ART Sample ID: Sample Date:	994541 99SMSI 11/4/19	D41	99454142 99SMSD42 11/4/1999	9945410 99SMSD(11/2/199	01 99	9454102 SMSD02 1/2/1999	994541 99SMSE 11/2/19	005	994541 99SMSE 11/2/19	009	9945411 99SMSD ⁷ 11/2/199	10	99454111 99SMSD11 11/2/1999	99	9454112 9SMSD1: 1/2/1999	2	9945411 99SMSD ² 11/2/199	14	99454 99SM 11/2/1	SD15	994541 99SMSI 11/3/19	D16	994541 99SMSI 11/3/19	017	99454 99SMS 11/3/19	D18
Compound	LEL (µg/kg dry wt.)	Site-specific SEL ² (µg/kg dry wt.)	Backgro	ound	Background																							
Total Organic Carbon (%)	1.00	0.30	2.22		1.43	2.57	2	2.19	2.09		2.62		2.18		1.50		1.51		2.04		1.89		2.48		3.72		1.70	
Semivolatile Organic Compour	ds (µg/kg)																											
2,4-Dimethylphenol	_	_	271	U	221 U	292 U	J :	314 U	318	U	341	U	247 L	J	229 U		246	U	274	U	199	U	260	U	189	υ	200	U
4-Methylphenol	_		271	U	221 U	292 U	J :	314 U	318	U	341	U	247 L	J	229 U		246	U	274	U	199	U	260	U	189	U	200	U
9H-Carbazole ³	_	140	271	U	221 U	292 U	J	314 U	318	U	341	U	110 J	IQ	229 U		246	U	6,590		516		2,100		338		200	U
9H-Fluorene	190	4,822	271	U	221 U	292 U	J 7	79.8 JC	318	U	223	JQ	169 J	IQ	229 U		246	U	5,700		1,800		3,500		683		90.7	JC
Acenaphthene SEL 3, PEL 4	620	3,500	271	U	221 U	292 U	J :	314 U	318	U	194	JQ	108 J	IQ	229 U		246	U	2,230		2,360		2,770		582		110	JC
Acenaphthylene ³	_	1,900	271	U	221 U	292 U	J (314 U	318	U	341	U	247 L	J	229 U		246	U	125	JQ	199	U	134	JQ	189	υ	200	υ
Anthracene	0.22	11.2	271	U	221 U	168 J	IQ :	310 JC	318	U	429		763		229 U		246	U	27,300		2,820		14,100		1,840		184	JC
Benzo(a)anthracene 5	320	44,607	271	U	221 U	292 U	J :	314 U	318	U	382		520		229 U		246	U	7,750		2,380		8,430		1,140		200	U
Benzo(a)pyrene ⁵	370	43,402	271	U	221 U	99.1 J	IQ ·	130 JC	318	U	242	JQ	342		229 U		246	U	3,760		1,630		5,320		750		69.1	JC
Benzo(g,h,i)perylene	170	9,645	542	U	442 U	585 U	J 🤞	627 U	637	U	682	U	271 J	IQ	457 U		491	U	1,080		663		1,980		387		200	U
Benzo(b)fluoranthene ⁵	_	_	542	U	442 U	397 J	IQ 4	452 JC	637	U	611	JQ	707		457 U		491	U	5,690		2,500		7,970		1,260		258	JC
Benzo(k)fluoranthene ⁵	240	40,388	271	U	221 U	292 U	ן נ	38.4 JC	318	U	149	JQ	193 J	IQ	229 U		246	U	2,400		1,090		3,230		445		200	U
Chrysene ⁵	340	13,864	271	U	221 U	228 J		340	318	U	597		1,050		229 U		246	υ	11,400		4,030		12,600		1,710		174	JC
Dibenzo(a,h)anthracene ⁵	60	3,918	1,350	U	<u>1.100</u> U	1.460 U	J <u>1</u>	. <u>570</u> U	1,590	U	1,710	υ	1.240 L	J	<u>1,140</u> U	1	1.230	υ	728	JQ	473	JQ	976	JQ	376	JQ	1.000	U
Dibenzofuran ⁴	2,000		271	U	221 U	292 U		314 U	318	U	125	JQ	· ·	IQ	229 U		246	υ	2,240		1,080		1,900		403		59.8	JC
Fluoranthene	750	30,743	271	U	221 U	336		426	318	U	801		889		229 U		246	υ	26,500		5,550		19,700		2,540		304	
Indeno(1,2,3-cd)pyrene ⁵	200	9,645	542	U	442 U	585 U	J (627 U	637	U	405	JQ	494 L	J	457 U		491	U	1,450		818		2,260		477		400	U
Naphthalene ⁶	140	, 	271	U	221 U	292 U	J 🔤	<mark>314</mark> U	318	U	204	JQ	115 J	IQ	229 U		246	υ	1,760		4,540		1,590		505		257	
Naphthalene, 2-methyl-	_	_	271	U	221 U	292 U	J	314 U	318	U	341	U		IQ	229 U		246	υ	1,480		1,220		956		261		55.8	JC
Phenanthrene	560	28,633	271	U	221 U	297	:	334	318	U	811		652		229 U		246	U	23,800		5,070		13,000		2,080		247	
Pyrene	490	25,619	271	U	221 U	312	4	407	318	U	742		806		229 U		246	U	21,100		4,750		16,200		2,170		255	
otal ⁷ PAHs	4,000	301,400	0		0	1,837	2	,567	0		5,790		6,585		0		0		142,773		40,474	1	113,760		16,945		1,949	
otal ⁷ CPAHs	_	_	0		0	724	1	,010	0		2,386		3,083		0		0		34,258		13,584	1	42,766		6,545		501	

Samples were collected from the top 6 inches of sediment.

Sediment Screening Values are not chemical specific ARARs. They are to be considered.

LEL - Lowest Effect Level from Guidelines for the Protection and Management of Aquatic

Sediment Quality in Ontario (Ontario Ministry of the Environment, 1993).

SEL - Severe Effect Level (μ g/g organic carbon) from Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario (Ontario Ministry of the Environment,

Site-specific SEL is SEL corrected for organic carbon.

Italicized values are detection limits that exceed the criteria.

Shading indicates value exceeds LEL.

Shading indicates value exceeds site-specific SEL.

J - The analyte was positively identified. The associated numerical result is an estimate. Q - The result is estimated because the concentration is below the Contract Required Quantitation Limit.

 ${\sf U}$ - The analyte was not detected. The associated numerical value is the sample quantitation limit.

¹ Type 1 sediments are predominantly silts or silts with a small sand component.

² Type 1 sediments site-specific %TOC average is 3.01%.

³ Washington State - Freshwater Sediment Quality Values, Cubbage et al. (1997).

⁴ OSWER - Office of Solid Waste and Emergency Response - Ecotox Threshold, USEPA (1996).

⁵ Carcinogenic PAH.

⁶ USEPA ARCS - Assessment and Remediation of Contaminated Sediments (ARCS) Program - Probable Effects Level (USEPA, 1996). ARCS values for the HA-28 assay from Ingersoll et

al. (1996) and Smith et al. (1996).

 $^{7}\,$ When calculating total values, zero was used for those constituents identified as less than the detection limit.

Table 3-8 Semivolatile Organic Compounds in St. Joe River Type 1 Surface Sedim	ment (µg/kg) from Integrated Assessment Addendum Sampling
--	---

	STAF	nple Number: RT Sample ID: Sample Date:	994541 99SMSI 11/4/19	D41	99454142 99SMSD42 11/4/1999	99454 99SMS 11/3/1	D19	9945412 99SMSD2 11/3/199	20	99454122 99SMSD22 11/3/1999	99454123 99SMSD23 11/3/1999	99454124 99SMSD24 11/3/1999	99454125 99SMSD25 11/3/1999	9945 99SM 11/3/	SD27	9945413 99SMSD 11/3/199	31	99454132 99SMSD32 11/3/1999	99454133 99SMSD33 11/3/1999	99454134 99SMSD34 11/3/1999	99454139 99SMSD39 11/4/1999	99454140 99SMSD40 11/4/1999	99SMSD4
Compound	LEL (µg/kg dry wt.)	Site-specific SEL ² (µg/kg dry wt.)	Backgro	und	Background	b																	
Total Organic Carbon (%)	1.00	0.30	2.22		1.43	0.66		24.60		1.82	2.96	1.09	1.79	3.10)	2.17		3.14	3.34	3.85	2.26	3.64	2.21
Semivolatile Organic Compou	unds (µg/kg)																						
2,4-Dimethylphenol 4-Methylphenol	_	_	271 271	U U	221 U 221 U	210 210	U U	215 215	U U	209 U 209 U	280 U 280 U	210 U 210 U	232 U 232 U	215 215		227 227	U U	247 U 247 U	262 l 328	J 178 JQ 216 JQ		269 U 269 U	242 U 242 U
9H-Carbazole ³	_	140	271	U	221 U		U	215	U	1,630	19,300	210 U	232 U			2,440		4,660	30,700	147,000	280 U	269 U	242 U
9H-Fluorene	190	4,822	271	U	221 U	210	U	215	U	3,290	52,500	<u>210</u> U	232 U	14,60	0	6,160		7,010	213,000	241,000	117 JQ	269 U	242 U
Acenaphthene SEL 3, PEL 4	620	3,500	271	U	221 U	210	U	215	U	2,760	55,400	210 U	232 U	13,70	0	5,770		7,480	293,000	231,000	280 U	269 U	242 U
Acenaphthylene ³	_	1,900	271	U	221 U	210	U	215	U	94.3 JQ	1,030	210 U	232 U	375		138	JQ	162 J	Q 3,320	7,920	280 U	269 U	242 U
Anthracene	0.22	11.2	271	U	221 U	210	U	215	U	9,160	91,300	210 U	232 U	45,70	0	13,900		18,700	138,000	958,000	290	215 JQ	69.1 JO
Benzo(a)anthracene ⁵	320	44,607	271	U	221 U	210	U	215	U	5,650	32,700	210 U	232 U	12,90	0	6,400		6,180	109,000	105,000	296	269 U	242 U
Benzo(a)pyrene ⁵	370	43,402	271	U	221 U	210	U	215	U	3,490	18,600	210 U	232 U	8,54	0	4,000		3,520	56,900	42,000	222 JQ	185 JQ	84.7 JO
Benzo(g,h,i)perylene	170	9,645	542	U	442 U	420	U	430	U	1,200	5,710	420 U	<mark>463</mark> U	3,26	0	1,630		1,240	18,100	15,800	302 JQ	327 JQ	<mark>484</mark> U
Benzo(b)fluoranthene 5	_	_	542	U	442 U	420	U	430	U	5,380	23,700	420 U	463 U	11,80	0	6,110		4,960	96,400	77,700	577	617	361 JO
Benzo(k)fluoranthene 5	240	40,388	271	U	221 U	210	U	215	U	2,040	10,700	210 U	232 U	4,82	0	2,310		2,000	35,700	36,500	161 JQ	147 JQ	61.8 J
Chrysene ⁵	340	13,864	271	U	221 U	210	U	215	U	9,620	49,400	210 U	232 U	29,20	0	10,600		10,500	107,000	696,000	409	342	216 JO
Dibenzo(a,h)anthracene 5	60	3,918	1,350	U	<u>1,100</u> U	1,050	U	1,080	U	696 JQ	2,380	<u>1,050</u> U	1,160 U	1,37	0	817	JQ	732 J	ວ 7,770	7,690	<mark>1,400</mark> U	<mark>1,340</mark> U	<mark>1,210</mark> U
Dibenzofuran ⁴	2,000	_	271	U	221 U	210	U	215	U	1,620	26,400	210 U	232 U	8,32	0	3,070		4,310	134,000	124,000	280 U	84.4 JQ	80.8 JO
Fluoranthene	750	30,743	271	U	221 U	210	U	101	JQ	13,200	121,000	210 U	232 U	32,40	0	17,800		17,300	420,000	327,000	417	398	258
Indeno(1,2,3-cd)pyrene ⁵	200	9,645	542	U	<mark>442</mark> U	420	U	430	U	1,560	7,110	<mark>420</mark> U	463 U	4,02	0	1,640		1,390	22,400	20,300	<mark>383</mark> JQ	441 JQ	270 JO
Naphthalene ⁶	140	_	271	U	221 U	210	U	215	U	1,920	36,500	210 U	232 U	13,60	0	1,830		16,500	394,000	276,000	280 U	269 U	187 JO
Naphthalene, 2-methyl-	_	_	271	U	221 U	210	U	215	U	1,030	20,700	210 U	232 U	6,07	0	1,480		4,280	159,000	118,000	280 U	68 JQ	102 JO
Phenanthrene	560	28,633	271	U	221 U	210	U	215	U	10,600	162,000	210 U	232 U	37,10	0	18,700		21,300	685,000	596,000	375 U	358 U	268 U
Pyrene	490	25,619	271	U	221 U	210	U	118	JQ	<mark>10,000</mark>	97,400	210 U	232 U	29,20		14,500		14,200	339,000	280,000	403	438	255
Total ⁷ PAHs	4,000	301,400	0		0	0		219		80,660	767,430	0	0	262,5	85	112,305		133,174	2,938,590	3,917,910	3,577	3,178	1,763
Total ⁷ CPAHs	_	_	0		0	0		0		29,636	150,300	0	0	75,91	0	33,507		30,522	453,270	1,000,990	2,350	2,059	994

Samples were collected from the top 6 inches of sediment.

Sediment Screening Values are not chemical specific ARARs. They are to be considered.

LEL - Lowest Effect Level from Guidelines for the Protection and Management of Aquatic

Sediment Quality in Ontario (Ontario Ministry of the Environment, 1993).

SEL - Severe Effect Level (µg/g organic carbon) from Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario (Ontario Ministry of the Environment,

Site-specific SEL is SEL corrected for organic carbon.

Italicized values are detection limits that exceed the criteria.

Shading indicates value exceeds LEL.

Shading indicates value exceeds site-specific SEL.

J - The analyte was positively identified. The associated numerical result is an estimate.

Q - The result is estimated because the concentration is below the Contract Required Quantitation Limit.

 $\ensuremath{\mathsf{U}}$ - The analyte was not detected. The associated numerical value is the sample quantitation limit.

¹ Type 1 sediments are predominantly silts or silts with a small sand component.

² Type 1 sediments site-specific %TOC average is 3.01%.

³ Washington State - Freshwater Sediment Quality Values, Cubbage et al. (1997).

⁴ OSWER - Office of Solid Waste and Emergency Response - Ecotox Threshold, USEPA

(1996).

⁵ Carcinogenic PAH.

⁶ USEPA ARCS - Assessment and Remediation of Contaminated Sediments (ARCS) Program
 - Probable Effects Level (USEPA, 1996). ARCS values for the HA-28 assay from Ingersoll et

al. (1996) and Smith et al. (1996).

⁷ When calculating total values, zero was used for those constituents identified as less than the detection limit.

Table 3-9 Semivolatile Organic Comp	pounds in §	St. Joe River	Type 2 ¹	Surface S	ediment	(µg/kg) fr	om Integ	rated As	sessmen	t Addend	um Sar
USEPA Sample Number:	99454128	99454129	99454103	99454104	99454106	99454107	9945408	99454113	99454121	99454126	9945413
START Sample ID:	995MSD28	995MSD29	99SMSD03	00SMSD04	902M2D06	995MSD07	8002M200	99SMSD13	99SMSD21	99SMSD26	99SMSD

	STAF	nple Number: RT Sample ID: ate Collected:	99454128 99SMSD28 11/3/1999	99454129 99SMSD29 11/3/1999	995	454103 SMSD03 /2/1999	99454 99SM	SD04	99454106 99SMSD06 11/2/1999	9945410 99SMSD(11/2/199	07 9	9945408 99SMSD08 11/2/1999	99454 99SM 11/2/	SD13	9945412 99SMSD 11/3/199	21	99454126 99SMSD2 11/3/1999	6 99	9945413 9SMSD1 11/3/199	30	99454135 99SMSD3 11/4/1999	5 99	9454 [,] SMS 1/4/19	D36	994541 99SMSI 11/4/19	D37	99454 99SMS 11/4/1	SD38
Compound	LEL (µg/kg dry wt.)	Site-spcific SEL ² (µg/kg dry wt.)	Background			2/1999	11/2/	1999	11/2/1333	11/2/199	5	11/2/1999	11/2/	1999	11/3/19:	55	11/3/1993		11/3/193	5	11/4/1993		1/4/13	555	11/4/13	199	11/4/1	333
Total Organic Carbon (%)	1.00	0.121	0.95	1.70	1.	28	0.72		0.74	1.72		1.54	1.04		0.79		0.94		0.98		1.31	1	.56		1.67		1.28	
SVOCs (µg/kg)																												
9H-Carbazole ³	_	140	<i>198</i> U	J 243 U	J 1	JQ	170	JQ	187 U	231	υ	203 U	193	U	196	J	90.1 JC	ຊ	192	υ	206	J 2	53	U	543		218	U
9H-Fluorene	190	1,943	<u>198</u> ປ	ປ <mark>243</mark> ປ	J <mark>2</mark>	<mark>35</mark> JQ	143	JQ	187 U	231	U	203 U	66	JQ	<u>196</u>	J	99.7 JO	ב	192	U	206	J 2	53	U	839		165	JQ
Acenaphthene SEL 3, PEL 4	620	3,500	198 l	J 243 L	J 4	44	72.1	JQ	187 U	231	U	203 U	108	JQ	196	J	258		192	U	206	J 2	253	U	778		218	U
Anthracene	0.22	4.49	<i>198</i> U	J 243 L	J 5	17	974		187 U	231	U	203 U	193	U	196	J	148 JO	ג	192	U	206	J 2	45	JQ	2,490		689	
Benzo(a)anthracene ⁵	320	17,977	198 l	J 243 L	J 3'	19	308		187 U	231	U	203 U	193	U	196	J	169 U		192	U	206	J 2	253	U	1,800		535	
Benzo(a)pyrene ^⁵	370	17,491	198 l	J 243 L	J 2	10 JQ	198	JQ	187 U	231	U	203 U	193	U	196	J	55.3 JO	Q	192	U	206	U 1	42	JQ	1,770		652	
Benzo(g,h,i)perylene	170	3,887	<mark>396</mark> ປ	J <mark>485</mark> L	J <u>5</u> 3	<mark>37 </mark> U	293	JQ	<mark>374</mark> U	463	U	407 U	385	U	<mark>391</mark>	J	<mark>338</mark> U		384	U	<u>413</u>	J <u>5</u>	05	U	1,110		536	
Benzo(b)fluoranthene ⁵	_	—	396 L	J 485 L	J 5	62	429		374 U	463	U	407 U	385	U	391 (J	222 JO	Q	384	U	413	U 4	10	JQ	2,870		1,030	
Benzo(k)fluoranthene ⁵	240	16,277	198 l	J <mark>243</mark> L	J 1:	30 JQ	99.4	JQ	187 U	231	U	203 U	193	U	196	J	169 U		192	U	206	U 9	4.1	JQ	1,120		364	
Chrysene ⁵	340	5,587	198 l	J 243 L	J 4 :	39	521		187 U	231	U	203 U	193	U	196	J	120 JO	Ç	192	U	206	J 4	79		3,730		1,090	
Di-n-Butylphthalate	_	—	245 L	J 243 L	J 2'	70 U	156	JQ	214 U	231	U	203 U	193	U	196	J	169 U		192	U	357	J 2	82	U	1,210	U	615	U
Dibenzo(a,h)anthracene ⁵	60	1,579	<u>991</u> ເ	J <u>1,210</u> L	J <u>1,3</u>	<mark>840 </mark> U	1,020	U	<mark>934</mark> U	1,160	U	<mark>1,020</mark> U	963	U	978	J	<mark>844</mark> U		961	U	1,030	J <u>1,</u>	260	U	609	JQ	411	JQ
Dibenzofuran ⁴	2,000	_	198 l	J 243 L	J 1'	72 JQ	41.7	JQ	187 U	231	U	203 U	55.3	JQ	196	J	169 U		192	U	206	J 2	253	U	459		95.1	JQ
Fluoranthene	750	12,390	198 l	J 243 L	J 6	43	961		65.5 JQ	231	U	203 U	193	U	196	J	223		192	U	206	U 4	11		3,010		728	
Indeno(1,2,3-cd)pyrene ⁵	200	3,887	<mark>396</mark> ປ	J <mark>485</mark> ເ	J <u>5</u> 3	37 U	408	U	<mark>374</mark> U	463	U	407 U	385	U	<u>391</u>	J	<mark>338</mark> U		384	U	413	J 🛛	97	JQ	1,260		605	
Naphthalene ⁶	140	_	<u>198</u> ປ	J <mark>243</mark> ປ	J <mark>5,6</mark>	<mark>600 -</mark>	204	U	94 JQ	231	U	203 U	286		<mark>144</mark> 、	JQ	1,940		192	U	395	3	18		1,200		218	U
Naphthalene, 2-methyl-	_	_	198 l		J 2'	72	42	JQ	187 U	231	U	203 U	72.5	JQ	19 I	J	223		192	U	206	J 6	4.8	JQ	264		59.9	JQ
Phenanthrene	560	11,539	198 l	J 243 L	6 ل	56	795		48.3 JQ	231	U	203 U	193	U	196	J	199		192	U	206	U 3	21	U	2,420		422	
Pyrene	490	10,325	198 l	J 243 L		90	808		54 JQ	231	U	203 U	193	U	196 ।	J	194		192	U	200		570		2,730		707	
Total ⁷ PAHs	4,000	121,467	0	0	10,	<mark>375</mark>	<mark>5,758</mark>		262	0		0	460		144		3,459		0		395	2,	766		27,736		7,934	
Total ⁷ CPAHs	_	—	0	0	1,6	690	1,848	;	0	0		0	0		0		397		0		0	1,	422		14,269		5,223	

Samples were collected from the top 6 inches of sediment.

Sediment Screening Values are not chemical specific ARARs. They are to be considered.

LEL - Lowest Effect Level from Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario (Ontario Ministry of the Environment, 1993).

SEL - Severe Effect Level (µg/g organic carbon) from Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario (Ontario Ministry of the Environment, 1993).

Italicized values are detection limits that exceed the criteria.

Shading indicates value exceeds LEL.

Shading indicates value exceeds site-specific SEL.

J - The analyte was positively identified. The associated numerical result is an estimate.

Q - The result is estimated because the concentration is below the Contract Required Quantitation Limit.

U - The analyte was not detected. The associated numerical value is the sample quantitation limit.

¹ Type 2 sediments are predominantly sand or sand with a small silt component.

² Type 2 sediments site-specific %TOC average is 1.21%.

³ Washington State - Freshwater Sediment Auality Values, Cubbage et al. (1997).

⁴ OSWER - Office of Solid Waste and Emergency Response - Ecotox Threshold, USEPA (1996).

⁵ Carcinogenic PAH.

⁶ USEPA ARCS - Assessment and Remediation of Contaminated Sediments (ARCS) Program - Probable Effects Level (USEPA, 1996). ARCS values for the HA-28 assay from Ingersoll et al. (1996) and Smith et al. (1996).

⁷ When calculating total values, zero was used for those constituents identified as less than the detection limit.

Sampling

Table 3-10 Polynuclear Aromatic Hydrocarbons in St. Joe River Surface Water (µg/L) START Site Limited Removal Assessment Samples

	Sa	nple ID No.: ample Date:	990104 1/7/9		9	9010 1/7/9	
	Human Hea	Ith Criteria					
Compound	Water &	Organisms					
	Organisms ³	Only ⁴					
Naphthalene	—		560	J		980	J
Acenaphthylene	—	—	8	J		13	
Acenaphthene	666	975	120	J		190	
Fluorene	1,105	5,243	56	J		89	
Phenanthrene	—	—	69	J		100	
Anthracene	8,287	39,326	1	UJ	<	1	U
Fluoranthene	125	137	17	J		26	
Pyrene	829	3,933	14	J		21	
Benzo(a)anthracene ¹	0.0038	0.018	4	J		5	
Chrysene ¹	0.0038	0.018	2	J		3	
Benzo(b)fluoranthene ¹	0.0038	0.018	2	J		3	
Benzo(k)fluoranthene ¹	0.0038	0.018	2	J		3	
Benzo(a)pyrene ¹	0.0038	0.018	2	J		3	
Indeno(1,2,3-cd)pyrene ¹	0.0038	0.018	1	UJ	<	1	U
Dibenzo(a,h)anthracene ¹	0.0038	0.018	1	UJ	<	1	U
Benzo(g,h,i)perylene	—	—	1	UJ	<	1	U
Total ² PAHs			856			1,436	
Total ² CPAHs	<u> </u>	—	12			17	

Notes:

Criteria - Water Quality Standards for Surface Waters of the Coeur d'Alene Tribe (Coeur d'Alene Tribe, 2000).

Analyses were carried out following the Contract Laboratory Program analytical methods for SVOCs: CLP OLM03.1.

Italicized values are detection limits that exceed the criteria.

Shading indicates value exceeds the Organisms Only criteria.

No values exceed Water and Organisms criteria.

J - The analyte was positively identified. The associated numerical result is an estimate.

U - The analyte was not detected. The associated numerical value is the sample quantitation limit.

¹ Carcinogenic PAH.

 $^{2}\,$ When calculating total values, zero was used for those constituents identified as less than the detection limit.

³ Values represent the maximum ambient water concentration for consumption of both contaminated water and fish or other aquatic organisms.

⁴ Values represent the maximum ambient water concentration for consumption of fish or other aquatic organisms.

	Sample USEPA Sam	e Location: ple ID No.:		R10S			R09S 9084 [,]			V01S			V02S			V03S 0841			V04S			V059 084			RV06 9084			RV078 9084		RV08	
		mple Date:	-			-																		-			-				
	Human He	alth Criteria	Ba	ackgr	ound	(Outfa	lls			Wet	lan	d										R	liver							
Compound	Water & Organisms ⁴	Organisms Only ⁵																													
Naphthalene	—	—	<	10	U		2	JQ	<	10	U	<	10	U	<	10	U		0.6	JQ		1	JQ		2	JQ		3	JQ	110	
Acenaphthylene	_	—	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	2	JQ
Acenaphthene	666	975	<	10	U		1	JQ	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U		2	JQ		1	JQ	34	
Fluorene	1,105	5,243	<	10	U		0.7	JQ	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U		1	JQ		0.8	JQ	24	
Phenanthrene	—	—	<	10	U		1	JQ	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U		1	JQ		4	JQ	47	
Anthracene	8,287	39,326	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	28	
Fluoranthene	125	137	<	10	U		1	JQ	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U		2	JQ		5	JQ	23	
Pyrene	829	3,933	<	10	U		0.8	JQ	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U		2	JQ		5	JQ	20	_
Benzo(a)anthracene ¹	0.0038	0.018	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U		0.8	JQ	5	JQ
Chrysene ¹	0.0038	0.018	<	10	U		0.5	JQ	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U		0.5	JQ	8	JQ
Benzo(b)fluoranthene ¹	0.0038	0.018	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	2	JQ
Benzo(k)fluoranthene ¹	0.0038	0.018	<	10	U	<	10	U	<	10	U	<	10	υ	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	2	JQ
Benzo(a)pyrene ¹	0.0038	0.018	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	<	10	U	2	JQ
Indeno(1,2,3-cd)pyrene 1,2	0.0038	0.018		NA			NA			NA			NA			NA			NA			NA			NA			NA		NA	
Dibenzo(a,h)anthracene 1, 2	0.0038	0.018		NA			NA			NA			NA			NA			NA			NA			NA			NA		NA	
Benzo(g,h,i)perylene ²	—	—		NA			NA			NA			NA			NA			NA			NA			NA			NA		NA	
Total ³ PAHs		_		0			7.0			0			0			0			0.6			1			10			20		307	
Total ³ CPAHs	_	—		0			0.5			0			0			0			0			0			0			1.3		19	

Table 3-11 Polynuclear Aromatic Hydrocarbons in St. Joe River Surface Water (µg/L) START Site Integrated Assessment Samples

Notes:

Criteria - Water Quality Standards for Surface Waters of the Coeur d'Alene Tribe (Surface water quality standards, Coeur d'Alene Tribe, 2000). Analyses were carried out following the Contract Laboratory Program analytical methods for SVOCs: CLP OLM03.1.

Italicized values are detection limits that exceed the criteria.

Shading indicates value exceeds the Organisms Only criteria.

No values exceed Water and Organisms criteria.

J - The analyte was positively identified. The associated numerical result is an estimate.

NA - Not analyzed.

Q - The result is estimated because the concentration is below the Contract Required Quantitation Limits.

U - The analyte was not detected. The associated numerical value is the sample quantitation limit.

¹ Carcinogenic PAH.

² These compounds were not analyzed.

³ When calculating total values, zero was used for those constituents identified as less than the detection limit.

⁴ Values represent the maximum ambient water concentration for consumption of both contaminated water and fish or other aquatic organisms.

⁵ Values represent the maximum ambient water concentration for consumption of fish or other aquatic organisms.

Table 4-1	Data Evaluation for CSM Pathways	
-----------	----------------------------------	--

Pathway	Do Data Exist to Evaluate Pathway?	Is Existing Data of Sufficient Quality?	Additional Information Required?	See Decision Statement No.
Migration Pathways				
DNAPL Migration	Yes. Mobile DNAPL has not accumulated in monitoring wells.	Yes	Yes	2f
Dissolution	Yes. Groundwater impacts have been observed in monitoring wells.	Yes/No	Yes	1d, e, g
Surficial Soil/Sediment Migration	No.	NA	Yes	2c
Dissolved-phase Migration	Yes. Groundwater impacts have been observed in one set of monitoring wells, and several Geoprobe™ test holes.	Yes/No	Yes	2a, b, e
Volatilization	Yes. Soil data can be used to model volatilization.	Yes	No	See Appendix C
Wind Erosion and Atmospheric Dispersion	No.	NA	Yes	1d
Exposure Pathways				
Human Exposure Pathways				
Direct Contact ¹ with Surface Soil (site worker)	No.	NA	Yes	3b
Direct Contact with Subsurface Soil or Groundwater (future construction worker)	Yes. Subsurface soil and groundwater data have been collected at the site.	Yes/No	Yes	3b
Groundwater Consumption (future off-site resident)	Yes. Groundwater impacts have been observed only in one set of monitoring wells.	Yes/No	Yes	3b
Direct Contact with Surface Water (recreationalist or subsistence receptor)	Yes.	No	Yes	3a, c
Direct Contact with Sediment (recreationalist or subsistence receptor)	Yes. Sediment data has been collected at the site.	Yes/No	Yes	3a, c
Ingestion of Biota (recreationalist or subsistence receptor)	Yes. Sediment data has been collected at the site and can be used in bioaccumulation modeling	Yes/No	Yes	
Ecological Exposure Pathways			1	ſ
Direct Contact with Surface Water ² (aquatic receptor)	Yes.	No	Yes	3a, c
Direct Contact with Sediment ³ (aquatic receptor)	Yes. Sediment data has been collected at the site.	Yes/No	Yes	3a, c, d
Ingestion of Biota (food web; aquatic receptor)	Yes. Sediment data has been collected at the site and can be used in bioaccumulation modeling	Yes/No	Yes	3a, c
Direct Contact with Soil (terrestrial receptor)	No.	NA	Yes	3b
Ingestion of Biota (food web; terrestrial receptor)	No	NA	Yes	3b

¹ Human and terrestrial receptor soil direct contact includes dermal contact, incidental ingestion, and inhalation of particulates from wind erosion.

² Aquatic receptor exposure to surface water is by respiration.

³ Aquatic receptor sediment direct contact includes dermal contact, ingestion, and respiration.

State Problem DQO Team Principal Study Question Decision State	effective contami Carney Determi action, c exceed contami	e remedy that is protective of human health and the environment nation, migration pathways, exposure scenarios, and appropriat Products Co., City of St. Maries, USEPA, Coeur d'Alene Tribe, I ne whether Site contamination poses unacceptable risk to huma or recommend that no further investigation is necessary. Detern	Marten Brown, and RETEC. an health and the environment and requires further consideration or a response nine where COCs (refined from COIs and COPCs in the Risk Assessment) on is required. Currently, sufficient data are not available to characterize cal investigation data.
Investigation Ob	iective	Preliminary Inputs to the Decision ¹	Decision Rule
a) Determine if His and New Data Is o Sufficient Quality.	storical	 Environmental Site Reconnaissance and Historical Review (EMCON, 1998); Limited Removal Assessment Report (E&E, 1999); Removal Site Assessment and Removal Action Reports (EMCON, 1999); Integrated Assessment Report (E&E, 1999); and Integrated Assessment Addendum (E&E, 2000). 	 Data Conditions: If data meet the requirements of data adequacy as defined below, then the data will be used to quantitatively evaluate further decision rules: The suite of analytes are comprised of COIs that represent the potential site contaminants; Data meet QA/QC requirements defined in the QAPP; Detection limits are sufficient for comparison to relevant screening level criteria, where achievable; Sufficient data exist to evaluate each potential exposure pathway identified in the CSM; and An adequate number of samples are collected to spatially evaluate the nature and extent of risk. Data not meeting these criteria may continue to be used qualitatively.
b) Select Screenin Levels.	g	• Relevant screening levels. ²	Ruling: If screening levels are relevant to management in USEPA Region 10 and/or in Tribal land areas, then they will be applied.
c) Define Backgrou		• Samples for surface soils, groundwater, surface water, and sediments collected from local upgradient/upstream areas that are not impacted by Site activities.	Ruling: If the detection limits are acceptable and locations reasonable based on Site knowledge and history, then the background COI concentration will be statistically determined from the data set (collected between 1998 and 2003).
d) Assess Surface Quality.	Soil	 Surface soil samples in the former treating, potential drippage, and surrounding areas. 	Ruling: If surface soil concentrations are below screening levels and background, then surface soil is not a risk and will not be considered further. If above, the COI will be carried forward in the baseline risk assessment. Data will be used to define lateral extent.

Decision Statement #1: Where do COIs exceed risk-based screening levels and background levels?		
Investigation Objective	Preliminary Inputs to the Decision ¹	Decision Rule
e) Evaluate Lateral and Vertical Extent of Subsurface COIs in Soil Towards the River.	 Subsurface soil Impacts in other directions have been defined; Soil test holes on the north side of the Former Treating Area toward the river. Appropriate depths will be determined prior to initiation of field activities; and Deep boring near source area. 	Ruling: If subsurface soil concentrations are below screening levels and background, then subsurface soil is not a risk and will not be considered further. If above, the COI will be carried forward in the baseline risk assessment. Data will be used to define lateral extent.
f) Further Evaluate the Extent of COIs Riverbank Soils.	 Collect riverbank cores up to 500 feet downstream of Source Area. 	Ruling: If riverbank soil concentrations are below screening levels and background, then riverbank soil is not a risk and will not be considered further. If above, the COI will be carried forward in the baseline risk assessment. Data will be used to define lateral extent.
g) Further Evaluate the Extent of COIs in Groundwater.	 Install groundwater monitoring wells near periphery with 10-foot screen intervals; Collect groundwater quality samples during wet and dry season. Collect surface water samples at the same time near the sediment/water interface; and Determine if mobile DNAPL accumulates in wells. 	 Ruling: If groundwater concentrations are below screening levels and background, then groundwater is not a risk and will not be considered further. If above, the COI will be carried forward in the baseline risk assessment. Data will be used to define lateral and vertical extent. Ruling: If site COI concentrations are higher than screening levels or background concentrations, then study area soils and groundwater may be considered to be a source to surface water. The COI potentially presents risk to groundwater and surface water and is retained for further consideration (see paragraph 2c).
h) Evaluate Surface Water Quality.	• Surface water samples collected near the sediment/water interface for chemical testing.	Ruling: If surface water concentrations are below screening levels and background, then surface water is not a risk and will not be considered further. If above, the COI will be carried forward in the baseline risk assessment. Ruling: If the mean site surface water COI concentration is less than background levels, then soil, groundwater, and sediments in the study area (i.e., creosote-related source media) are not considered to be a source to surface water. The COI is not considered to present a risk to surface water and is eliminated.
i) Determine the Horizontal and Vertical Extent of COIs in Sediment.	 Collect surface sediment samples in a grid spacing focusing on defining the boundary of previously delineated impacted area; and Collect subsurface sediment cores within the previously delineated impacted area to define the vertical extent of COIs. 	Ruling: If sediment concentrations are below screening levels and background, then sediment is not a risk and will not be considered further regarding toxicity. Bioaccumulation potential will be evaluated in the risk assessment. If above, the COI will be carried forward in the baseline risk assessment. Data will be used to define lateral extent.

Decision Statement #2: What are the potential migration pathways for COIs in soil, groundwater, NAPL, and sediment?		
Investigation Objective	Preliminary Inputs to the Decision ¹	Decision Rule
a) What is the Source of PAHs Observed in Riverbank Soils? Are They Primary (i.e., dumping) or Secondary (i.e., migration)?	 Sediment core profiles and riverbank surface and subsurface soil samples; and Upland test holes between the riverbank and the FTA. 	Ruling: If free product and/or dissolved fractions are not present in sufficient volumes at the depths and locations expected based on the understanding of Site stratigraphy and flow patterns, then groundwater transport and NAPL migration are not considered migration pathways to the St. Joe River. If discrete mass at riverbank area is sufficient to be a source to the river, observed impacts are from overland dumping.
b) DNAPL Mobility—Is DNAPL Residual, Stratigraphically Trapped, or Mobile?	 Monitoring for DNAPL accumulation in wells; Physical characteristics of DNAPL such as viscosity, density, and interfacial tension (if mobile DNAPL is identified in sufficient volume to collect sample); Characteristics of the soil matrix and pore space such as soil water content, soil void space, capillary pressure, and DNAPL saturation; and Physical observations of soil samples and groundwater samples. 	Ruling: If DNAPL is mobile, then migration of DNAPL will be considered an ongoing pathway and appropriate remedial options will be considered. If DNAPL is residual with in-place stable chemistry, then mobile DNAPL migration pathways will not be addressed as part of the remedy.
 c) Characterization of Site Geology and Hydrogeology. Delineation of the Dissolved-phase Migration Pathway. 	 Physical testing of subsurface soil and sediment samples; Install piezometer(s) in the intermediate interbedded sand and silt layers; Collect monthly water level data for 1 year in piezometers, monitoring wells, and surface water; Aquifer testing to determine hydraulic conductivity; Review of nearby deep well logs; and Evaluate groundwater quality and temporal trends in groundwater by collecting seasonal groundwater samples. 	Ruling: If observed geologic and hydrogeologic characteristics can be used to eliminate potential COI migration pathways, then these pathways will be eliminated from further consideration or study. Ruling: If the water level data evaluation does not indicate water movement in a particular direction, then migration in this direction is not a significant pathway.

	Preliminary Inputs to the Decision ¹	r COIs in soil, groundwater, NAPL, and sediment? Decision Rule
Investigation Objective d) Evaluate Groundwater-Surface Water Interaction. Determine Potential Migration of Groundwater to the River.	 Groundwater and river level elevations; River flow characteristics; Groundwater flow characteristics; Possible use of simple fate and transport modeling; and Possibly surface water chemistry adjacent to sediment. 	Decision Kule Ruling: If the evidence indicates that COIs are below relevant screening levels, then there is not a significant interaction between groundwater and surface water, and this migration pathway is eliminated from further consideration. If above, then a weight-of-evidence approach will be used for evaluation. The weight-of-evidence approach includes data such as geologic profiles, transport models, groundwater levels, and concentrations; COI concentrations detected in upland wells (near the top of bank); COI concentrations detected in subsurface riverbank soils and nearshore sediment cores from expected depths; and surface water concentrations. Ruling: If soil and groundwater concentrations in the area between the Source Area and the river are below screening levels, then this is not a significant migration pathway.
 e) If COIs Exist in Surface Soil, Are They Present at Levels That Could Impact Surface Water During Flood Events? Is There Transport of Surface Soil COIs During Flood Events? Does Seasonal Flooding Affect the Water Table 	 Flood frequency and effects; Upland soil characteristics; Surface soil concentrations; Riverbank soil profiles; River flow characteristics; and Aerial photographs. 	 Ruling: Based on a weight-of-evidence approach using aerial photographs, riverbank core profiles, visual observations during spring floods, historical document reviews, Site interviews, and upland soil profiles, if these data do not show evidence of overland surface flow back towards the river, then this pathway is eliminated from further consideration. Ruling: If riverbank soil profiles show no significant accumulations of recently mobile material from flood events based on physical stratigraphy and chemical testing, then flooding is not a significant migration pathway. Ruling: Using average surface-weighted surface soil samples collected from upland areas, if the concentrations that partition into surface water during estimated flood events are below relevant screening levels, then the exposure and migration pathway is not significant.
and Groundwater Flow? f) If COIs Exist in Surface Soil, Are They Present at Levels That Could Present a Risk via Wind Erosion and Atmospheric Dispersion?	 Upland soil characteristics; Surface soil concentrations; and Risk assessment. 	Ruling: If results indicate that this migration pathway is not significant, the pathway will be considered further.
Decision Statement	#3: Are human and ecological receptors at risk n	ow or in the future from COIs?
Investigation Objective	Preliminary Inputs to the Decision ¹	Decision Rule
a) Characterize Exposure Pathways.	Inputs described above.	Ruling: If groundwater has the potential to migrate to surface water and sediments but these levels are low or not bioavailable, then this is not an

exposure pathway.

Investigation Objective	Preliminary Inputs to the Decision ¹	Decision Rule
b) Determine Upland Ecological Risk and Human Health Risk. Evaluate Risk via Direct Contact with Soil and Ingestion of Groundwater Pathways.	 Surface soil samples; Evaluation of groundwater use patterns by humans; Install reliable groundwater well at depth of usable quality and collect samples; Groundwater data from new and existing wells; and Terrestrial habitat characterization (no new data) and bioaccumulation modeling. 	Ruling: If the 95% UCL of COI concentrations in soil and groundwater are below relevant screening levels, ² then the COI will not be carried forward in the risk assessment.
 c) Determine In-water Ecological Risk and Human Health Risk. Evaluate Risk via Ingestion, Dermal Contact, and Food Chain Pathways of Sediment, Surface Water, and Biota. d) Are There Deleterious Substances Present in the Bottom Sediments that Adversely Affect Aquatic Biota? 	 Habitat characterization in the vicinity and downstream of the Source Area; Surface sediment and surface water chemistry data; Surface sediment toxicity tests to benthic organisms; Develop trophic transfer and food web model (no new samples); Bioaccumulation and/or exposure risk modeling; and Evaluate risk based on weight of evidence. Visual description of bottom sediments; Surface sediment samples; and Define a deleterious substance (e.g., wood waste). 	 Ruling: If there is not sensitive habitat within 500 feet of the study area, then this habitat and the receptors living in it are not considered at risk. If habitat exists, receptors will be considered in the risk assessment. Ruling: If trophic transfer is not considered a significant risk pathway, then sediment toxicity results will override sediment COI concentrations. If trophic transfer is a possible pathway, then a weight-of-evidence approach will be used. Ruling: If surface water concentrations are below screening levels and background, then this exposure pathway will not be considered. Ruling: If potential deleterious substances are present in surface bottom sediments, then the DQO team will define action levels for the deleterious substances.
		t-effectively protect human health and the environment?
Investigation Objective a) Determine Site Areas that Require Remedial Action.	Preliminary Inputs to the Decision ¹ Results of RI and risk assessment.	Decision Rule Ruling: If results of the BLRA indicate an unacceptable risk to receptors, then remedial technologies will be evaluated for the affected area and medium.
b) Physical Constraints for Implementing a Remedy.	Site observations.	Ruling: If site access, community concerns, physical properties of the material, and/or other considerations preclude the feasibility of implementing a remedial alternative, then this alternative will likely be eliminated during the FS process.

Decision Statement #4: Which feasible remedial technologies will cost-effectively protect human health and the environment?		
Investigation Objective c) How Do Physical Properties of Sediment Influence Potential Capping, Dredging, Dewatering, and Disposal Remedies?	 Preliminary Inputs to the Decision ¹ Sediment core samples for MQOs such as geotechnical testing (Atterberg limits, compressive strength, shear strength, percent solids); and Treatability and dewatering testing. 	Decision Rule Ruling: Assuming that sediment concentrations are above cleanup levels and require a remedial action, if the physical properties are not appropriate for capping (i.e., compressive strength, percent), then capping will not be considered or modified and other remedies such as dredging will be considered.
d) How Do Physical Characteristics of the River Influence Potential Capping and Natural Attenuation Remedies?	 River flow dynamics; Scour modeling; and Soft sediment thickness and bathymetry data. 	Ruling: If the physical characteristics of the river result in significant scouring of recently deposited sediment, then a capping and/or attenuation alternative will not be feasible.
e) How Do Sedimentation Rates Influence Natural Recovery in the St. Joe River?	 Bathymetry and soft sediment thickness to determine areas of deposition in the St. Joe River; Sediment cores for potential radioisotope dating in areas of sediment deposition; and River flow characteristics. 	Ruling: If the sediment core profiles show that significant net accumulations of cleaner sediment are occurring over time (i.e., burial of contaminated sediment) and localized areas are not subject to scouring from storm events, then specific areas contained within the St. Joe River may be feasible for natural recovery.
f) Determine Soil Characteristics to Evaluate Soil Remedial Technologies.	 Soil characteristics such as grain size; and Possible treatability testing to further evaluate bioremediation. 	Ruling: If physical properties of the material and/or other considerations preclude the feasibility of implementing a remedial alternative, then the alternative will likely be eliminated during the FS process.
g) Determine NAPL Characteristics to Evaluate Remedial Technologies.	 Viscosity versus temperature testing; Other NAPL properties (density, composition); and Possible treatability testing to further evaluate enhanced steam recovery and electrical heating. 	Ruling: If DNAPL properties of the material and/or other considerations preclude the feasibility of implementing a remedial alternative, then the alternative will likely be eliminated during the FS process.
h) What Effects Would Potential Remedies Have on Groundwater Migration and NAPL Transport?	 Aquifer hydraulic properties; and Possible fate and transport modeling (no new data). 	Ruling: Assuming the groundwater migration to the river is a significant pathway, if a groundwater containment system significantly alters groundwater migration, then the altered groundwater flow directions will be evaluated in the remedy selection process.
i) Determine Subsurface Conditions to Evaluate Natural Attenuation.	 Characterize electron acceptors, biodegradation products, and field parameters in groundwater; and Possible treatability testing if further evaluation is necessary. 	Ruling: If results indicate that contaminants are not significantly degrading by naturally occurring processes, then natural attenuation will likely be eliminated as a remedial technology during the FS process.

	The SOW defines the study area for the St. Maries Creosote Site as "the former wood treating facility and the river immediately north of the treating facility.
	The study area boundaries will be expanded if, during the RI, contamination is detected at the current study area boundaries." For surface soil, the study
	area includes the upper 1 foot of soil in areas contained within the property boundary. For groundwater, the study area includes the upper and lower
Define Study	aquifer down to depths of non-contaminated groundwater. Laterally, the study area is initially confined to within the property boundaries. For surface
Boundaries	water and surface sediments, the lateral extent of the study area is initially defined as 500 feet upstream (for background) and 500 feet downstream (for
Doundaries	transport) of the potential source area including the riverbanks. For subsurface sediments, the vertical boundary area is when unimpacted sediments are
	encountered. The study area boundary for biological components will include literature values for water, potatoes, fish, and birds and toxicity tests for
	surface sediments contained within the 500-foot perimeter study area. Final sampling locations will be determined in the field by qualified field personnel;
	locations will be selected to maximize our understanding of the Site CSM and presence and extent of COIs.

Notes:

- 1. Data Quality Objectives Process for Hazardous Waste Site Investigations, USEPA, 2000. EPA QA/G-4HW Final, and Guidance for Data Quality Objectives Process, USEPA, 1994.
- 2. Relevant screening levels (in order of comparisons) for COI protection of human or ecological health are based on the following hierarchy per media:

Soil

Relevant screening criteria for soil if above the PQL:

- a. USEPA Region 9 Screening Levels for the protection of groundwater (dilution attenuation factor 1) (USEPA, 2000);
- b. Concentrations for residential exposure; (risk-based concentrations [RBCs] adjusted to a 0.1 HI for non-carcinogens); and
- c. Concentration that ensures protection to terrestrial receptors.

Groundwater – Human Health

- d. State and/or Tribe Water Quality Standards;
- e. USEPA Region 9 Screening Levels for the protection of Tap Water/Drinking Water;
- f. Concentrations for residential exposure (RBCs adjusted to a 0.1 HI for non-carcinogens based on the residential ingestion of groundwater); and
- g. Practical quantitation limits (PQLs).

Surface Sediment – Human Health (adapted from human health criteria applicable to soils)

- h. USEPA Region 10 RBCs, adjusted to 0.1 HI for non-carcinogens; and
- i. PQLs.

Surface Sediment – Ecological Health

- j. Low Screen: (1) Ontario, Canada Ministry of Environment Lower Effect Level (LEL); (2) Lowest of ARCS (Assessment and Remediation of Contaminated Sediments) *Hyalella azteca* Probable Effect Level (TEL) as presented in Ingersoll et al. (1996); and (3) OSWER SQB;
- k. High Screen: (1) Ontario, Canada Ministry of Environment Severe Effect Level (SEL); (2) Washington proposed FSQV (Freshwater Sediment Quality Values); and (3) if the benchmarks are lower than the PQL, the PQL becomes the screening benchmark.

Surface Water – Human Health

- I. Coeur d'Alene Tribe Water Quality Standards for Surface Water (protection of aquatic organisms, human health direct consumption, and fish consumption) (USEPA, 2000);
- m. USEPA Maximum Contaminant Levels (MCLs); and
- n. PQLs.
- Surface Water Ecological Health
- o. Coeur d'Alene Tribe Water Quality Standards for Surface Water (protection of aquatic organisms, human health direct consumption, and fish consumption) (USEPA, 2000);
- p. Lowest of National Ambient Water Quality Criteria Acute or Chronic (NAWQC-CCC) (adjusted for hardness as appropriate).
- Note: If screening criteria are not available, PQL will be the screening criteria.

Table 8-1 St. Maries Creosote Site Data Gap Assessment

Data Gap	Steps to Address Data Gaps
Site Characteristics	
Upland Ecological Risk	Terrestrial habitat characterization.
In-water Ecological Risk	Research and inspection of habitat and habitat use to develop the food web model.
Upland Health Risk	Groundwater use evaluation.
In-water Human Health Risk	Research and inspection of consumption and use habits to develop the food web model.
Site Conditions	Accessibility, stability of slopes and structures, extent of debris, navigational needs, feasibility of staging areas by visual inspection.
Soil Data	
Surface Soil and Source Definition Vertical Extent of Soil	Surface samples and COI analysis in source area and potential drippage areas (railroad tracks and roads near the treating area), and the area near GP-25. Deep soil boring in source area drilled by conservative methods.
Impacts	Deep borings located on the periphery of the plume (including near GP-25). Limited COI analysis, grain size analysis.
Vertical Extent of Soil Impacts Between Source Area and River (upland)	Soil borings extending to the depth of the riverbed. Limited COI analysis.
Extent of Soil Impacts Along Riverbank	Borings to determine vertical and lateral extent of impacts. COI and grain size analysis.
Characterization of Site Geology	Collect grain size data to evaluate physical characteristics of soil. Estimate bulk density and porosity from literature values. Review regional well logs to delineate deeper geologic units.
Affects of Flooding	Inspection for physical signs of disturbance and depositional patterns, historical river information, and physical characteristics of bank soils (Atterberg limits, shear strength, bulk density, grain size).
Groundwater Data	
Extent of Groundwater Impacts	Installation of additional groundwater monitoring wells with 10-foot screen intervals.
Groundwater Chemistry	Groundwater analysis of potential electron acceptors (oxygen, iron, nitrate, manganese, and sulfate) and potential metabolic byproducts (methane, carbon dioxide, ferrous iron, nitrogen, dissolved manganese, and sulfide). Field parameters measured during sampling that can also aid in the evaluation of natural attenuation processes include pH, redox potential, temperature, conductivity, turbidity, and dissolved oxygen.
Evaluation of Groundwater Quality and Temporal Trends	Groundwater quality data with low detection limits during different seasons.
Groundwater-Surface Water Interaction	Groundwater and surface water level monitoring, over a long enough period to identify seasonal trends.
Characterization of Site Hydrogeology	Collect hydraulic conductivity data and water level measurements to characterize groundwater flow.
DNAPL Data	
DNAPL Characteristics	Presence of mobile product, residual saturation, density, viscosity, and chemical composition.

Table 8-1 St. Maries Creosote Site Data Gap Assessment

Data Gap	Steps to Address Data Gaps
Surface Water/Sediment Da	ta
Extent of Sediment Impacts	Horizontal – data where detection limits exceed screening levels. Vertical – understand the extent of vertical impacts.
Sediment Characteristics	TOC, grain size, ammonia/sulfides, bathymetry, sedimentation rates, geotechnical properties.
Magnitude of Surface Water Impacts	Surface water quality data with low detection limits (including background). Surface water at sediment-water interface (either seep samples or samples at the sediment- water interface whichever is accessible).
Sedimentation Rates	Inspection of sedimentation pattern in cores. Potential analysis of sediment to determine rates of deposition.
In-water Ecological Risk	Surface sediment toxicity to benthic organisms (with chemistry analysis). Also assess presence of deleterious substances.