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SUMMARY

,

The study of electromagnetic wave scattering and propagation characteristics
in inhomogeneous media has recently attracted increased attention in basic and I/{,'bl’o
applied science, particularly where applied to plasma sheaths. ? <

In this paper a solution to several classes of plasma problems has been {-
found by applying a technique similar to that used in nonrelativistic quantum V3
mechanics when studying particle scattering by partial waves. In both types of
problems it is desired to find out how a varying index of refraction affects the
propagation of incident waves. The solutions are represented as sums or integrals
of Fourier components which represent the partial waves. When the inhomogeneous
medium is removed, the partial waves are known for many cases of interest; when
the spatially~varying medium is reintroduced, each of these partial waves will
change. It is convenient to define the partial wave phase shifts as the natural
logarithm of the ratio of the new to the old partial waves. These phase shifts will A
in general be complex numbers. o

The general mathematics of this approach is similar for both the quantum and
electromagnetic problems. A scalar equation is under consideration in both
approaches since the electromagnetic vector wave equation has been reduced to a
scalar equation by restricting the form of the conducting surface and the kind of
antenna allowed. The principal differences between the two types of problems
are contained in the boundary conditions imposed in each case. In addition to
these differences, it must be remembered that in the quantum problem the incident
wave is generated outside the varying region. In the electromagnetic problem, one
considers restriction from an antenna on a missile surface, the scattering properties
of the sheath, and the effect of the sheath on reception from an external source.

By using the approach described above, an analytic solution to several
problems of interest is obtained in the form of an infinite series where successive
terms are defined by an integral recursion relation. It should be mentioned that
no restrictions are necessary with regard to near- and far-fields and with regard

to the thickness of the medium layer. /
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CHAPTER |

INTRODUCTION

The solution of the wave equation with a continually-varying wave
number has until recently been of primary interest in the field of quantum
mechanics, as applied to the Schroedinger equation with a varying potential.
Current interest in fhe{_\;lave equc:tior;2 has arisen alsof:injfhefpropagotion of
electromagnetic waves in plasma media on conducting surfoce\j where the
plasma pemittivity can be treated as a continuous (complex) function. A
common approach to this problem has been to approximate the continuous
variation by a constant average of €, and to obtain a solution by applying
the usual electromagnetic boundary conditions between regions with different
average values. However, this approximation may cause the solution to differ
markedly from the physically correct soluﬁon.]

A more recent approach has been to formulate a power series solution
or a WKB-like solution for the fields.3 The power series approach requires

the use of large computers, and the value of an analytic solution is lost. The

WKB solution is not valid for a plasma thickness of the same order of magnitude

The analysis with homogeneous sheaths in References 10, 12, -14-16, in the
Annotated Bibliography may be compared with the analysis using inhomogen-
eous sheaths in References 1, 2, 5, 11, 20, 22, 23. The difference is also
pointed out explicitly in Chapter VI of this paper.

The power series technique has been applied in References 2, 11, 22, and
29 in the Annotated Bibliography.

3 The WKB approach is utilized in References 11 and 23 in the Annotated
Bibliography.




as the wavelength of the source, and this is the situation that prevails in
many reentry problems.

In this paper, a different technique for handling the problem has
been derived for several coordinate symmetries. In the radiation problems
considered a constant-phase strip antenna is present on the conducting surface,
while in the scattering and transmission problems a polarized wave is incident
from infinity. By appropriate utilization of these restrictions, the vector
wave equation can be reduced to a linear, second order partial differential
equation that is separable. The boundary conditions on the electromagnetic
fields at the conducting surface are then applied to this equation in such a
way that one integration may be performed. A linear, first order differential
equation is obtained and this can be integrated directly without further
restriction.

The technique applied here is similar to that used in nonrelativistic
quantum mechanics when studying particle scattering by partial waves?in
both problems we want to find out how a varying index of refraction affects
the propagation of an incident wave. The solutions to both problems can be
represented as a sum or integral of Fourier components, and to these compo-
nents the name partial waves may be given.  When the inhomogeneous
region is removed the partial waves are completely known; when the varying
region is replaced it is convenient to express the new set of Fourier components
in terms of the old, and this is done by defining the partial wave phase shifts
in terms of the ratio of the new to the old components. The general treat-
ment of this approach is similar for both the quantum and electromagnetic
problems.

However, the problems are quite different when viewed from other
aspects. Perfectly conducting boundaries will always exist in the electro-

magnetic problem, so that both the regular and irregular solutions must be

The quantum mechanical partial wave technique is discussed thoroughly
in References 4 and 8 in the Annotated Bibliography.



retained. In the quantum problem, this would cormrespond to allowing an
infinite potential to exist. Since the method of solution in this paper depends
on the presence of the boundary, the mathematical techniques employed are
quite different from those of the quantum case. There is also a difference in
the basic wave equations to be solved; the quantum problem involves a
scalar wave equation in three dimensions while in the electromagnetic case
a vector wave equation must be solved and both two- and three~dimensional
models are considered. In addition to these differences, it must be remem-
bered that in the quantum problem the incident wave is generated outside
the varying region. In the first case, radiation from an antenna on the
missile surface is considered, while in the second case we are concerned
either with the scattering properties of the sheath or with the effect of the
sheath on reception from an external source.

The solution is formulated in three steps. First, we are given a
particular problem we wish to solve, described by a differential equation and
certain boundary conditions. This problem will in general be very difficult
to solve, so we must approach it indirectly.

In the second step, we generate an entirely new, workable problem
designed to represent a first-order approximation to the actual problem. In
order to generate this approximate problem, we first define an average value

of the permittivity such that

R [average valve of €] 1 {maximum value of  minimum value of
e aver valu = &
g 2 |the Re € across + Re € across the
the sheath sheath
| maximum value of  minimum value of,
Im [average value of €] = 5 the Im € across + Im € across the

the sheath sheath

This definition is chosen to minimize the maximum difference between the
actual value of € and the approximate value across the sheath. The new
workable problem is generated by replacing the region of varying € in the

actual problem by a region with a constant, average value of €. The
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approximate fields can then be found by applying the known electromagnetic
boundary conditions to the known solutions.

In the third part of the solution, the fields for the actual problem are
described in terms of those for the approximate, solvable problem. The
difference between these solutions is expressed as an (infinite) set of
differences between the Fourier components of the fields themselves. To
these Fourier components the name partial waves has been designated. The
differences between the actual and approximate partial waves is then expressed
by the (infinite) set of partial wave phase shifts. This nomenclature is in
anology with that used in quantum-mechanical scattering problems.

Using the mathematical approach discussed above, an analytic
solution is obtained in the form of an infinite series where successive terms
are defined by an integral recursion relation. For many cases of interest this
series will converge rapidly.

Three two-dimensional models have been analyzed. The first two are
a conducting cylinder or wedge clad in an inhomogeneous medium either in
the presence of an electric or magnetic strip source or an incident polarized
wave from infinity. The third is a conducting plane clad in a linearly-inhomo-
geneous medium with periodic electric or magnetic strip sources or an
appropriate incident wave. The two three-dimensional models considered are
a conducting sphere or cone in a varying medium in the presence of a
circumferential strip antenna or an incident polarized wave from infinity.
Elliptical and parabolic coordinate systems cannot be utilized since the
metrical coefﬁcienfss in these cases are functions of more than one coordinate
variable and the equations are not separable.

The iterative method of solution is derived in general form in

Chapter ll, and the mathematical similarities and differences between the

3 J. A. Stratton, Electromagnetic Theory, McGraw~Hill Book Company, Inc.,
1941, Chapter I.




quantum and electromagnetic problems are explicitly demonstrated. Once
the general method of solution has been developed, it is necessary to show
that the results are applicabie to the plasma problem.

The problems with planar, cylindrical, and spherical conducting
surfaces are considered in Chapters [1l and IV. In the former the vector
wave equations are reduced to linear second order differential equations

for each case, and in the latter it is shown that the general method can be

applied to obtain a solution. The wedge and cone problems have been placed

separately in Chapter V since they are found to be only partially solvable.
Once the applicability of the method has been established, it is
desirable to work out an example to illustrate the usefulness and accuracy
of the results. This is done for a simple problem in Chapter Vi, where the
limitations on the WKB and step function solutions are presented.
The appendices are intended to provide the mathematical and
physical references that are necessary in order to utilize the results of this

work .




CHAPTER 11

METHOD OF SOLUTION

A. General Development

In order to study electromagnetic wave propagation in inhomogeneous
media, one must obtain solutions differential equations of the form
LT
a fF,

X
e f,mmj{" FOINE &DIR =0 ()

where F:\ is the nth Fourier componenféof an electric field E or magnetic
field H, ¢ is one of the coordinate variables in the problem of interest,
and € ( ¢) is the relative permittivity in the region over which equation

(2-1) must hold:

% 3 < % C Region I] . (2-2)

When € ) is set equal to a constant value € , the medium is homogeneous
3 q g
r a 4

and in many cases of interest the solutions Tfrll are known:

d3Fn £ S
:.l—i—.: + X‘[“;i)fdjzl_j%\ + X2 Lo, ?)ea-]Fnl"" O. (2-3)

If €, is chosen to be average value of ¢ (¢) over the range E; < g < Eer

It will be assumed for simplicity that n takes on only discrete valves. If a
summation is involved, the radiation far fields may be found by simply letting
-> . If an integral is involved, however, the integration must first be

performed before letting p?c0  since ?‘:;':o S‘F(e)c\f' -7# 5‘ [;‘;’: F‘(’)]df.




then F:‘ is an approximation to the field Fln. Although many important
features of the actual problem may not appear in the approximate one, it
represents a useful starting point. The following analysis utilizes the
approximate field -FrI‘ to obtain a solution for the actual field Fln'

In the scattering problems, a perfectly-conducting surface is assumed
to exist at the inner boundary ¢ = ¢ e and in the radiation problems, a
specified strip antenna on an otherwise perfectly-conducting surface is
assumed fo exist at this boundary. We will assume that the same boundary
conditions apply to both the actual and approximate solqtions7, and one of
the following cases will always hold:

0 (scattering ;;roblem)

Coel FI&)= F (%) = (2-4)

known function (radiation problem)

0 (scattering problem)

1 .
Case Il ‘-‘-E" = K; 4_51 = (2-5)
f £ vt

known function (radiation problem)

In all the radiation problems to be treated, free space exists every-

where outside Region I:

€l =1 for al ¢ 2 fe [Regwm L], (2-¢)

. e . h .
Only outgoing waves will exist in Region I, so that the n' Fourier
component of the exact field will be equal to a complex number multiplied
times the n"h component of the approximate field. This number will be

written:
:§
C‘ " (Sa comp\ex) . (2-7)

This approximation has also been noted in Reference 29 in the Annotated
Bibliography.
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The Fourier components of the field will be called the partial waves, and Sn
the niLh partial wave phase shift,

In scattering problems, one or more sources will exist outside Region |
and these sources will be assumed distant enought from Ee 5© that reflections
off of them may be neglected.

€ l¥)=1 £2 fe (2-8)

(except for sources) [ Region 11 ]

Both incoming and outgoing waves will now exist in Region II. The components
of the incoming waves will be the same in both the exact and approximate
problems, while the outgoing wave components will differ by a multiplied
complex constant, as before. This constant will be of the form (2-7), where
Sn is again the ni’h partial wave phase shift.

The boundary conditions joining Regions | and Il will depend on the
continuity of the tangential E and H fields:

FX (%)= BT (%) dF (3=dF, (%) &,
if &
(2-9)
I(5e)= FF(%e) aa (5¢) = AE‘ (%) Ke .

For future reference, we note that for the radiation problems, if ke = Ee ‘

Ichn "'T-AF —_
(F - Fn = >fe 0. (2-10)

Also for future reference, we note that in the scattering problems, if

k =k ,
e e
IJF,‘ ___F ir - —
Fo de " d¢ = Ke d& _ I, CL ]
T FT ¢ d% O, df €0 (2-11)




where
‘?:“II = :_[-" +6,\ In = incoming wave
Fa

= :'['“4_‘5 6"5‘\ On= outgoing wave

The first step toward obtaining a solution is to put equations (2-1)
and (2-3) into the standard forms

AZ
:ééi‘ + Tn %, &lya=0 (2-13)

é:H +I[“)%)éa-lgw=o

ds> . (2-14)

This can be accomplished by chocsing8

13
lé - F 12‘/}_ S:‘ X, E’\, €, & ))dt
nT b
(2-15)

T.[vs €9)= X, [, 5, 65)) —L ¥ [v\, g, 4(5))

% %:‘f"s w3, 6tsy) @10

- —r+! C

e Frgh nos e
(2-17)

I.0n,%,67)= X.0n % &) X| E": #,€a) (2-18)
_Lds)( T, §, 65

where @ is an arbitrary constant that must be the same in both cases so

that Y, = ;;n when F .= Tfn and € (e) = €. For simplicity, define

Iln, %, ()= ¢ (2-19)

8 See Annotated Bibliography, Reference 27.
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Iln % ®I= ¢, (2-20)

and the equations to be solved become

U - —Pyn (2-21)

ds?

c_l_zyn = "¢o gn . (2-22)

d<€*

Now multiply (2-21) by ;n from the left, (2-22) by Y from the left and
substract the resulting equations: |

o ;i%. g = (o Byl
(2-23)

5 (o “”g ~gndide)

Integrating between arbitrary limits A and B,

( Aﬁn—g I"e) f(¢ =) ynn dE - (2-24)

Substituting from (2 -15) and (2-17)
GL%\[F Iéf _ Fn‘rd‘:n Y (x.D\,? &) - X r»\,s,ercs)])]}
" de d )
(2-25)

fe(g;,c/s) RIRTG(S)df
A

where

+'n f—(x‘&)t—, a) + X, Ty, t) G,L-E)])cl‘t“
G(e) =e




1

B. Derivation of the Recursion Integral

B.1 Scattering

For the scattering case, choose
A= &
= g! bitru
B= ¢ (ar Vu)) (2-26)
X( E"‘, £,6])= X(D‘/ % &(5:) ] for case I,Ciuafﬂm (Z—S)Onlj

and from (2-4) and (2-5) the left-hand side of (2-25) will always vanish at

g;*
FIRD CxyEs_ ) pagt - /
LA 3 % 3R (X3, &) "‘E“"'w)]ﬂ? (2-27)
.1t F
T )y, G RG0S,

Since only FIn and anl /dg are unknown functions, this is a linear first

order differential equation in Fln.

& Lo L BT T
d z(x|Lﬂ/?,ée]*X,l:n,€, er(;)])_{_::__lg_; F,
" (2-28)
' f‘@ I_I {
S ~-8) IR G(s))ds' = 0.
F‘-\IG(E) f'( ¢) h [
(for ¢ # E; when F:‘ represents an E ﬁeld)9
9

F l (¢) can only be zero at - If it were zero at any other value ¢ = B
a peﬁecfly-conducting surface could be placed at Em without altering the
fields. In this case, no waves would propagate into or out of the region

E; <eg< E’ and this possibly can be avoided by requiring € (¢) to be
finite everywhere.
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The solution to any equation in the form

é{ﬁx +ox)y + pLa=0 (2-29)

is

- S0adx Tapo) dy
g=—¢ fﬁ"‘)e Jdx ——C] (2-30)

so that (2-24) may be directly integrated:

I —2I i
F=fa P[%) 3 (9‘ ~@) RIRTGISUS" + C
F. ’? PE)S(S) g @-31)

where

13
+Y, L (X.D«,-L—, &) — XxTux, e,t-e)J)dt—
Ple)= e

f 1d l-‘.\1
Rt dg - EI
S 1 elF‘ d¢ = E x)—t ‘ (2-32)

The boundary condition at E; has already been applied, so now we must use
the known boundary conditions ot Eer To evaluate C, we first find from (2-27)
that

["‘4 L5 i_ 7 ((F 9] S(cw) Fifn 6(59ds"

%e,
‘)d;e%(e)f Cb,-0) RSt @

P Rt
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and from (2-11),
fe_

= -—‘——— e p =3 m I
Plse) Q‘n P(")Gl ,)J@ )RR 650 8

(2-34)

te
+ B(?e) J;L (b-¢) B=H T G(s")ds"

where

)= ch?.‘x( o) %) G (5 é;t—" —_ —E C|.6u>
B(s ) $0) P50 G| e)(dg =) - es

e

Substituting (2-34) into (2-31), we obtain
|

C. l

Rieh Plg)[ Ple) mls)

(2-36)

(scattering)

te
| - F « I
+5(Ec)f?g¢o §)RE (s N ¢

for the scattering problem.

B.2 Radiation

For the radiation problem, let

A= g (o.rb’\fran])

B= Se

X In %, &)= XiTn, § ,ér(i:)] (2-37)
Xy [ % e €)= X Ih, %e &lse)] .
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From equation (2-10), the left-hand side of (2-25) will vanish at te
[—I df."_ IJF“ + L RIRT (XD % 1~ X &(‘2)3)]

&) EEEEgrs s’ (2-38)
(s') @ )

Integrating as before in steps (2-28) to (2-31),

[ i“ ?(s)a ?) @'@ RSl ")diuc]‘z =

The boundary conditions at te have already been applied, so the boundary
conditions at E; must now be utilized. To evaluate C, we note from (2-4)

and (2-5) that one of the following cases will always hold:

Case | Fa I(il) = T:nl (io: known Rmctom. (2-4)
Case Il 45:1 ] = = Kuown funcdom, (2-5)
ds Isg: ;2 ?.:

Combining these results with (2-37) and (2-39), we obtain

£
ase C = K + Fnlﬁ\ §“)J§ ! -
Case |l i) fm) {(ﬁ ¢) (2-41)

3 Se
+ [RrPeeeL ] _f@ ~§)RF GRS
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Substituting into (2-39),

- < ‘ e . ,
! L" % ?(F%?ﬁ S R w)‘% -42)
de
cont £ PO - @ o f@ i

[ *dF, GLs)P{i)L @o ¢) KA Gls"ds ]

% (2-43)

C. The lterative Solution

The complete solutions to (2-1) are

§I
= F Grt) R gle s
o [P(ie) y —‘?T')a' L‘.

Se
+4 | d-drFET li")di"] _
B@ j@» ) 6 (2-36)

(scattering)

‘e
Tae (g aIE*asu)«fs“]
Roe) )jp(?) ¢, 6)P6)4t7) £ ,¢

(2-42)

(radiation, Case 1)
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s
G ds' EElnen
it Pm[m )78 614) f L

- o Jfe
+ [Fr\I P (%)G&)g;x} o _f (‘?ﬂ) Pl Fa Qleds" (2-43)

(radiation, Case )

Now write Fln in terms of an infinite series, and substitute into the

appropriate equation.

FF= REPE) (Lrn, 18, + o)

(scattering)

FEe Tl PEL (a4 a,4..0)
Pls:) 2045

(radiation, Case |)

Fu = B K ?_(3.) (1 Ay, ¥ BT o '>
Plgy) (2-46)
(radiation, Case |l)

with the resulting equations

e { ‘>l
_ de
Do+ Day ¥ oo = —»);—Wf (¢°’¢)P(£")(1+4,,‘+A.,¢...)Je“
N

L [Se
¥ B (se) g.(¢o"¢)r'(%'? (4B, + Ay, +. ., )ds"

(2-47)

(scattering)
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by +A*... = m )f@@)w@")(w A +-)dg
(2-48)
(radiation, Case |)
$ ; %e
Mty t... =”f 2 f@»’@ﬁlf“)( Ul +hy 2. )dE"
?Z P{?') ?l !
P P
) L eI s ar
Rds Jg w
(2-49)
(radiation, Case 1)
where Pl§)= @1)177(‘2)@(.?) . (2-50)

These equahons can be satisfied by choosing

¢! %e
- _fymeddet 1 L | (d-@nisds
f Pli') ;LM" )ris)es +B‘§e f.¢' )

oz ‘L ol (erir st 4L f (- $)riIB s

) (2-51)
L (scattering)
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4 te
. d?‘ P 1] ]
j Fle) g (f-9) s

= 'f Flsl}jh §o—d) I(e)A, 5"

(2-52)

(radiation, Case |)

—
A E‘___S\ u %n_‘_ (¢~ ()[g“
. L = ?(‘¢o~¢)f‘(%)d @ 43) f A
5 ds /s
ds 1 It
= [ =2\ (g A e, I8+ P WS
i LP{)LH’” r?a/ajf‘w‘
3 Er Is
(2-53)
_ (radiation, Case 1)

The infinite series in each case is essentially a power series in (¢° -¢) and
the series will converge rapidly if (¢° - ¢) is small. It is for this case that

the solution will be most useful.

The phase shifts are given directly by the evaluation of the A atg .

If we keep only first order terms,

fe
A, (8= —— 0"
W= 2y L’;@ﬂé) r(s)d$

(2-54)

(scattering)




A, (3= —j f (4,—~¢) MsMds"!
f:

$e %e
A, o= — j - J (¢~ (342"
l ¢ '8 %

(LI\I ﬁzﬁ»{b}l‘%)d?“ .
ﬁ. d% ?(
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(2-55)

(radiation, Case )

(2-56)

(radiation, Case I1)



CHAPTER I

DERIVATION OF THE BASIC DIFFERENTIAL EQUATIONS

In this chapter the basic propagation equations are derived for problems
with specific rectongular)cylindricol and spherical symmetries. The derivation
begins with Maxwells equations in vector form and leads in each case to a
linear, second order differential equation. The derivations are carried out
in detail so that the Chapter will be useful for general reference. The
rectangular case is considered first, and the appropriate model compatible
with the symmetry restrictions is shown in Figure 1. Then the cylindrical case
is considered for two different symmetries, illustrated in Figures 2 and 3.

In the last section, the spherical case is developed and the model for
this problem is shown in Figure 4.

Maxwell's curl equations for propagation in a medium with a constant
pemeability p and a general, anisotropic, inhomogeneous pemittivity can

be written
Ko VXH (X% %3t) = €(X,%,%3) S@E E (xoaxst) + 0 (xxs) E()qx;x,t)

Ko VXE (X YaXst) = — /ua% Hx v, Xx5t)

where E and H are functions of position and time, € and ¢ are functions of

position, and the factor ko has been intorduced to make the coordinates

dimensionless. All distances will be measured in terms of k°=%1—r= wyyeE, -
(]

Assuming harmonic time dependence, the curl equations become
Ko VXU (¥ %X3) = [Tw €0x, %,03) +T (¢, X2 X3)] E (¥ X, X 3)
= w él(“ahxti)g(.xa‘!wx:i) (3-1)
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K,ng (x‘¥;X3\ = ’iw'«) F(*(X‘L“}) (3_2)

where €’ has been defined to be complex. Hereafter the prime will be
dropped. We will now derive the vector wave equations, starting with
these two relations. Multiplying both sides of (3-1) by é-] from the left,
we obtain
Koé-‘ UxH = iwE .

Taking the curl of both sides and substituting (3-2),

K€V XEOXT = pEWHH (3-3)
which is the vector equation for H. Taking the curl of both sides of (3-2),
and substituting (3-1),

KSWXPXE = pew*E, (3-4)
the vector equation for E. Utilizing the following vector idenﬁties]o
VXPA = ¢OXA +9¢ x A
VPR =¢U-A +V¢- K
where ¢ is any scalar function and A an arbitrary vector, we can complete

the derivation of the wave equations. Now note the two Maxwell divergence

equations

o)

W

(3-5)

v B
v-D P - (3-6)

O
0

10 J. Reitz and F. Milford, Foundations of Electromagnetic Theory, Addison-
Wesley, (1960), p 18.

See for instance Richmond, |EEE Transactions on Antennas and Propagation,
(May 1962), pp 300-305 (Appendix).
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Assume that the medium to be studied is electrically neutral,i.e., that
p =0. n Then (3-5) and (3-6), combined with the above vector relations,
can be expressed in the form
V. 0H = poH =0 (3-7)
J. eE = €V-E +Ve-E =0, V- E =__e'\ve-§. (3-8)
Now expand equations (3-3) and (3-4) for E and H to the form

— -1 — —

V XOxH 4 ¢V ¢ *VkH—e/eoH =0 (3-9a)

xS — €, E =0.
\V2 Ve = /é.° (= (0] (3_]00)
Introducing a new operator ¥+ V H by the definition]2

VXVXH = Q9.0 —-w.vH

the curl curl operators can be eliminated

VY0 -9.VH + ¢9€' xOxH— &gl =0

VV-E —V.VE - § E =o0.
Substituting from (3-7) and (3-8)

= -1 o 0=
V-VH—eT¢€ xOxH + €/, H=0 (3-9b)

— - — — _
V-VE + V(£'ve-E) +§ E=o0. (3-10b)

In rectangular coordinates only, we have
V- VH = 9%H , V.VE =V*¢,
The vector wave equations (3-9) and (3-10), combined with the appropriate

boundary conditions, will completely define the solutions to a given problem

in which inhomogeneous media are present. In the cases treated below,

12 J. Stratton, Electromagnetic Theory, McGraw=Hill, (1941), p 49.
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specific solutions to the wave equations will be derived in rectangular,
cylindrical and spherical coordinate systems. In later applications, con-
ducting boundaries with rectangular, cylindrical and spherical symmetries
respectively will be considered. In each symmetry case, € will be chosen

to be isotropic, and the inhomogeneity represented by the variation in € and
the sources will be chosen so that either E or H will have only one nonzero
component, In the problems in which only one E component exists, the
fields will be described as E-polarized in the direction of the component. In
problems in which only one H component exists, the fields will be described
as H-polarized in the direction of the component. The solutions can be

characterized as follows:

H-polarized in the ¢ direction

Consistent with an infinite, constant-phase magnetic line
A =

source along an arbitrary coordinate direction ¢ , E is

pure transverse (E ¢ = 0). For all the symmetries con-

sidered below, H ¢ will be the only nonzero component

of H.

E-polarized in the /E\ direction

Consistent with an infinite, constant-phase electric line

. . . . A 7 -
source along an arbitrary coordinate direction ¢ , H is
pure transverse (H ¢ =0). For all the symmetries considered

below, E ¢ will be the only nonzero component of E.

A. Rectangular Coordinates

The first case fo be considered is the solution of (3-9) and
(3-10) in a rectangular coordinate system, these solutions later to be applied
to problems with a planar conducting boundary. (Figure 1).
A.1 H-polarized in the 2 direction
For this solution, choose the arbitrary directionlg\ to be along

e z axis A A
th ied
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so that E has no z component
E= xE (ny) +§ E, (%)
and H has only a z component.
{-T = ﬁ Hz(&,uj) .
From symmetry considerations, these conditions can be satisfied if

€= €(x),

and since the solutions represent a two-dimensional model and are independent

of z,

EX (any function) =0 |
2z

We will now solve equation (3-9)
V°H — eVE xoxd +€ K =0
subject to these assumptions.

From the general form of the curl 13
A A A
qu| \‘LQ'L k’,ﬂg

- |
Uxf= — | & 2 2
h.hlhl 'DCI‘ D‘i,_ 37 - (3-11)

hd, A WA

|

where A is any vector with components (A] A, A3), (q] 9, q3) are the

three coordinates chosen with unit vectors (o"] '?:2 33), and (h1 h2 h3) are

13 J. Stratton, op. cit., Chapter 1.



26
the metrical coefficients. For the problem now under consideration, take

(%q-»ﬁﬂ = (‘“17') ata\.as ) =(k q 2)

(3-12)
h‘=l:h_= \\-s= 1.
The curl of H becomes
iyt
Te|2 2 - J9Ue _A DM
X ] cl = _
VXH ~ 9'j 0 X 5__1 9 F)_(_z
(3-13)
0 0] Ha

-
evé' = Rede = ¢ 1de | (3-14)
The general form for the cross product is]3
A A A
\ Q| Q. QS
(3-15)
B! BL B_}

— - A
where A and B are arbitrary vectors and (f:n\l 32 03) the unit vectors in the
appropriate coordinate system.

Let A = é\?e“) 8= VX H , so that

A A A
X Yy z

coxosi= | |0 PNV YR
€dx (3-16)
oH: -oH= o

J 2y oX
and the differential equation for Hz is
2%H= D2 _ _Ld(—'BH:. € =0
o T dy*  EdK In + e He= 0

(3-17)
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The only other nonzero fields, Ex and Ey' can be directly derived from Hz.
From (3-1),

—

K, VcH = weE

we find that
By= Ko M= By =K e (3-18)
Lw{_— aig TwéE %

so that all the fields can be found once (3-17) is solved and Hz is determined.

If ¢ = € g equation (3-17) reduces to the well-known form

9* Hz. +_31H-;_ +_€a“ =0

-DXL y (3-18a)

(where the factor k02 has been absorbed into the variables x and y). This
equation can easily be solved by separation of voriab]es, and through the
choices of symmetry made in the previous derivation, (3-17) is also solvable

by the separation of variables method. Let

Ha (k) = L0 M(y) (3-19)
where L and M are arbitrary functions of one coordinate each. Substituting

into (3-17),

d\( .49 edx = (3-20)
and
1dL _tdedb e LM _ vy Ty
CLdyt el Jx d X +£' M ?31—_“ )M-—e J (3-21)

since the whole y dependence has been separated out. The only unknown

function is Lu (x):

d2Ly — L dedly =
-1—;7_“ € Jdx dx -I—(é,-u)\—m. (3-22)

14 R. Harrington, Time-Harmonic Electromagnetic Fields, McGraw=Hill,
(1961), p 143.
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where we have defined € = € €. (x) . The partial differential equation
(3-17) has now been separated into two independent ordinary differential
equations. One of these equations is immediately solvable, but the one for
Lu can be solved directly only fora few, special choices of € (x).

The general solution for Hz is obtained by forming a linear combination
of the solutions obtained by letting v take on all possible values. This
procedure is exactly analogous to the solution of partial differential
equations by Fourier transform techniques.

In the completely unrestricted case, u can take on a continuous, infinite

range of values, and Hz can be written

4
He(vy) = f due'd [a®, Li® +a~F b ] 5-23)
~e0
where LIu and L"u are any ftwo linearly independent solutions of (3-22) and
alu and aIL are arbitrary functions of the transform variables to be determined
from boundary conditions.
In the subsequent development, however, the following restrictions of

periodicity is made on Hz:

(3-24)
H‘L(¥lt4) = H‘z(x_i‘j'f',b)) :
and since any such periodic function can be represented in the form
400 -
mwy
holkg)= 2, Haloe ® = 20 )
' e K (3-25)
we must restrict u to the discrete values
Ushw = CTh =n ’A_o (3-26)

15 W. Kaplan, Operational Methods for Linear Systems, Addison-Wesley,
(1962), p 186, 236.
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so that (3-23) becomes

40
Holvy)= S e‘—“%"“‘J Ca’ L,f by +aF Lw @], @27)

h=~c0

A
A.2 E-polarized in the z Direction

Now that the method of solution has been derived for rectangular
A
coordinates with fields H-polarized in the z direction, we now apply similar
[
techniques to fields E-polarized in the z direction. Again we choose our

A A
vector ¢ inthe z direction,

A
R=2,

We specify that only an Ez field exists
and only Hx and Hy fields exist.

g = ;’: Hx (xﬂj) +g Hu)(x»y).
These symmetries are obtained by taking

€ = €(¥)

and result in the two—dimensional nature

5z (any function) = 0.

These restrictions will now be applied to (3-10):
VE + V(€'Ve-E) +.§: E =o.
o
Since € is a function of x only,

Ve:f‘&l_e Ve-€E = O
dx (3-28)

and the differential equation for E_ is

YE:  BLe 4 &, E2= 0.

oX (3-29)
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To obtain the other nonzero fields from Ez’ note that from (3-2)
K.,VX E = —cwp ﬂ

we obtain
= — Ko JEz = —Ko d€:
Hy wp 9y Hy Top X
giving all fields in temms of Ez as desired. |f € = € (3-29) reduces
to the usual form noted before. 16

& +?1_E_." + €3 E2 =0
2 x* le'

(3-31)

However, (3-29) will also separate immediately without this assumption.

We choose a, B to be two arbitrary functions of one coordinate each

E.= o Bly)

(3-32)
and by direct substitution into (3-22),
1 7. € AP =y

vy
L
3-
dh 4 (6 -udde =0 @3
d x*
so that the only integration not directly performable is the one for a (x).

The most general form for Ez is obtained by summing over u =n )‘o /1'

h=-®

te 'iv\'ho
E.lxy)= < e ‘3 [bfoc\ltx) +lafo(3‘(x)],

(3-34)
o
n

and @ are the linearly independent solutions to (3-24) and bln and

16 R. Harrington, op. cit., p 143.
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bI:‘ are arbitrary functions of the transform variables, to be detemined by

the boundary conditions.

B. Cylindrical Coordinates

We now choose a new set of coordinates in which to solve (3-9) and
(3-10). The choice of cylindrical coordinates is made for application to
problems with the appropriate symmetry. (Figures 2 and 3).

B.1. H-polarized in the £ Direction

For the first solution, consider equation (3-9b)

V-9H —e9e'xOxH +£ H =0.
Y (3-9b)

A
This time, we again choose our ¢ vector to lie along the z axis

A A
§=2

and allow only the E fields
~
g é\ E-e(e,e) + e Eg (¢ 0)

and the single H field
l‘T = 2 H‘z (€, 6)

to exist. Such a symmetry is obtained by letting
€= &lp)

and requires that
P) ion) =
) (any function) = 0.

From the definition of the curl (3~11) with the new identifications

CQQQLQ‘Q) —:r(etglz—) ( lQLQ3 = 5 a‘ 2)
h‘ :k3 "-"—4-) h-._:f
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the curl of H for the present case is

poe® 2
A
IxH= 6 =
X # ? D.P 00 P e af (3-35)
0 O Hz
and since € isa function of p only,
S _ Aed@ A jde
eve Fé:‘? = Pegp - (3-36)

As done before, we apply (3-15) to obtain the cross product

&6 2
e VxH = —lde o (@] = %léﬁ' ?_{il
cdp € P a{) .
(3-37)
Loz _aH= g
P 20 op
From Stratton, 17 we have
J?F 5 s
f
— _ 3 5
7 xVx , a__f, 5 0
(3-38)
Lot o o
P26 ‘g

17 J. Stratton, op. cit., p 50.
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VxVxH = —z[ ?‘au; éa'ag:] —V.PH  (3-39)

so that, substituting into (3-9b), the differential equation for Hz becomes
19 o0Hsy | 2= L de Db
) - .---— .§. = (3'40
?"’PP'Bf T e T 5¢ TatTo )
To obtain the other nonzero fields, we see from (3-1)

that
Ee: —KO 'BHz_ — = ko D“?— _4]
W€ 2P P fwer Do -4l

All fields are known when Hz is known. If for comparison with standard

texts we again take Hz to be time hamonic with no z dependence and

e=¢€ €, (3-40) reduces to
o a

T,
D o Dbz +l9._gz— +e =0 (3-42)

1
in agreement with the literature. 8 But as before, equation (3-40) can
be solved as it stands by separating variables without the necessity for

further restrictions. Let

H. = Ale) BLO) (3-43)

as explained earlier. Substituting into (3-40),

18 R. Harrington, op. cit., p 198.
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pd LA\ prdedh €2 1 4% o 35 (a4
(5o A TG " a3

where now m must be taken as an integer so that the solution H (p, 0)

will be single-valued. 19 The equation for A ( p) becomes

ZAM .l .LA + ( r

(p-& de e";) An=0.  (3-a5)

This is the only one of the two ordinary differential equations not directly

solvable. The general formm of Hz can be written, as discussed earlier,

40 me
Hotp )= = €[4 AZ) +aF An@]
m=— (3-46)

where An: and Am are the linearly independent solutions of (3-45) and

°rr|1 and arll the arbitrary constants to be determined by boundary conditions.

A
B.2. E-polarized in the z Direction

For the E~symmetric case in cylindrical coordinates, we take
€=z

again, and now seek a solution to (3-10a)

PxOxE - €, E=0 (3-10a)

with the assumptions that the only nonzero electric field is Ez,

—

E= z Ezle 9)

19 R. Harrington, op. cit., p 200.



and the only nonzero magnetic fields are Hp and He :
- A
H=pHe(p6) +6 Holpo)

These restrictions can be satisfied by the choice of symmetry

€= €(Q)

and the requirement
l(ony function) =0.
Rz

Again from Stratton,

A A
f;- e z
V XVXE = Fo
2 )
P 20 O
) (3-47)
1 _E. oEz
L3 e o |
AT
= —2

DE—:. 1 90%E=
o 155 T 5t

and substituting into (3-10a) directly, the differential equation for Ez is

12
o0 ¥ 2p T t+ £E=0. (3-48)

From equation (3-2)

we find

He = ko ot= = —ke 2E2
© P Hf th? S-é— (3-49)
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giving the rest of the fields. If € = € o (3-48) also reduces to the
well-known homogeneous fom\.2O To solve (3-48) directly by separating

variables, let

E:(p o) = M(INLE) (3-50)
where M and N are the arbitrary functions of one coordinate each. Then
we obtain

rdM oL RAM eyl 14 e N=eTME
i dp™ M dp Tak= ygemm) Nee (3-51)

and

2
d*Mm ¢ Lda 4 (er—'f.)”l_-f) M= O. (3-52)

d p* P dss
Only (3-52) cannot be directly solved. As before, Ez can be generally

written in the form

‘o
E.e.0)= = ™ [bIMEe) +bE Mu(o] 553

m=-¢

where Mlm and M"I‘I are the linearly independent solutions of (3-52) and

bl

m and bnl'l are the arbitrary constants.

A
B.3 H-polarized in the 6 Direction

>

N
Now choose ¢ = © and consider solutions of (3-%9a)

vax(:{- +e—Vé-‘$an— é’/{.blT?-O
with the H field

H= gHe (9) z.)

and the E field

20 See Equation (3-42)
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E= &E(? (6z) + 2 Ez‘ﬁz)o

We must take

e=€elp)

and require that

éa— e(cmy function) = 0.

Evaluating the curl curl, we get:

fg/e & é/f: ,
UxUxH= | 2 o 2
'z)e Dz
—oHe 19 pH
3=z © eap? ° ‘ (3-54)
A A Y4
= —g| 9He D_ﬂa 1 9He _ Ho
[DP” +3Z"+f’ P _P_"]
The curl of H is
/ 6 6 2
= 1 2 2 _—_l[_*bﬂe 5 e
f 2p o =z P r%‘;“qag]
(3-55)
| 0 Hs © |
and
-l _ _3de
EVE = —g 2




so that
p 8 2
eVEwWxH=|-lde 5 o [= §lde 2o (3-56)
édj’ € y d
~ldde o Ot
f 2= bf

is

0
a_z_HB _’_B H’B_\_(.l—-.lcl)'aue_l,(ér P)HO=O-

and the equation for H

DF‘I— 2% (3-57)
If €= €, we obtain the homogeneous form
O , O He 1 oo 1 = D, 3-58
yoil + F T3 +(€a— )Ha (3-58)
14
From equation (3-2)
KoUxH = twéeE
the other fields are given in the form
Ep= —Ko dHg = Ko 2o (3-59)
™ ep 3z Fz wep op °
We assume that
He = A=) Blp)
and derive the equations
1% 1A _L—_lde _Lcl.B
B dpz A oz ( f + (&- p‘*) 0 (3-60)
Ad =t A= e’“'”’
frodz> (3-61)
dBy, (L-0deVd®y (1 2 =
de—,_'\'(,f €d> P (:A‘L P)BN—O (3-62)
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We will assume that H g s periodic in the z direction with period T
He (&)= Hp (2+7) (3-63)
so that M can only take on the values
p= oy,
The total solution then becomes

PRI I(5) +aZBn (o) ]
He:-. 23 [QnB“f’) n Un

N=—c0

(3-64)

| i .
where a and a ' are arbitrary constants.

A
B.4 E-polarized in the 8 Direction

~

Choose g = 0

and consider solutions of (3-10a)

VXOXE - §. E =0
with the E field

€ =965 g2
and the H field

{= flelp?) +2Hale®.
We must take

€= €(e)
and require that

2, ion) =
-5 (any function) =0,
Evaluating the curl curl, we get
A
?/e © z/p
VXD XE = P) o )
op Dz

_ 9% 19,¢ 3-65
i o) (’bpee (3-65)
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VXOXE = —ét&ﬁ +0Ee 126 _
2%p* "oz TP p F (3-66)
and the equation for E 6 becomes
ke 4 2o | 1 2Ep (3-67)

— _ G =
be‘l— —DZ-‘__ P -D -P—%‘ +ér&9 D.

For the homogeneous case e = € this takes the same form as (3-58).

The other fields are found from (3-2) :

K.9xE = —twpH

Ho= _Ko ?E? H,= —Ko 2Ep (3-68)
P twpp Dz m B—P .

To separate variables, we choose

Es = Clp) D(=)

and obtain the equations

1d% 4 19D L ide _
c dp Ddz’- PCdr ]o7-+6 =0

(3-69)
| d2 . -
pIAT P

(3-70)
d*t d Ve, =
8—95 +JP_ d_Pp +(£r—'f1;1—~"’)cp- 0 (3-71)

where D has been assumed periodic in the z direction with period T as done

in the last section:

N =l



The general solution for Ee is

e tndopnz I T T,
Ee(()‘z): 2’ Q ¢ [a,‘ G, (e)-|—<2M Cu (e)]

§ = —00
i i .
where a and a = are arbitrary constants.

C. Spherical Coordinates (Figure 4) .

A
C.1 H-polarized in ¢ Direction

A A
We must now take ¢ in the ¢ direction,

2= B,

We now will consider the solutions of (3-%9b)

Y VH —€Ve'xoxH + €/ H =0
with the restrictions that the only H field is

H= ¢ Hg (1,9)
and the only E field components that exist are

—

E=rE ve) + 65 v,0).

To satisfy these requirements, we may take
€= £Lr)

and require that

9 (any function) = 0.

op

Again, a two-dimensional separable problem has been obtained.

definition of the curl (3-11) with the identification
A A N _ aA A
(‘h‘i»M = (ra e, ¢) @l QL‘(Q h CV‘ 9¢)

h";i ) L\;-’::r, h3= rSV\Me
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(3-72)

From the

(3-73)



Figure 4. Conducting Sphere with Circumferential Antenna




the curl of H is
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A
r ™ r3me
oxii= — b f
XH= r2smb 3r 'b% : 0
o 0 rsmd Hg (3-74)
Y 5 2
= SmOHp — & 2 .
Fsown 90 SmOHP — Z e ritg
Since € isa function of r only,
— =\
eve' =redé _ ¢ Ldf
dr r
and taking the cross product,
N A
r 6 p
- 1d€ -é d
€9& xOxH =~ 0 Oi=p ded
€dr ~edror e )
\
me,oemeﬂ? rR;b 0
From the general equation for VXVX H)
A
: 5 I
) rSmo v
n=| 2o 9
QXVXH > e 0
— 0] _
- me'b eameﬂgs rH¢ (3-76)
A —
= —g[La* 2 L9 spbig |=-v-IH
¢[ F'a&ruv‘ H¢ + 39 S mO3P ¢



and the equation for H o becomes

Botp +hf, kst Lt g im0 07

|
r redror

or in another form,

L2 potg )
r*or 2r r’—[sme S %@— s—f‘gg]

._Lde rH¢+/ﬁ,H¢‘o (3-78)

V‘br

If € =€ , this becomes
r  a

< a
# Dar v ?&BP + -r{;_ [5 ebesmgg“g ] +é&Hg =0, 3-79)

\29

the homogeneous case. Using (3-1) as done before,
Ko UxH = tw €€
the other fields are given by

E = Ko \ Q. S -~ a
" Wer sme e " tg
(3-80)

Ee = "—KO
{Wér Dr ¢

once H s has been determined. Equation (3-79) can be solved by separation

of variables, letting
g = F(O)6LY)

and we obtain two ordinary differential equations:

21 We must have | an integer so that F will be finiteat © =0and © = .
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—Ar b d ¢pedE~ _F 7.
= [E;Tade 5m%Je ~ sivae ] ={le+1) (3-81)

dLQQ A &
i + ?-é%gc_@l +(ér—_l_1_*_‘)—.]_cl€-)ql=o (3-82)

where Pll (cos B) is an associated Legendre polynomial. The general

solution for H¢ is then

H 6= % %QMG)[QQIGQI(V‘)*‘ Q;E GD:I (r)]

(3-83)

where all and alll are the arbitrary constants to be determined by boundary

conditions.

A
C.2 E-polarized in the ¢ Direction

In analogy to the H-polarized case, we seek solutions to the

differential equation
QYVYE ‘*"676‘)5 =0
A A
with the vector ¢ taken to lie in the ¢ direction:
A
A
£=¢-
The only electric field is E¢
= A _
E=¢ Eg (v, 6)
fields are

= \*Hr(V‘,G) +é\ HB(V16\¢

and the only H
H




Then € must have the functional form

€ =Elr)

and the condition

_a_ (any function) =0
o

must be satisfied. From these assumptions,

: 3

— "6 <
vnT = | rsme r
0 )
B¢ 3o 0
V' Des — (3-84)
£smd g 0
vSm 608 " Eé Zfr%
NS 121 D
T ¢L?E‘r€¢ T sw\eaes""gE?‘j
and the equation to be solved becomes
12281 _J_ 2 ¢7, 805 ]
r‘br ar SMBDG fin ?%‘6 té& E¢ =0. (3-85)

In the homogeneous case € = €. this also reduces to the form (3-79).

From the definition of the curl and (3-2),

VXE = —EW/JH

we obtain
H = - Ko _ )
r CwpN r S Des 6%‘ HB tw (‘frt¢) (3-86)

giving all the nonzero fields. To solve (3-85) by separation of variables,

let

Ef = LWM()
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and two ordinary differential equations are obtained:

ddpdl L v AT dezgdd M )
i Ay [sw,ades"“gaé svwe] =Ait+t)
M= Pt (‘”9)
(3-87)

d2ly 4 2dL m
i+ (¢ -—lﬂr_;))\,ﬁo.

The © dependence is again obtained in Legendre polynomials, and in

terms of the solutions LlI and Ll to (3-87), E¢ is given in general as

E¢ (Vt 9) = ? PQi{WQ) L kuILq_I’U‘).-}- b}ILf(ﬂ—J,

As before, (3-87) and (3-88) represent the complete solution, with blI and
blll

conditions.

arbitrary constants that must be chosen to satisfy the given boundary

D. Summary of Derived Equations

For each of the problems discussed in Sections 3A - 3C, a differential
equation in the form of equation (2-1) has been derived. In each case, the
solution to the appropriate wave propagation problem can be obtained only
by obtaining the solution to this differential equation. A method for obtaining
such a solution has been outlined,in Chapter lI, so that the only aspect of each
problem still undefined is the choice of boundary symmetries compatible with
the assumptions already made. The differential equations that have been

derived are summarized below.

See Equation (3-81) for reference.
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D.1 Rectangular Coordinates

I
H-polarized in the z direction

d°Ln _\ JedwL »’)«
2 on _ L d€dlm €N L,=0:
il s +( 22 )b

A
E-polarized in the z direction

2 '(" Y+ (ér—n"“f' ) dw= 0.

D.2 Cylindrical Coordinates

- . Ao .
H-polarized in the z direction

*Am _1de —m* _
"Jd—?,, + (5 e&')i’%‘" Er %;,)Am’o

A
E-polarized in the z direction

d My - 4 L dMin ¥ (om0 MMz O,
de* f dp {

A
H-polarized in the 8 direction

d*b L1 ded -+ -2 B,z 0.
_d‘e"f_“'{'(f ed(’)]’ém & P f—o‘)B’“

A
E-polarized in the 6 direction

% o Ldln 4(e-L —ntds Yen=o.
dp> = P Ip T ) G

D.3 Spherical Coordinates

A
H-polarized in the ¢ direction

426 2 _ d 61 uw Y | d€
Ty\l‘- 4+ ( = ) + (é )QL

Edr




A
E-polarized in the ¢ direction

d2u 2 dL — A -
ARt & —rg Jl=c.
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CHAPTER IV

SOLVABLE PROBLEMS

A. Plane
A.1 H-polarized in the £ Direction

The differential equation to be solved is (3-22)

dl\.m \ de dL *
—_—— - ——r-—._!‘ - 120 =
dx*  &dx dx + (& - rd Jn=0

subject to the requirements that

I. _68? (any function) =0 )
2. all fields are periodic in y with period T

3. the only H field component is H,

4. the only E field components are Ex and EY
5.

é—_—.e(x) .

These conditions can be satisfied by placing the conducting boundary at
the plane x = 0 with H-field strip antennas (magnetic strip sources) in the

z direction, a distance T apart so that

E (x=0) = 0 scattering (4-2)
4 inde
2 f:‘ e radiation
n

where the Q are detemined by the choice of antenna. From (3-18)

E:—Ko Q_‘-_\l’:
3 (wWé IX




and from the orthogonality relations derived in Appendix 1,
E,), = Ko ( QB:)
( t )’1 weé \ X /y

so that the boundary conditions (4-1) apply to the derivative of Ln' We
can let Ln = Fn [See equation (2-1)] and Case Il [equation (2-5)] will
hold when obtaining a sclution. From (2-10), (2-11), (2-26), and (2-37),

we must demand that

X| [V\,X) er(x)])(=0 = X|[nlx) ea]x___o

Xl [V\l X ) er(x)jX=X¢ = XIL_M’ X) €5 ‘*]X=x¢ (4-3)

By comparing (2-1) and (3-22), we have

X‘[V\,X, é(()‘)-]= _é-r%éxr Xil:H,X, e((ﬁ)]-’_ér"ht%-g‘—

- v (4-4)
X‘ Ch; x) éa .) = 0 X'L[nl x) 66]: ea_ ml%?‘_

—

and from (2-9) and (3-18), ke = ke if

EY(XQ)= éa.

Combining all of these conditions, € (x) must satisfy all the following

relations:

€% )= €a dé& =0 %f_" =0.
dX ly- X lx=xe (4-5)
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From (4-4)

PO = €& “"1% Lr(-'— '”J—é-")z-l- i

’L
AW= €a-ntde

— \[Ecl¥
Px) = \( Z:'(ZI) (4-6)

) = (l_f,,I)L

and from equation (3-18a), with €, = Ga)

x> 3;
we have
—=I_ \,n?‘° Ldfa T = GJ“"-L% X
Fo = ¢ n T € @)

Equations (2-41) - (2-43) now give the solution immediately.

A.2 E-polarized inthe 2 direction

The differential equation to be treated is (3-29),

dz"(n — 1—): -
T (é—n % )dy= 0
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subject to the requirements (4-1) with the roles of E and H reversed. These
conditions can be satisfied by placing the conducting boundary at the plane
x = o with E-field strip antennas (electric strip sources) in the z direction

a distance T apart so that

0 scattering

B (o) = e )

i Ant * Y radiation
n

where the >\1 are determined by the choice of antenna. Since the boundary
conditions (4-8) are applied to the variable in equation (3-29), we can let
=a, and Case | [equation (2-4) ] will apply. The conditions (4-3)

n
must again be satisfied, and by comparing (2-1) and (3-29) we have

X, x, &0 =X, Inx,€a]=0

— ot Do
Xo LMY EW] = €r—nt & )

X’LEV\I X, €a j = E— nz?‘;'
Az

From (2-9) and (3-30), we will have
ke, - ke_

automatically, so that none of the conditions (4~3) will restrict ¢ at

any point. From (4-9),
Py = &p— atg
’bL—

¢o (0= &-n* %"-}_

PR=6(0=1
r(x) = @nly—

(4-10)




=1 . .
and for € =€ . Fn is given by (4-7).

B. Cylinder

A
B.1 H-polarized in the z Direction

The differential equation to be solved now is (3-45),

d d "Am " x
A (\ _ég_;)dff_-v(er_%);\fo

subject to the requirements that
d .
1. T2 (any function) =0

2, the only H-field component is Hz (4-11)

3. the only E-field components are Ep and Ee .

These conditions can be satisfied by placing a conducting cylinder of
radius P, in the z direction with an H-field strip antenna (magnetic

strip source) in the z direction so that

Eg (?2?0 = = 0 scattering

imB 4-12)
i. Ome radiation
™m

where the Sm are determined by the antenna. From (3-41)

BEg= —Ko_ OHx
iwe bf

and from the orthogonality relations in Appendix 1,

(r—e\ "K" (?%;—")m
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so that the boundary conditions (4-12) apply to the derivative of Am.
We can let Fm = Am [ from equation (2-1)]and Case 11 will hold.
Conditions (4-3) must also hold, and by comparing (2-1) and (3-45),

we have
X, Dne, &t J= %—é%ﬁ X\t p €)= fl
(4-13)
X’L[h, ?' ér(e):‘;’ Er - r—;—: X'LD",P; éd-.] = éa_%i
and so thatk =k ,
e e
Er(PC) = €5 .
Combining these éonditions, we must have
Er (?C)'—'— ea
ciét‘ = ":l_ﬁ' \ =0
dp T dp lpe (4-14)
From (4-13),
(V= €-—m — 1 (L 1dey-1d (1_1d¢
ple e ‘f(S’ 67) Zd?(f e’})
2 (4-15)
bole)= €a- M=K
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and from equation (3-42) with €

= €
r ’

13 cdbz o 1 %, -
popiag Tp el Teaten

we have

pugle

Tm® I Rin
£r= o™ b2 T0+ b Y. (o] (4-16)

f

where Jm and Ym are Bessel functions. Equations (2-41) - (2-43) now
give the solution.

A
B.2 E-polarized in the z Direction

The equation to be solved is (3-52)

subject to the requirements (4-11) with E and H interchanged. The
conditions can be satisfied by placing a conducting cylinder of radius P;

in the z direction with an E-field strip antenna (electric strip source)

in the z direction, so that

= 0 scattering

E, =) = o (4-17)
t,,,e‘ radiation

where the t_are determined by the antenna. Since (4-17) applies
directly to the field variable in (3-52) we can take Fm = Mm and apply
Case |. Conditions (4-3) must hold, and by comparing (2-1) and (3-52),

X, Dn g €c@= X Dnp €= 1/p
Xo[n, p,6c0) )= ér'—mi/P” X Tn p &)= ée—mm/{"" (4-18)




and the condition ke = Ee is automatically satisfied from (3-49).
We see that € {p) is not restricted by any of these conditions.

From (4-18),

¢ = ér - mz— \/‘-{

= @
e‘l—

¢ = G- ™ Yy

o) 1 © 41

Gl = Fla
-\
ree) = ¥/ G )
and when € = € the solution to (3-52) is given by (4-16).

A
B.3 H-polarized in the 6 Direction

The differential equation that has to be solved is (3-62)
d*B \dB
__I".l.(l._.lc{_(-)___r’.*_ ér“'L;_— L)B =0
d FL r € d( d{) ( 4 M N
subject to (4-20)
1. a% (any function) = 0
2. the only H field component is He
3. the only E field components are E o and Ez
4.

He must be periodic in the z direction with period T.

These conditions can be satisfied by placing a conducting cylinder of radius
p; in the z direction, with H-field strip antennas in the 8 direction a

distance T apart in the z direction. The boundary conditions will be

0 scattering

Ez(? :Fl) = 8
g: pm € i radiation

(4-21)
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where Bm detemmines the choice of antenna. From (3-59) and the

orthogonality relations in Appendix 1,
K
(£.), = Ko (73_*_‘6)
wep \op Jp
so that we can let F}J = Bp and apply Case |l, equation (2-5).
Conditions (4-3) must hold, and by comparing (2-1) and (3-62),
X\[";Pléf‘(’)]-'- llf - Ye de/Jf X, C") flé3j = l/f

X2l pr&cle) )= €r = Vpr — P
_ | g (4-22)
Xoln, ps €a J=&—Vlr—p
and to make ke = Ee , we must take
ér (fC) = €3
from (3-59). Combining the restrictions, we obtain
de,‘ _ de
dp

=0 érlp!) = éa R

e."'o dp lpe

From (4-22),

Q(p\= £ €D
07 N ES

re)= B Tk
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and from equation (3-58), we have

R MR 0T (o p) b, ()]

(4-25)

where J] and Y] are Bessel functions.

A
B.4 E-polarized in the 0 direction
The differential equation is (3=71)
d’Cp 1L 4G
d p* P dp

subject to conditions (4-20) with E and H interchanged. The conditions

+ (ér"' ‘/97- - Nz) Cp=0

can be satisfied by placing a conducting cylinder of radius P; in the
z direction with E-field strip antennas in the © direction a distance =

apart in the z direction. The boundary conditions will be

E = 0 scattering

oy (4-26)
2', Km e radiation
m

where L. characterizes the antenna. We can let Cl-‘ = FI-‘ [ see equation
(2-1)] since the boundary conditions apply directly to the variable..
Comparing (2-1) and (3-71),

X E"‘)F: &y ]= X\ e €)= l/f
X2 Cn ¢y €rlg)]= €= lfpr—p* (4-27)
X2 D\, e )= & — ‘/fl -y

and ke =T<e automatically from (3-68). There are no restrictions on

e (p).



62
From (4-26),

(3 P (4-28)
pie)= 1
G(e) = ?/o(.

and -F_rll is given by (4-25),

C. Sphere
C.1 H-polarized in the ¢ direction

The appropriate differential equation is (3-82)
d°Gy 2 d6 )
—R 4 =~ ) 1Gp € - -NR'H
drt (+ +( Tre r(,-qtr‘)6 °
subject to requirements that
0 .
1. E (any function) =

2. theonly H field component is H
~ ¢ (4-29)
3. the only E field components are Er and E o

€ = €(r) .

These conditions can be satisfied by placing a conducting sphere
- of radius r. about the origin, with a circumferential H-field strip antenna

in the ¢ direction on the surface. Therefore, we will have

0  scattering

Eg(r=v)) = . (4-29a)
%PL (o 9)3( radiation
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where the 9 specify the antenna. From (3-80) and the Appendix ‘1

orthogonality relations,

Eo)y = 7 (2 vhe),

weér

so that the variable F in equation (2-1) must be chosen equal to the
product rGl. Under this transformation, (3-82) becomes

ALQI L de e ,m+0
1¢r € T Fle- 2R = (4-30)

where Case |l now applies [equation (2-5) ] . Conditions (4-3) must hold,
and by comparing (2-1) and (4-30) we see that

X,In,r enl=-14t  x Dyn&]=0

X2lu, v, €N])= & - 2240 (4-31)

r-
XLy 1, & ]= &- ’g(_%‘tg
and from (3-80) we must have

€ lve) = &4

so that ke = Ee . In summary, the relations that must be satisfied are
dér der| _
drly; =0 T = © & (Vo) = ¢,

d r Yg M (4_32)



From (4-30)

r- (4-33)

€r(sk)

r= 5

and from equations (3-79) and (4-30), we have for € = €.,
~1I
‘{%iz + (& - L—”:B)ﬁl =0
with‘the solution
re=f =Vr B (o 6)[% J\],————— (\Ea*‘{i"ﬁ—wﬂm-s@
’q“!(lﬂ) zf'm*‘)
where J and Y are Bessel functions.

A
C.2 E-polarized in the ¢ Direction

The differential equation to be solved is (3-87)

d%L 2dL Al4+1)
— | a2 €. — A1 =0
dr?. + rdr + ( r re ) L'{

subject to conditions (4-29) with E and H interchanged. The conditions can
be satisfied by placing a conducting sphere of radius r. about the origin, with

a circumferential E-field strip antenna in the ¢ direction on the surface. The




boundary condition will be

0 scattering
Ep r=rt) = (4-35)
¢ § "‘Q ff(w ) radiation

where hI detemines the antenna. Since the boundary condition (4-35)

applies to LI directly, we may choose Fl = L,, and Case | applies.

ll
Conditions (4-3) again must be satisfied, and by comparing (4-35) and

(2-1) we find that
x\[h'r" &) )7 Jl/r_ Xzﬁ\,v;fr(r)] = ér"xA‘::':)
(4-36)

_d)

X,[n,r €3] 2'2/',. Xo (v, €a]= € T

and ke = Ee automatically, from (3-86). Equations (4-3) are satisfied
identically, and do not restrict the choice of € .

From (4-87)
— _ AH) £
gur) = €~ AHLES

and from (3-29), ?II is also given by (4-34).



CHAPTER V

PARTIALLY SOLVABLE PROBLEMS

The wedge and cone are considered in this chapter, and it is shown
that complete solutions cannot be obtained using the boundary value
techniques of this paper. The wedge configuration is shown in Figure 5 and

the cone in Figure 6.

A. Wedge

In all the prior problems in cylindrical coordinates, € has been a
function of p and the boundary conditions have been specified by choosing
the value of one of the fields af a constant radius. We have shown in
Appendix 1 that for € (p) the 6 dependent functions are orthogonal for
different values of the spearation constant m. We will now consider the
difficulties encountered when either of these conditions are changed.
Consider first the H-field polarized in the 2 direction. If € is allowed

to be a function of both p and 6, (3-37) must be modified to the form

s 8k
=l - A
EVEXIXH= | ) ye %Y =z Reauz 1€ au
-Jds 290 o 6 D)
..'.'(_?_tlz 'D O
§ 28 3
The expression for the VxVx A is unchanged, so from (3-39) the

partial differential equation for Hz is

'09"’ = [Z € 06 &o
5> P op 20 5-2)
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This equation is separable if €=¢€, = €, eﬁ:—g—_) orif €=€,=¢€, €, le) .
For € = €1 and letting Hz = A (p) B (8), we obtain

d oA L 22dA _ (oA 9 (ke _.:liu"‘?
%d??:@ A;L?—(ck?\)whllkﬂ Aj’“e 653
A redl, >0
K veal
18p L ded s e S
Bde* Belgde do +€18)= —(i-2)-2(k-2)  (5-4)

where K and X are not quantized. The form of the separation constant has
been detemined by requiring A to be finite at p = 00 , A similar require-~
ment cannot be made at the originsince € (p =0)= o00. If an attempt is
made to set A =0, an inconsistent result is obtained. The functions A ( p)
are not orthogonal for different choices of (ik - A), and the functions B (0)
will not be orthogonal either for different separation constants if Gr ©)is
allowed to exist.

If we let € = €_ and separate as before, we obtain

2
Pd odd _ % de@dr i
75 P8 “ha dp ap TOA@=m 65
Timo
.‘.CP'B-,_ T =
i m B= ¢ . (5-6)

The separation constant in this case has been quantized by the requirement
B16)= Blo+ ?,iT) . For the wedge, we wish to specify E o ot + 60, and for
€ = €y, 8o 3 £ 3

el on= PO =27 %0E AN

E(p, —B)= Glo)= Zem ‘o FAEER (5-7)
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where A”m(p) representing the irregular solution has been dropped since
p = 0 is included in the region of interest. A new difficulty is now encoun-

tered, however. When F (p) and G(p) have been specified, the coefficients

m® 1_~om © .
lee‘ ° and g, e " ° cannot be determined. In order to

evaluate the constants, the functions A"I‘ (p) and Arln' (p) must be orthogonal

over some range of integration of p:

?
B o 9) m {
j Ale) A () wie)dp i
’ 3.- 1 m=w (5-8)

[ where some known weighting function W (p) might be included], so that

we may write

B8 T Tm'e, T
[RFE AL Wi =e "q,,

B T -tm 6, T (5-9)

jd?@,(e) Amu (Wle) = e A
[

However, the functions AmI (p) are unknowns, and the integrals (5-9)
cannot be evaluated even if (5-8) can be shown to exist. For € = Gl,
the functions A ( p) are not orthogonal, and the same difficulty is met in
applying the boundary conditions.
Consider now the E-field polarized in the ; direction. The partial
differential equation for EZ is
3 O _dH= + 'H= + e—‘e_z'

20§ 9% T J5- ¢, H=="7. (5-10)
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This equation can be separated if € =€,= €, é_’.é,? orif €=€= eoer(e):

fa]o ?wp *’a H"‘ + €-16) H;=0 €=¢, (5-11)

9 p OHz 4+ D'z v H,=0 €= (5-12)
P v{>+'a’gz +p 6rp) Ha € .

Equation (5-12) leads to exactly the same difficulties encountered in
equations (5-7) to (5-9). Equation (5-11) , however, is similar to (5-3)
and (5-4). Separating variables,

Ho= Ale) B(6)

we obtain

ede ek + 4 alft + 618) =0

dp (5-13)
with the resulting equations
'\B‘%’» b o6(8) = — (K=" (5-14)
Kin
db - @) A= LT vl
Pe P) K real .

When an attempt is made to solve the problem of a cylinder clad in a
medium € = & éf-ig—) with a strip antenna in the z direction, the
boundary conditions can again not be applied since the 8 dependent
solutions are unknown functions and are nonorthogonal for different
separation constants.

The problem of strip antennas in the p direction on the surface of
a wedge is not solvable since neither E nor H will have only one nonzero
component. The same difficulty is encountered with a cylinder clad ina

medium with a 6 dependence and strip antennas in the 8 direction.

B. Cone :
N

Consider first the H-polarized in the ¢ direction, where € is
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allowed to be a function of rand 8. Equation (3-75) becomes

A
r 6

9>

€VEYOKA =

\
-
N‘D-)
Tl
]
|—
\e)
ole
o

= ¢| L2623 gy L€ N
¢[re3rbr ¢ € 00 rxmafasmeuy‘]. (5-15)

The curl curl remains unchanged, so that the new equation for H¢ is

—¥ 0¢& 2
€ T or H"?{

—126 | 9= r
€36 Swo Jo-0Rg €Ly =0,
[+
(5-16)
This will separate if €= € = &, é.!__:@ orif €=6.= €& ()
choice ¢ = € leads to difficulties encountered in equations (5-7) to
(5-9). lfe = € we obtain
Hg= A) Ble) K!M
1 r
Jﬁ_"é’ -3—%\ + %ﬁL_rv\A = (tk—-2Aa+4 l)(.uﬂ*)*-'l) k=
. 2 veal, 20
| K real
}‘35— ‘sL ﬁl— SmB B+l — L d¢ie) | elgmaB
E1B) pp  swddS (5-17)

= —(lk=2+1) ((k~2+2)
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where the form of (ik =~ A) is chosen so that A is finiteat p = 00 . This
problem is again unsolvable in all cases since neither the functions A ( p)
or B (08) are orthogonal with their same member for different separation
constants. For the fields E-polarized in the Q;direcﬁon, the € = €

case is unsolvable for the same reasons already given. For € = €, we

obtain o
w
Ld r‘éﬁ‘—_—. (tu-2) GK=2+1) A= -L}et " A redl, 20
ASC dr r K real
1d b é SmD B+ 618 = —(ik-7) (tK—)-H) (5-18)
3 db smb J®

again leading to nonorthogonal functions.

The sphere clad in a medium €= & GL:T?-_)- with a strip antenna in
the ¢ direction is not solvable since the 8 dependent functions are unknown
and nonorthogonal.

The problem of a strip antenna in the /l\’ direction on the surface of
a cone is not solvable since E and H will both have more than one nonzero
component. This difficulty is encountered also if e is allowed to be a

function of ¢ .
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CHAPTER VI

DETAILED ANALYSIS OF THE PLANAR CASE

A
A. E-polarized in the z Direction

1. The lterative Solution

Consider now the case of an electric strip source on a
conducting plane (fields E~polarized in the 2 direction) with a variation

in € represented by the equation

€= 1426 1 (/e +px®). (6-1)

Above the antenna we may take B = 0. This relation has the properties
that
4€) 46
Ixlp  ° dx
Eclmay = & ) =1+ if f=0,

(6-2)
Eclt) R | + Ao,

We will choose A small enough so that only first order terms need be

considered. From Equation (2-55), we find that

Xe Xe
B, (xe) = _J dx f' (¢,-¢) P(x)dx
o X

M(x!)

Refer to Figures 7-10. Figure 8 represents the € variation close to the
missile nose, Figure 9 the variation at the nose-body junction and Figure 10
the variation above the antenna.
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Figure 7. Shape of SCOUT Missile
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and from (4-7) and (4-10),
r= @n I)L

it = emer

_ : —ik X )
E*= a”Ieck“X_‘_ a:red( (6-3)

where
= L) o “
Kny \) €x-n %21' ) Kny —;\I\_ w.kk ‘

We are only interested in real values of K& (t\?&_; < 1) , since the fields

outside the sheath

Ir Zr\)o/ ik:
Ez =D,e 9 < < ¥

will be exponentially attenuated for all imaginary K : . From the

-

orthogonality of the functions emxo/ﬂj and e_zmv&/?‘f , each nth
term must individually satisfy appropriate boundary conditions, and only
those terms for which V‘lh‘/»b < 4 inside the sheath will contribute to
the radiation fields outside the sheath. The term n = 0 represents a wave
propagating without any y dependence; i.e., a plane wave moving in
the x direction. From symmetry considerations, this term must be the
same for both fields H-polarized in the 2 direction and fields E-polarized
in the 7 direction. The term n 7“’//&= 1 is a wave propagating along

the surface of the sheath in the y direction and is a surface wave. The
terms for which 0-‘-“7%’ = 1 are a mixture of the above situations.

If we define the antenna by the coefficients V.

LAY
Efxe0 = £ T (6-5)
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then by the straightforward application of boundary value techniques, we
find that

-t KVXQ_
o> = ¥, €
S (o) Fe
R
Knx-‘- ny (6'6)
C X
qr ~ Xh e+Lknx < (knx——kn)ok )
" Knp'*—kﬂ:
-[ka-e k“ _K © +I k.\*Xe_
€ + s n: ¢ . (6-7)
l(V\x+ 3
We will choose €3 =1 so that we have
.0
. e X
Ef= .6
(6-8)
and
T (34651 e =)
AT e W) | e
| GUH DT (1) L (69)

In order to better understand and analyze (6-9), the following computa-

tions will be made for V\Z{g <<

(i) Find An] (xe) to first order in A for a sheath of width x =t
with a constant value of € =1+ X . This result should show why the step-

function approach is not an adequate way to treat inhomogeneous media.
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This problem can be worked by rigorous boundary value techniques, by the
WKB method and by the iterative solution derived in this paper. All these
results should agree and a check on prior computations may be obtained.

(ii) Find An] (xe) to first order in A using the WKB technique. This
result should agree with Equation (6~9) for large values of t (which will
make € slowly varying over a wavelength). This problem will again provide

a way of checking the equations derived in this paper.

2. The Step Function Solution

a. Rigorous method

From Equations (6-3), (6-5), and (6-6), the field at x, is

given by
o]
IV\?“/'(\\} | + < Knx "'an.o )
EZ“ ‘.-t)$ Xh e K"X-'—Kﬁy. (6-10)
-IK‘){E ___K‘o 'f'ulny.t
e + [ Ko >e
1fwe lete =1+ )\) Knx T kny .
= Kax 2 nae 1
o= b (14 2 ‘;") for = °° (6-11)
kh!"’l‘ni - 2
KcHhf Ak 12

and we obtain

STeP FecM.—RILG, N
An' =_1 (I’_ e
S 2 Ko . (6-13)
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b. WKB method
The WKB method gives for the electric field:

Eg, = + Be ] (6-14)

n f———-Knx

ctn NIM [ szndx . jl@,@-l
e
n

If we take € = | +AF(x) and require C_Tl_f(_") l = D, then
dx ‘Xe

~i { kgdx T RS
kmt")'*'k:x

Ez.'l = X’( V Kuxu’)
| K 06)

+ ~ (S d
._L'L e S AN o e""-‘o kx| (6-15)
¢ + K“H—)'HO&

At x =X, )
|+ (Eﬁﬁ,ﬁ)
E, =¥, Koy () 1o

+

Kh)k(t) -Jfk d - t d
“ L), RmcX 0-12 |+t
e (ﬁ_)/k-"l— e (6-16)

Knx l.f)+ k'\: .

If we take f (x) = 1, Equation (6~16) is identical with (6-10), a useful
check. But without making this restriction, if we let A be small and

take only first order terms, we obtain
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27 Q
G LI LR N
l L{’K:;’ qK“F ZK\X

(6-17)

for f (x) = 1, this solution is identical with the one obtained before,

Equation (6-13).

c. lterative method

From Equation (2-55)

X | Xe
_ 7" dx
By vz — [ = yk,@,qs)r(x)dx

and Equations (6-3), we obtain by direct integration

STEP?P Fen-TIT.
A A (- Z“‘"*) LAt

n T — 3 (6-18)
4 ,.‘; 214,

a result identical with those obtained by the other methods.

3. The WKB Solution

This solution is easily obtained from Equation (6-17) with
—2X/4& 2x / .
S0 = e (1+ 2x /¢ )

L
Z Ky “tlax

(6-19)

4. Comparison of the Different Methods

We have now derived the following equations:
iIT 'y o, 3 T,
Ay, = Mt (3*'““*":)4_‘\%& (2+ M )
4 (1raee)” Z(1+ 6 o




84

AWKB _ LBE 2
{ 1\(:; ‘*K“Q"L—-
As‘r;? Fen, , «
h, = 2 (- e'Zthm + i_A_t_ (b" all 3 Me“'el’@
Gy

\arge € ! (6-20)

as it must, since this is the region of validity for the WKB Method. It is
also interesting to see that the step-function approximation has introduced
a non-existent oscillating term into the answer, due to the properties of
the step-function region acting as a resonant cavity. However, for small
t, the step term is a much better approximation than in the WKB solution.
All three solutions are graphed in Figure 11for n = 0 and the iterative

solution is graphed for several n for the case T = 10 >\° in Figures (11-15).

— N
B. H-polarized in the z Direction

Now consider the case of a magnetic line source on a conducting
plane (fields H-polarized in the z direction) with the same € variation

as before.

—2x[¢

- 2X
ErlxY= Y+ e (H‘ /‘f—')v (6-1)

From equation (2-56), we have

CrXe gt /) x

A, k)= = F(fﬁjx M x) (@~ $)dx

TPEE 770 ) (46 d”
+LFX)C\ ]o YD P (4-9)

Rrd X (6-21)




85
and from (4-6) and (4-7)
re = @G
NIRRT (RN

0
- Ko X (6-22)
F,= c.e ™7,

We define the antenna coefficients v as in (6-4) and find from direct

integration that

-+ 2 _2__4,_ o4l (6-23)
A - =% o AU+ (1+ °-t) A(1-24%)

L] ——— —
ML) Ak T ik (e d)

From (2-46), we see that to first order in A,

»
RE=F" (s by, + lz) (6-24)

so that the total correction term is

al= BT . a[3(zami+t(2ke )]
t

E (1 k)" o2
. 6-25
L Kt (2t + 2¢ ( Vin )
2 (VK € .

From symmetry considerations, we must require that Equation (6-25) is
equal to Equation (6-9) when n= 0, k:x = 1. This equality does in fact
exist, an important check on the whole situation.

We now wish to show graphically how each n'th term contributes to
the total field intensity at a given observation point and how the change in
the field intensity at this point varies with the plasma thickness and the

choice of antenna. |n order to do this, we first note that the solution in




86

Region Il (outside the plasma) is always of the form

> o5 WF
T I thn
F = z .Fh = Z Qu e “

n=-0 N3>-00

A A - ) A
whereEn= konx X + n—g— y andr =x x+y y. When the plasma

thickness is reduced to zero, the components are denoted as _F—Inl . The Fourier
components for which k:x is imaginary will be exponentially damped in the
x direction and will not contribute to the radiation field. Therefore, if we
restrict ourselves to consideration of the field intensity at large distances from

the plane, we may write

*
nety o
A
Y- ane
w2 ‘%o ( radiation field)

Each nth term in this sum represents a plane wave of amplitude alL traveling
in the k_ direction. We can therefore describe each component Fa by a vector
of length an“ in the direction of En' There will be a finite number of terms
contributing to the radiation field and all these terms will be directed into the
upper-half plane above the plasma. The length of each vector will represent
the maximum value this component will ever have. In order to find the actual
radiation field intensity from the graphical plot described above the magnitude
of each component must be multiplied by a complex phase factor, and the
resultant scalars added together. These complex phases are of course dependent
on the particular point of observation chosen.

The angular pattern may be presented in another form if we apply the

symmetry relation F (y) = F (-y) and note a  =a_’ . The field intensity

I
-n
may then be written in the form




T
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ns+d
n ZK'\‘X )
F= 2 2%¢ wox N0
n=0 T d

In order for the vector representing Fn“ to have a length independent of the
coordinates, we must take y = 0 once the sum has been reduced to positive
n only. This restriction greatly reduces the impcrtance of this particular form
of F. We will return now to the prior, more general form and utilize it in all
further discussion.

] 1 .
For convenience F o 8 chosen to be a normalization factor and we define

absolute value of Fn

absolute value of —F_oll (6-26)

1 x component of k

6 = tan (6-27)

y component of k .

Each point on the angular pattern is defined by its radius vector o and angle
with respect to the conducting plane Gn. Each Fourier component (or partial
wave) F“n will give rise to a single vector on this graph.

[n order to illustrate the results of the example worked out in this
chapter, we choose v = 10 >\o' Therefore, n will run from =10 to +10
and 21 such vectors will exist. Equation (6-25) has been graphed for n =0,
+2, +5, +7, + 10 in Figures (11 - 15), and the angular pattern in Figures 16

and 17 were plotted using these results, where from the general definition




B,
W= | e | (6-28)
-\ o
B,=Aam Tlnx (6-29)
n )to

The end-points of the vectors have been indicated by points and then these
points have been joined together by a smooth curve.

For both E and H sources the t = 0 curve is a semicircle about the antenna,
so that for this case the radius vector may be defined to be unity for all Bn and
the other patterns will then be shown with relative magnitudes. The electric
line source is considered in Figure 16, and it will be noted that the partial waves
with large y components contribute less and less to the total field intensity as
the plasma thickness increases. On the other hand, when the magnetic line
source pattern in Figure 17 is examined, it may be noted that the partial waves
with large y components contribute more and more strongly to the total field

intensity as the plasma thickness increases.
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APPENDIX 1

THE FOURIER TRANSFORM

A. The Finite Fourier Transform

Given a function f with

f(e¢+) = £1¢) (A1-1)

that can be represented by a Fourier series

in)k
¥l+)=£c.\e') A= 2T
n (4 (A1-2)
then the Cn can be found by evaluating the integral
gy
\ + —-int
Ch= 7 fie d<t, (A1-3)
_.’t/L

This representation exists if the summation (A1-2) converges uniformly to

24 . . . .
f (t) forall 1. One of the most important results of this requirement is
the series can be integrated tem by term.

in A
Llet g (1) = ):.‘dne ' M be another function of t and require that

F0= g9, (A1-4)

Since em)\t and elmN are orthogonal functions, then Equation (A1-4) can

only be satisfied by choosing c = dn. This can be proven as follows:

24 W. Kaplan, Operational Methods for Linear Systems, Addison-Wesley,
1962,
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Given -
wnat makt
s'c e s d e (A1-5)
W m "
— ipA
Multiply both sides by e A

Un-p) At L im=p\at
2 Ca€ = 2 dme

(A1-6)
and integrate from O to 7 :
Q. *
n-pYat Um=-I Nt
é‘acn‘ge‘ ° d-&:é’dms‘et‘”?) dt,
n
o ° (A1-7)
We know that
Ta
’}' at -‘a (e - l) Q:': 0
S e dt = (A]-S)
° R =0
* so that
Ly 0 (TTn~p)
i ln-p) nt -1)=0
g R P T D=0 mep g
o)
7 n=¥ .

Only the term n = p contributes to the left-hand side of (A1-7) and only the

term m = p contributes to the right-hand side, i.e.,
Cp=dp. (A1-10)

B. The Fourier Transform
C
If we write An = .X'l , equations (A1-2) and (A1-3) become

nat

$H= 2 Ae (A1-11)




1T/2 It
= L 4.,
Ay zﬂ‘j +rie d (A1-12)
=T
Now let Wy=nA , so that
A=Wy =W, = Dwy, (A1-13)
w,t
S = €A Aw,
n (A1-14)
+T/2
—w,t
An= 2\ £de d+, (A1-15)
_'bl,L
Now let A—0, so that
<o wt
= A(w\e dw
60 _—L (A1-16)
Jo
wt
A= L[ e e (A1-17)
20 )y

These are fundamental relations for Fourier integrals. Orthogonality

relations similar to (A1-10) also exist for this case.
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APPENDIX 2

OTHER METHODS OF SOLUTION

A. WKB Solution25

The Wentzel-Kramers=Brillouin, or WKB approximation, is
applicable to situations in which the wave equation can be separated
into one or more total differential equations, each of which involves a
single independent variable.

The basic propagation equation considered can be written in

the form

clzu. T = 2 = T
e +KHOAAU=0 KEK) = &K, > O, (A2-1)

Now make the change of variable

W) = Aeiko S0

(A2-2
and (A2-1) becomes
CdrS _ ds\* -

We substitute an expression of S in powers of ko-] in (A2-3) and equate

equal powers of ko :

S=Set LS+ s, v -4

o

= L. Schiff, Quantum Mechanics, McGraw=-Hill, 1955.

V. Ginzberg, Propagation of Electromagnetic Waves in Plasma, Gordon
and Breach, 1960.
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¢ &% cd ) (JS L dS
- ‘+ e o
6‘“‘* ¢ et NCE TR ")+£f0() © (A2-5)

_ [dSo\" _
(;-;) F6W=0 e
¢ 45 — 0‘_5_ ‘.1_4 =0

dx* dx dx (A2-7)

Integration of these equations gives

Sb = = S\'é‘rm dx (A2-8)

5 = -LZ-/QM Ve ) (A2-9)

and we thus obtain to this order of approximation

+i (wdy
woy = e (A2-10)
V K) )
The WKB solution will be useful if
Al éé\ | dér
L5 # dle

which means that the fractional change in € overa wavelength must be

small compared to unity.
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B. Green's Function Solution

fFG(r, Fo) is a field at the observer's point r caused by a unit
point source at Fo' then the field at r caused by a source distribution
p (Fo) is the integral of Gp over the whole range of Fo occupied by the
source. The function G is called the Green's function. It is a solution to
a given partial differential equation that is homogeneous everywhere except
at one point. When the point is on a boundary, the Green's function may be
used to satisfy inhomogeneous boundary conditions; when it is out in space,
it may be used to satisfy the inhomogeneous equation.

If the partial differential equation of interest is the Helmholtz equation

VYt ¢ =0 (A2-12)

then the required Green's function is the solution of the inhomogeneous

Helmholtz equation
VG, (FR)+Kq (MR = —4T8(F-F) .  (az-13)

It can be shown that Gk is a symmetric function of r and Fo' and from this

requirement it follows that we must have
Gk (Y“ V‘o) _—— gh(‘z) N R=Y"~V° . (A2-]4)
R—o

To find the behavior of g for R =0, we integrate both sides of

(A2-13) over a small sphere of radius € about Fo . This gives us

26 An inhomogeneous boundary condition is one that requires the field or its
derivative to have a specified, nonzero value on the boundary. An inhomo-
geneous equation contains a source term (a term not multiplied by the
dependent variable or its derivatives).
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G (%) 4 = - 47, (A2-15)

i”"q’zak(ﬁﬁ,)dv +w~ﬂ

The integral on the right-hand side equals -4 7 because of the properties of

the delta function and become the sphere integrated over includes the point

ro=r_. We assume that the first integral in (A2-15) will dominate as
R—0.

[g gvzgk(mo\“\r — -4 as €-2o0, (A2-16)

The divergence theorem states that

§ o = (([ @F)rdv

= -
and applying this to (A2-16), since YV =VX7 3

— 4T — V .d—A-—s- d (.‘Fn’él)
! § Ik (g?()g; ¢ (A2-17)

or written another way,

é%e U — -4 s R—>0, (A2-18)

so that

G, % ——9%{_ as R=\v-%\ = o (A2-19)




for the three-dimensional case. Similarly, for two dimensions

For one dimension, the Green's function G has a discontinuity in slope

equal to -4w at x =X

e Xete
(—J) == 4T 20, (A2-21)
d X Xo- € )

If the boundaries of a particular problem are at infinity, then

G‘}Z(r rn eilkR

(3 dimensions) (A2-22)

\,7)
GpUim) = iTH,  (KK) (2 dimensions) (A2-23)

Ry - * .Lk \ X'X o \
Q K n ro) = ?_T‘? e (1 dimension) _ (A2-24)

i03




APPENDIX 3

PROPERTIES OF ORDINARY, LINEAR, SECOND
ORDER DIFFERENTIAL EQUATIONS

The following definitions and statements can be found in many texts

on differential equc|tions:27

1. The order of a differential equation is the order of the highest-

ordered derivative appearing in the equation.

2. An equation is linear if each term in the equation is either

linear in all the dependent variables and their various derivatives or does
not contain any of them.

3. An equation involving ordinary derivatives is called an ordinary
differential equation. '

4. Given the functions f] (<) ..... ‘ fn(x) then if constants ¢

Ry
c s not all zero, exist such that

< f] )+ .... +e, fn x)=0

identically, the functions f) (x) ... fn (x) are said to be linearly dependent.
If no such relation exists, the functions are said to be linearly independent.

5. An ordinary differential equation of the nth order has, in general,
a solution containing n arbitrary constants. For a second order equation in

y, the solution can be written

\}'—' Clyl +C1y1 .

For instance see E. Rainville, Elementary Differential Equations,
MacMillian, 1957.
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The functions Y and yo must be linearly independent or < and <, degenerate

to only one arbitrary constant.




APPENDIX 4
BOUNDARY CONDITIONS ON THE ELECTROMAGNETIC FIELDS

Maxwell's equations can be written in the form

gxE= —2B
2€ (Ad-1)
VxH = D__ﬁ.- +7
) (A4-2)
IB=0
(A4-3)
v-p=g - (Ad-4)

In order to establish the boundary conditions on the fields, Equations

(A4-1) - (A4-4) must be combined with the vector relotions

53 Anda = fv VA Av

(A4-5)
f Fag = | (@A) Rda
c S (A4-6)
known respectively as the divergence theorem and Stokes' theorem.
From (A4-3), (A4-4) and (A4-5), we obtain
B.nda=0 N
S < (A4-7)
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gs Dnda= Sedv =<%. (Ad-3)

From (A4-1), (A4-2), and (A4-6), we obtain

gCE-AE = —g 2.’?’-7\ do_

f

If a pillbox is constructed on S in the usual manner, we obtain from (A4-7)
and (A4-8),

(A4-9)

"

bD nda .,
(5 +T> "L (A4-10)

(B.%, + B-h,)da=0
(8,—B.).n =0 (Ad-11)

(D—_W‘ + B . yTI)Aaz w Aoo
- _ _ (A4-12)

(D\ - D’L) no=w

where w is the surface change density. If a rectangular path C is drawn

cutting S in the usual way, we obtain from (A4-9),

(E:? + E.W)Ars= —28B.y,As8) —0
prs
o (Ad-13)
(nx (E.—=F))= ©

where ;] and ;2 are in the direction of circulation and ;o perpendicular

to the plane of path C. From (A4-10),

X
( T‘ ¥ (Ad-14)
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where K= Ilm TA\
A0

exists only if the conductivity of one medium becomes infinite.




APPENDIX 5

DESCRIBING A PLASMA SHEATH IN TERMS OF A VARYING 28

The equation that governs the electron motion in a plasma is

m(_i__v- - —-¢§-—c\-l—x€ -—m‘l)V
dt (A5-1)

which will be recognized as the Lorentz force equation. E and B are the
applied electric and magnetic fields, 2/ is the collision frequency for
momentum transfer between electrons and atoms or ions, and a term multiplied
by the pressure gradient has been assumed negligible.

We take E and v to be time hamonic, E =0, and

static Bstatic
neglect Bwave since it is v/c times smaller than the electric force term.

(A5-1) becomes

= —€ L. —uV,
JwVe = Bo T¥Yo (A5-2)

and solving for Vo

\",; = ).%Eo (A5-3)
w3 v *

The current densifyj; becomes

28 This material was taken partly from * Outline of A Course in Plasma Physics",
Part 2, American Journal of Physics, Vol. 31, Number 8, August 1963.
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Jo= —Nev, =

e

w—)7

(where N is the ionization density)

and substituting into Maxwell's equation, we obtain

VX!’TO - J|W (éo"' E‘f‘;} )Eo

w—)?

<7)‘é-o-“ —jw, Wo .

Comparing with Equations (3-1) and (3-2), we see that

= ¢ — Ne®

€ - °
mw(w—j"’)
é‘: € — Ne" —aiNe* v

m(w’-—n}’% m ww VL)
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(A5-4)

(A5-4)

(A5-5)



APPENDIX 6

TYPICAL ¢ VARIATIONS AROUND A RE-ENTERING MISSILE

Computed values of the ionization density and collision frequency for
a typical plasma sheath have been shown in several publications. The values
used in the current example were taken from AFCRL Report 87, 29 and are
computed for a SCOUT missile (Figure 7). This data, when substituted into
Equations (A5-5) yields values of € in the sheath (Figures 8-10).

29 W. Rotman and G. Meltz, Experimental Investigation of the Electro-

magnetic Effects of Re=Entry, Air Force Combridge Research Laboratories,
Bedford, Mass.
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An Inhomogeneous Dielectric Sheath," Canadian Journal of Physics,
(1963), vol 41, pp 143-151.
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