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SUMMARY 

? 

The study of electromagnetic wave scattering and propagation characteristics 

i n  inhomogeneous media has recently attracted increased attention in basic and /SP 

Fd-i i 

applied science, particularly where applied to plasma sheaths. 

In  this paper a solution to several classes of plasma problems as been 

found by applying a technique similar to that used i n  nonrelativistic quantum V 
mechanics when studying particle scattering by partial waves. In both types of 

problems i t  i s  desired to find out how a varying index of refraction affects the 

propagation of incident waves. The solutions are represented qs sums or integrals 

of  Fourier components which represent the partial waves. When the inhomogeneous 

medium i s  removed, the partial waves are known for many cases of interest; when 

the spatially-varying medium i s  reintroduced, each of these partial waves wi l l  

change. It i s  convenient to define the partial wave phase shifts as the natural 

logarithm of the ratio of the new to the old partial waves. These phase shifts w i l l  

in general be complex numbers. - 
The general mathematics o f  this approach i s  similar for both the quantum and 

electromagnetic problems. A scalar equation i s  under consideration in both 

approaches since the electromagnetic vector wave equation has been reduced to a 

scalar equation by restricting the form of the conducting surface and the kind of  

antenna allowed. The principal differences between the two types of problems 

are contained in the boundary conditions imposed i n  each case. In addition to 

these differences, it must be remembered that in the quantum problem the incident 

wave i s  generated outside the varying region. In  the electromagnetic problem, one 

considers restriction from an antenna on a missile surface, the scattering properties 

of  the sheath, and the effect of the sheath on reception from an external source. 

> 

By using the approach described above, an analytic solution to several 

problems of  interest i s  obtained in  the form of an infinite series where successive 

terms are defined by an integral recursion relation. It should be mentioned that 

no restrictions are necessary with regard to near- and far-fields and with regard 

to the thickness of the medium layer. 
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CHAPTER I 

INTRODUCTION 

The solution of the wave equation with a continually-varying wave 

number has until recently been of primaFy interest i n  the f ield of quantum 

mechanics, as applied to the Schroedinger equation with a varying potential. 
I-* --I r - 1  

- -  Current interest i n  the, f wave equation has arisen also' in  thejropagation o f  
L I 

c 

electromagnetic waves in plasma media on conducting surface where the 9 
plasma permittivity can be treated as a continuous (complex) function. A 

common approach to this problem has been to approximate the continuous 

variation by a constant average o f  e ,  and to obtain a solution by applying 

the usual electromagnetic boundary conditions between regions with different 

average values. However, this approximation may cause the solution to differ 

markedly from the physically correct solution. 
2 

1 

A more recent approach has been to formulate a power series solution 
3 

or a WKB-like solution for the fields. 

the use of  large computers, and the value of an analytic solution i s  lost. The 

WKB solution i s  not valid for a plasma thickness of the same order of magnitude 

The power series approach requires 

The analysis with homogeneous sheaths in References 10, 12, -14-16, in the 
1 

Annotated Bibliography may be compared with the analysis using inhomogen- 
eous sheaths in  References 1, 2, 5, 11, 20, 22, 23. The difference i s  also 
pointed out explicitly in  Chapter VI of t h i s  paper. 

2 

29 i n  the Annotated Bibliography. 

3 

Bibliography. 

The power series technique has been applied i n  References 2, 11, 22, and 

The WKB approach i s  utilized in References 1 1  and 23 i n  the Annotated 
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as the wavelength of the source, and this i s  the situation that prevails in 

many reentry problems. 

In  this paper, a different technique for handling the problem has 

been derived for several coordinate symmetries. In the radiation problems 

considered a constant-phase strip antenna i s  present on the conducting surface, 

while in the scattering and transmission problems a polarized wave i s  incident 

from infinity. By appropriate utilization o f  these restrictions, the vector 

wave equation can be reduced to a linear, second order partial differential 

equation that i s  separable. The boundary conditions on the electromagnetic 

fields at the conducting surface are then applied to t h i s  equation i n  such a 

way that one integration may be performed. A linear, first order differential 

equation i s  obtained and this can be integrated directly without further 

restriction. 

The technique applied here i s  similar to that used in  nonrelativistic 
4 

quantum mechanics when studying particle scattering by partial waves; i n  

both problems we want to find out how a varying index of refraction affects 

the propagation of  an incident wave. The solutions to both problems can be 

represented as a sum or integral o f  Fourier components, and to these compo- 

nents the name partial waves may be given. 

region i s  removed the partial waves are completely known; when the varying 

region i s  replaced i t  i s  convenient to express the new set of Fourier components 

i n  terms of the old, and this i s  done by defining the partial wave phase shifts 

i n  terms of the ratio of the new to the old components. The general treat- 

ment of this approach i s  similar for both the quantum and electromagnetic 

problems, 

When the inhomogeneous 

However, the problems are quite different when viewed from other 

aspects. Perfectly conducting boundaries wil  I always exist in  the electro- 

magnetic problem, so that both the regular and irregular solutions must be 

The quantum mechanical partial wave technique i s  discussed thoroughly 
4 

i n  References 4 and 8 in the Annotated Bibliography. 



3 
retained. In the quantum problem, this would correspond to allowing an 

infinite potential to exist. Since the method of solution in  this paper depends 

on the presence of the boundary, the mathematical techniques employed are 

quite different from those of the quantum case. There i s  also a difference in  

the basic wave equations to be solved; the quantum problem involves a 

scalar wave equation in three dimensions while in  the electromagnetic case 

a vector wave equation must be solved and both two- and three-dimensional 

models are considered. In addition to these differences, i t  must be remem- 

bered that i n  the quantum problem the incident wave i s  generated outside 

the varying region. In the f i rs t  case, radiation from an antenna on the 

missile surface i s  considered, while i n  the second case we are concerned 

either with the scattering properties of the sheath or with the effect o f  the 

sheath on reception from an external source. 

The solution i s  formulated in three steps. First, we are given a 

particular problem we wish to solve, described by a differential equation and 

certain boundary conditions. This problem wi l l  i n  general be very diff icult 

to solve, so we must approach i t  indirectly. 

In the second step, we generate an entirely new, workable problem 

designed to represent a first-order approximation to the actual problem. In 

order to generate this approximate problem, we first define an average value 

of the permittivity such that 

Re [average value of €1 = - 
sheath 

of  minimum value of 1 across + Im e across the 
sheath 

Im [average value of €1 = 

This definition i s  chosen to minimize the maximum difference between the 

actual value of e and the approximate value across the sheath. The new 

workable problem i s  generated by replacing the region of varying 

actual problem by a region with a constant, average value of 6 .  The 

in  the 
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approximate fields can then be found by applying the known electromagnetic 

boundary conditions to the known solutions. 

In the third part of the solution, the fields for the actual problem are 

described in  terms of those for the approximate, solvable problem. The 

difference between these solutions i s  expressed as an (infinite) set of  

differences between the Fourier components of  the fields themselves. To 

these Fourier components the name partial waves has been designated. The 

differences between the actual and approximate partial waves i s  then expressed 

by the (infinite) set of partial wave phase shifts. This nomenclature i s  in 

anology with that used i n  quantum-mechanical scattering problems. 

Using the mathematical approach discussed above, an analytic 

solution i s  obtained in the form o f  an infinite series where successive terms 

are defined by an integral recursion relation. For many cases of  interest this 

series wi l l  converge rapidly. 

Three two-dimensional models have been analyzed. The first two are 

a conducting cylinder or wedge clad i n  an inhomogeneous medium either i n  

the presence of an electric or magnetic strip source or an incident polarized 

wave from infinity. The third i s  a conducting plane clad i n  a Iinearly-inhomo- 

geneous medium with periodic electric or magnetic strip sources or an 

appropriate incident wave. The two three-dimensional models considered are 

a conducting sphere or cone i n  a varying medium in  the presence of a 

circumferential strip antenna or an incident polarized wave from infinity. 

Elliptical and parabolic coordinate systems cannot be utilized since the 

metrical coefficients in  these cases are functions of more than one coordinate 

variable and the equations are not separable. 

5 

The iterative method of  solution i s  derived i n  general form in 

Chapter I I ,  and the mathematical similarities and differences between the 

J .  A. Stratton, Electromagnetic Theory, McGraw-Hill Book Company, Inc., 
5 

1941, Chapter I. 



5 

quantum and electromagnetic problems are explicitly demonstmted. Once 

the general method of  solution has been developed, i t  i s  necessary to show 

that the results are applicable to the plasma problem. 

The problems with planar, cylindrical, and spherical conducting 

surfaces are considered in Chapters 111 and IV. In  the former the vector 

wave equations are reduced to linear second order differential equations 

for each case, and in the latter i t  i s  shown that the general method can be 

applied to obtain a solution. The wedge and cone problems have been placed 

separately in Chapter V since they are found to be only partially solvable. 

Once the applicability of  the method has been established, it i s  

desirable to work out an example to illustrate the usefulness and accuracy 

of  the results. This i s  done for a simple problem in Chapter VI, where the 

limitations on the WKB and step function solutions are presented. 

The appendices are intended to provide the mathematical and 

physical references that are necessary in order to uti l ize the results of this 

work. 



. CHAPTER I I 

METHOD OF SOLUTION 

A. General Development 

In order to study electromagnetic wave propagation i n  inhomogeneous 

media, one must obtain solutions differential equations of the form 

I th 6 
where F i s  the n Fourier component of an electric field E or magnetic 

n 
field H, 6 i s  one of the coordinate variables in the problem of interest, 

and er ( 6 )  i s  the relative permittivity in the region over which equation 

(2-1) must hold: 

When e 

and in  many cases of interest the solutions 

( 6 )  i s  set equal to a constant value 

I are known: 
n 

the medium i s  homogeneous, 
r a' 

I f  e i s  chosen to be average value of (e) over the range 5; 6 < - tef 
a r 

It wi l l  be assumed for simplicity that n takes on only discrete values. I f  a 6 

summation i s  involved, the radiation far fields may be found by simply letting 
~ + c o  . If  an integral i s  involved, however, the integration must first be 
performed before letting ?+a0 since lim ~ F ~ ~ ~ ~ ~ .  .+ J C,,, Irm F cp)]dp 

9 +O0 
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l -  

1 
1 .  

l -  

then T I i s  an approximation to the field FI . Although many important 

features of the actual problem may not appear in the approximate one, it 

represents a useful starting point. The following analysis utilizes the 

approximate field 

n n 

I ' to obtain a solution for the actual field F 
n n' 

In the scattering problems, a perfectly-conducting surface i s  assumed 

to exist at the inner boundary 6 = 5 i, and i n  the radiation problems, a 

specified strip antenna on an otherwise perfectly-conducting surface i s  

assumed to exist a t  this boundary. We wi l l  assume that the same boundary 

conditions apply to both the actual and approximate solutions , and one of  

the following cases w i l l  always hold: 

7 

0 (scattering problem) 

(2-4) 
known function (radiation problem) 

- s  
Case I Fhr($iIs F,,, ( 5 ; )  

(scattering problem) 

= K; (2-5) 

known function (radiation problem) 

In a l l  the radiation problems to be treated, free space exists every- 

where outside Region I :  

th 
Only outgoing waves wi l l  exist in Region I I ,  so that the n Fourier 

component of the exact field wil l be equal to a complex number multiplied 

times the n 
th component of the approximate field. This number w i l l  be 

written: 

i 6, 
e (2-7) 

This approximation has also been noted i n  Reference 29 in  the Annotated 7 

B i b I i og ra ph y . 
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The Fourier components of the field wi l l  be called the partial waves, and 6 

the n 
n th partial wave phase shift. 

In scattering problems, one or more sources w i l l  exist outside Region I 

50 that reflections and these sources wi l l  be assumed distant enought from 5 

off of them may be neglected. 
e 

(2-8) €tW= 1 $ 2  le 
(except for sources) 1 Region I I  1 

Both incoming and outgoing waves wi l l  now exist i n  Region I I .  The components 

of the incoming waves wi l l  be the same in both the exact and approximate 

problems, while the outgoing wave components wi l l  differ by a multiplied 

complex constant, as before. T h i s  constant wi l l  be of the form (2-7), where 

b i s  again the n partial wave phase shift. 
th 

n 
The boundary conditions joining Regions I and I I  wi l l  depend on the 

continuity of  the tangential E and H fields: 

For future reference, we note that for the radiation problems, i f  k e = E e '  

(2-10) 

Also for future reference, we note that in  the scattering problems, i f  

e 
k 
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where 

I = incoming wave 
n 

0 = outgoing wave , 

= %+jjh 

3% 
5 
Far= Kfq, n 

The first step toward obtaining a solution i s  to put equations (2-1) 
and (2-3) into the standard forms 

8 This can be accomplished by choosing 
E 

r+'lr& x ,  Ch, t, wtW+ 
y n =  fn e 

(2-13) 

(2-14) 

(2-15) 

s p ,  9, &J= XJh, %, a- 4 ' )(:En/ f, &I -3 (2-18) - ' 
where a i s  an arbitrary constant that must be the same in  both cases so 

that y - when F = 

x, Eh) 5, ca3 5 d5 

- 
Fn and er (6) = a .. For simplicity, define n -Yn n 

(2- 19) 

See Annotated Bibliography, Reference 27. 



and the equations to be solved become 

10 

(2-20) 

(2-21) 

(2-22) 

Now multiply (2-21) by 7 from the left, (2-22) by y from the left and 

substract the resulting equations: 
n n ,  

(2-23) 

Integrating between arbitrary limits A and B, 

Substituting from (2-15) and (2-17) b 
I 

(2-25) 



. 
11 

B. Derivation of the Recursion Integral 

B. 1 Scattering 

For the scattering case, choose 

A= F; 

X i  f e ,  cd] = X, Ch, fe, GCS4)3 Cor ba+k 
and from (2-4) and (2-5) the left-hand side of  (2-25) wi l l  always vanish at 

Si:  

I I Since only F and dF / are unknown functions, this i s  a linear first 

order differential equation in F' 
n dS 

n' 

9 
(for # e. when PL represents an E field) 

I 

I F 
a pe3ectly-conducting surface could be placed at 5 
fields. In this case, no waves would propagate into or out of the region 

< < and this possibly can be avoided by requiring (E) to be 5; - 5 - 5,' 
finite everywhere. 

Em' ( 6 )  can only be zero at 5 . .  If i t  were zero at any other value 6 = 
I 

without altering the 
m 

r 
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The solution to any equation in the form 

IS 

(2-29) 

(2-30) 

so that (2-24) may be directly integrated: 

(2-32) 

The boundary condition at g. has already been applied, so now we must use 

the known boundary conditions at ge. To evaluate C, we first find from (2-27) 

that 

I 

(2-33) 



13 

and from (2-1 l),  

where 

Substituting (2-34) into (2-31), we obtain 

m Ce 

for the scattering problem. 

8.2 Radiation 

(2-36) 

(scattering) 

(2-37) 



. 
14 

From equation (2-lo), the left-hand side of (2-25) w i l l  vanish at 6 e . 

Integrating as before in  steps (2-28) to (2-31), 

The boundary conditions at I;, have already been applied, so the boundary 

conditions at 5 .  must now be utilized. To evaluate C, we note from (2-4) 
and (2-5) that one of the following cases w i l l  always hold: 

I 

Combining these results with (2-37) and (2-39), we obtain 



15 

Substituting into (2-39), 

C. The Iterative Solution 

The complete solutions to (2-1) are 

(2-42) 

(radiation, Case I )  
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1 
Now writs F 

n 
appropriate equation. 

in terms of an infinite series, and substitute into the 

with the resulting 

&,+ AM,+ 

(2-44) 
(scattering) 

(2-45) 

(radiation, Case I )  

(2-46) 

(radiation, Case I I )  

equations 

(2-47) 

(scattering) 



17 

(2-49) 

(radiation, Case II) 

(2-50) 

These equations can be satisfied by choosing 

(2-5 1) 

L (sca tte ri ng) 
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(2-52) 

(radiation, Case I )  

L 

(2-53) 

L (radiation, Case I I )  

The infinite series i n  each case i s  essentially a power series in ($ - + ) and 

the series w i l l  converge rapidly i f  ($ - $) i s  small. It i s  for this case that 

the solution w i l l  be most useful. 

0 

0 

The phase shifts are given directly by the evaluation of the A at 6 . n e 
I f  we keep only first order terms, 

(2-54) 

(scattering) 
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(2-55) 

(radiation, Case I) 

(2-56) 

(radiation, Case 11) 



. 

CHAPTER 111 

DERIVATION OF THE BASIC DIFFERENTIAL EQUATIONS 

In this chapter the basic propagation equations are derived for problems 

with specific rectangular cylindrical and spherical symmetries. The derivation 

begins with Maxwells equations in vector form and leads i n  each case to a 

linear, second order differential equation. The derivations are carried out 

in detail 50 that the Chapter wi l l  be usefvl for general reference. The 

rectangular case i s  considered first, and the appropriate model compatible 

with the symmetry restrictions i s  shown in Figure 1. Then the cylindrical case 

i s  considered for two different symmetries, illustrated in Figures 2 and 3. 

> 
/ 

In the last section, the spherical case i s  developed and the model for 

this problem i s  shown i n  Figure 4. 

Maxwell's curl equations for pmpagation in a medium with a constant 

permeability p and a general, anisotropic, inhomogeneous permittivity can 

be written 

where E and Rare functions o f  position and time, e and u are functions of 

position, and the factor k_ has been intorduced to make the coordinates 
U 

Z r  
0 A0 

dimensionless. A l l  distances wil l be measured in terms of k =- = . 
Assuming harmonic time dependence, the curl equations become 

K* VxA ~ , L Y  3) = [iw CCW, ~ ~ $ 7  ) +G- c Y , x  ax3 )-l%X&) 

= iw e'cx,xtx3) iz Ck''E.tX3) (3-1) 
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where e'  has been defined to be complex. Hereafter the prime wi l l  be 

dropped. We wi l l  now derive the vector wave equations, starting with 

these two relations. Multiplying both sides of (3-1) by f 

we obtain 

-1 
from the left, 

- 
K , C ' V X Z  = i w E  

Taking the curl of both sides and substituting (3-2), 

K,'.EVX€-'VkK = ecazH 
- 

(3-3) 

which i s  the vector equation for fi . Taking the curl of  both sides of  (3-2), 
and substituting (3-1), 

K,tgrv%c = jJ  6 E, (3-4) 
10 

the vector equation for E. Utilizing the following vector identities 

? x q m =  ~ v x K + v ~ x ~  
V * # K  # P * A  + Q { * K  

where + i s  any scalar function and A an arbitrary vector, we can complete 

the derivation of the wave equations. Now note the two Maxwell divergence 

equations 

9 4 = 0  
(3-5) 

J .  Reitz and F. Milford, Foundations of Electromagnetic Theory, Addison- 
10 

Wesley, (1960), p 18. 
1 1  

(May 1962), pp 300-305 (Appendix). 
See for instance Richmond, IEEE Transactions on Antennas and Propagation, 
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Assume that the medium to be studied i s  electrically neutral,i.e., that 

p = 0. l 1  Then (3-5) and (3-6), combined with the above vector relations, 

can be expressed in the form 

Now expand equations (3-3) and (3-4) k r  E and to the form 

12 Introducing a new operator v* v fl by the definition 

- vxvxsi = v 9 4  -v.vg 
the curl curl operators can be eliminated 

Q P a Z - V - V K + f - v g '  % v ~ ~ u e f ~ H = o  

Q V N F  - V * O E  - e k S  =O- 
Substituting from (3-7) and (3-8) 

(3-90) 

(3-100) 

(3-9b) 

(3- lob) 

In rectangular coordinates only, we have 

z -  v*vg = v*z Y v*vz = v  E 

The vector wave equations (3-9) and (3-lo), combined with the appropriate 

boundary conditions, wi l l  completely define the solutions to a given problem 

in  which inhomogeneous media are present. In the cases treated below, 

J. Stratton, Electromagnetic Theory, McGraw-Hill, (1941), p 49. 
12 



specific solutions to the wave equations wi l l  be derived in rectangular, 

cylindrical and spherical coordinate systems. In later applications, con- 

ducting boundaries with rectangular, cylindrical and spherical symmetries 

respectively wi l l  be considered. In each symmetry case, e wil l  be chosen 

to be isotropic, and the inhomogeneity represented by the variation in f and 

the sources wi l l  be chosen so that eitherE or wi l l  have only one nonzero 

component. In the problems in which only one E component exists, the 
fields w i l l  be described as E-polarized in the direction of the component. In  

problems in  which only one 

as fi-polarized i n  the direction of  the component. The solutions can be 

characterized as follows: 

component exists, the fields wi l l  be described 

A H-polarized i n  the E direction 

Consistent with an infinite, constant-phase magnetic line 

source along an arbitrary coordinate direction 5 , E i s  

pure transverse (E 6 = 0). For a l l  the symmetries con- 

sidered below, H 6 wil l  be the only nonzero component 

of Fi. 

E. 

A 
E-polarized i n  the E direction 

Consistent with an infinite, constant-phase electric line 

source along an arbitrary coordinate direction 6 , i s  

pure transverse (H 6 = 0). For a l l  the symmetries considered 

below, E 6 wi l l  be the only nonzero component o f  

A 

A. Rectangular Coordinates 

The first case to be considered i s  the solution of (3-9) and 

(3-10) in a rectangular coordinate system, these solutions later to be applied 

to problems with a planar conducting boundary. (Figure 1). 
4 A. 1 H-polarized in the z direction 

4 
For this solution, choose the arbitrary direction 6 to be along 

the z axis A b  
$ 5 2  



24 

v) 

0 c c 

4- 
V 
3 
-0 
S s 
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so that E has no z component 

and 'Fi has only a z component. 
A - 

fl' 2 flzCX,y), 

From symmetry considerations, these conditions can be satisfied i f  

e= e(%>, 
and since the solutions represent a two-dimensional model and are independent 

of  z, 

- 'b (any function ) = 0 . 
a s  

We wi l l  now solve equation (3-9) 

subject to these assumptions. 

13 
From the general form of  the curl 

(3-1 1) 

where A i s  any vector with components (A A A ), (q q q ) are the 

three coordinates chosen with unit vectors (a a a ), and (h h h ) are 
1 2 3  1 2 3  
A A  h 

1 2 3  1 2 3  

J. Stratton, op. cit., Chapter 1. 13 
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the metrical coefficients. For the problem now under consideration, take 
& & A  

(ylq=$> '= ("it) (%QJlx 1 = ( 2  4 $1 

The curl of H becomes 

and since e i, a function of x only, 

13 The general form for the cross product i s  

KXA = 

I 

(3- 12) 

(3- 13) 

(3- 14) 

(3- 15) 

' & A  where A and 

appropriate coordinate system. Let A= @i"?) 8= P X  E , so that 

are arbitrary vectors and (Cl a2 a ) the unit vectors in the 

and the differential equation for H i s  
Z 

(3- 17) 
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The only other nonzero fields, E and E 

From (3-1), 

can be directly derived from H 
X Y' 2. 

- 
k,PKiT = t w t f  

we find that 

(3- 18) 

so that a l l  the fields can be found once (3-17) i s  solved and HZ i s  detennined. 

If e = e e equation (3-17) reduces to the well-known form 14 
o a  

(3- 18a) 

2 
(where the factor k has been absorbed into the variables x and y). This 

equation can easily be solved by separation of  variables, and through the 

choices of symmetry made in  the previous derivation, (3-17) i s  also solvable 

by the separation of variables method. Let 

0 

Hz(hq) = UK-I M(9) (3- 19) 

where L and M are arbitrary functions of  one coordinate each. Substituting 

into (3-17), 

(3-20) 

and 

since the whole y dependence has been separated out. The only unknown 

function i s  L (x): 
U 

(3-22) 

R. Harrington, Time-Hamonic Electromagnetic Fields, McGraw-Hill, 
14 

(1961), p 143. 
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where we have defined e S, e e (x) . The partial differential equation 

(3-17) has now been separated into two independent ordinary differential 

equations. One of  these equations i s  immediately solvable, but the one for 

L can be solved directly only for a few, special choices of e (x). 

o r  

U 

The general solution for H i s  obtained by forming a linear combination 
2 

of the solutions obtained by letting u take on a l l  possible values. This 

procedure i s  exactly analogous to the solution of  partial differential 

equations by Fourier transform techniques. 

In the completely unrestricted case, u can take on a continuous, infinite 

range of values, and H can be written 
2 

I1 where LI and L 
I a 

from boundary conditions. 

are any two linearly independent solutions of  (3-22) and 
U U 

and a" are arbitrary functions of  the transform variables to be determined 
U U 

In  the subsequent development, however, the following restrictions of 

periodicity i s  made on H - 
Z' 

CI, (%,y) = t . cz (x ,  y + *  >,, (3-24) 

l e  
1 3  

and since any such periodic function can be represented in the form 

we must restrict u to the discrete values 

(3-25) 

(3-26) 

j5 W. Kaplan, Operational Methods for Linear Systems, Addison-Wesley, 
(1962), p 186, 236. 
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50 that (3-23) becomes 

A 
A.2 E-polarized in the z Direction 

Now that the method of solution has been derived for rectangular 
A 

coordinates with fields H-polarized in the z direction, we now apply similar 

techniques to fields E-polarized in the z direction. Again we choose our 

vector 5 i n  the z direction, 

A 

A A 

& A  3 = z .  
We specify that only an EZ field exists 

E = s €&,3) 
and only H and H fields exist. 

X Y - 
ti = x" H)JX,Lj) +y" H9Oh91. 

These symmetries are obtained by taking 

€ =  e(%) 
and result i n  the two-dimensional nature 

3 - (any function) = 0. a z  
These restrictions wi l l  now be applied to (3-10): 

Since e i s  a function of x only, 

dc P 6 = X  - 
dX 

and the differential 

- 
Qt+C 0 

1 

equation for EZ i s  

(3-28) 

(3-29) 
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To obtain the other nonzero fields from E Zf note that from (3-2) - 
K p x E  = -;up u 

we obtain 

giving a l l  fields in terms of E as desired. I f  r f e a' (3-29) reduces 

to the usual form noted before. 16 

(3-3 1) 

However, (3-29) wi l l  also separate immediately without this assumption. 

We choose a, to be two arbitrary functions of one coordinate each 

and by direct substitution into (3-22), 

0 

(3-32) 

(3-33) 

so that the only integration not directly performable i s  the one for a (x). 

The most general form for E i s  obtained by summing over u = n X / Z O T  

(3-34) 

I 
a' and a" are the linearly independent solutions to (3-24) and b n and n n 

" R. Harrington, op. cit., p 143. 
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bl' are arbitrary functions of the transform variables, to be determined by 

the boundary conditions. 
n 

B. Cylindrical Coordinates 

We now choose a new set of coordinates in which to solve (3-9) and 

(3-10). The choice of cylindrical coordinates i s  made for application to 

problems with the appropriate symmetry. (Figures 2 and 3). 

A B. 1. H-oolarized in the z Direction 

For the f i r s t  solution, consider equation ('34%) 

4 
This time, we again choose our 6 vector to l ie along the z axis 

9 4  6=Z 

and allow only the fields 

and the single fl field 

to exist. Such a symmetry i s  obtained by letting 

e= ele) 
and requires that 

- d (any function) = 0. 
'3r 

From the definition of the curl (3-1 1) with the new identifications 
h CqtqLq3) (e, (cl'lZL43) = ce" 2 )  

h, =.F, ha=? 



. 
32 

N 
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the curl of fi for the present case i s  

QxK= I 

4 
t 

and since i s  a function of p only, 

As done before, we apply (3-15) to obtain the cross product 

0 

ap 
From Stratton, 17 we have 

h e 

& z 

0 

O /  

(3-35) 

(3-36) 

(3-37) 

(3-38) 

J. Stratton, op. cit., p 50. 17 
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so that, substituting into (3-9b), the differential equation for HZ becomes 

To obtain the other nonzero fields, we see from (3-1) 
c - 

k,VxH sw€& 
that 

E*= - K O  -- ~ U Z .  q=-- ko '3uz - (3-41) 
iuf c3p ;wep a0 

All fields are known when H i s  known. I f  for comparison with standard 

texts we again take H to be time harmonic with no z dependence and 

a = e e (3-40) reduces to 

Z 

Z 

o a' 

(3-42) 

i n  agreement with the literature.18 But as before, equation (3-40) can 

be solved as it stands by separating variables without the necessity for 

further restrictions. Let 

as explained earlier. Substituting into (3-a), 

(3-43) 

R. Harrington, op. cit., p 198. 18 



where now m must be taken as an integer so h a t  the solution HZ ( p, e) 
wi l l  be ~ingle-valued. ’~ The equation br Am ( p) becomes 

This is the only one o f  the two ordinary differential equations not directly 

solvable. The general form of H can be written, as discussed earlier, 
2 

where A ’ and A I ’  are the linearly independent solutions of  (3-45) and 

a 

rn m 

and a Ii the arbitrary constants to be detemined by boundary conditions. 
m rn 

I\ 
8.2. E-polarized in the z Direction 

For the E-symmetric case in cylindrical coordinates, we take 
A 

+ = r  
again, and now seek a solution to (3-100) 

with the assumptions that the only nonzero electric field i s  EZ, 

(3- 1 &I) 

l 9  R. Harrington, op. cit., p 200. 
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and the only nonzero magnetic fields are H and He : 
P 

These restrictions can be satisfied by the choice of symmetry 

E =  et@) 

and the requirement 

-3(any function) = 0. az 
Again from Stratton, 

P e 
h 

€3 
A 
I 
4 

P 
0 

and substituting into (3-1Oa) directly, the differential equation f o r  E is 
Z 

From equation (3-2) - 
k,vrIF = -?wpH 

we find 

(3-49) 
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giving the rest of the fields. If 6 = 6 e (3-48) also reduces t o  the 

well-known homogeneous form. 
0 a' 20 

To solve (3-48) directly by separating 

variables, let 

E= (8 e) = Y@rJ (e) (3-50) 

where M and N a r e  the  arbitrary functions of, one coordinate each.  Then 

we obtain 

and 

(3-52) 

Only  (3-52) cannot b e  directly solved. As before, E can  be generally 

written in the form 
Z 

(3-53) 

where M' and MJl are the linearly independent solutions of (3-52) and 

bl and b I '  m m 

m 

a r e  the arbitrary constants. 

h 
B.3 H-mlarized in the 0 Direction 

A h  
Now choose e = 8. and consider solutions of (3-5b) - 

and t h e 3  field 

See Equation (3-42) 20 
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N 

L 
al 
-0 
C 
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We must take 

G = e(e) 
and require that 

-(any 3 function) = 0. 
a 0  

Evaluating the curl curl, we get: 

UxOltH= a 
P 

"4 I 

The curl of i s  

i) 
3 Z  
c 

a 
0 - 

af 

and 

(3-54) 

(3-55) 



so that 

and the equation for H i s  0 

If  c = we obtain the homogeneous form r a' 

From equation (3-2) 

K,PxH = W#E 
the other fields are given in the form 

We assume that 

fie = h(r)B(.e) 
and derive the equations 

(3-56) 

(3-57) 

(3-58) 

(3-59) 

(3-60) 

(3-6 1 ) 

(3-62) 
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. 
We wi l l  assume that H i s  periodic in the z direction with period T 0 

He I=> = cz+ *) (3-63) 

50 that p can only take on the values 

EJ = v\'o/T a 

The total solution then becomes 

I 
where a and a I'  are arbitrary constants. 

8.4 E-polarized i n  the 9 Direction 

n n 

A 

4 "  
Choose 5 = 8 

and consider solutions of (3-loa) 

QxOKF-  v6g = 0 

with the T field - 
€ = k & Z )  

g- = ; c r , c p , t )  +P H-LQ,-L) 

and the fi field 

We must takr 

E = H e )  
and require that 

2 (any function) = o . ae 
Evaluating the curl curl, we get 

I 2  OXO )tc = 
8 

0 

(3-65) 



42 

and the equation for E becomes e 

For the homogeneous case 

The other fields are found from (3-2) : 

= a this takes the sam form as (3-58). 
r a  

- - 
kuPv6 = - h p H  

Hp= - KO 3Fe - - -16 a€@ (3-68) 
++z- - - w p  3 4  

i w p p  ’ 3 1  
To separate variables, we choose 

and obtain the equations 

(3-69) 

(3-71) 

where D has been assumed periodic in the z direction with period T as done 

in the last section: 

y = h Y t .  



. 
43 

The general solution for E is e 
. 

i where a and a I '  a r e  arbitrary constants. n n 

C. Spherical Coordinates (Figure 4) . 
C. 1 H-polarized in 0 Direction 

A 

A 4 
5 in the C+ direction, We must now take 

We now wi I I consider the solutions of (34%) 

v .vK - GVF'XVKel + f/e, ii = 0 

with the restrictions that the only fi field is 

and the only field components that  exist a r e  

To satisfy these requirements, we may take 

6;: &) 

and require that 

(any function) = 0. 

Again, a two-dimensional separable problem has been obtained. From the 
3$ 

definition of the curl (3-1 1)  with the identification 

(3-73) 
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Figure 4. Conducting Sphere with Circumferential Antenna 
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the curl of i s  

0 0 f6ka+$$ 

Since 6 i s  a function of r only, 

dt- 

and taking the cross product, 

h 
r 

egg' xvxii = 

I d 4  
f d r  

-r 

From the general. equation for VXVXii, 

(3-74) 

0 

0 (3-76) 

- 
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and the equation for  H becomes + 

or i n  another form, 

(3-78) 

If = this becomes r a 8  

the homogeneous case. Using (3-1) as done before, 

K,QxB = iw e g  
the other fields are given by 

once H has been determined. 

of variables, letting 

(3-80) 

+ld 
Equation (3-79) can be solved by separation 

LI 
and we obtain two ordinary differential equations: 

We must have I an integer 50 that F w i l l  be finite at 0 = 0 and 0 = A .  
21 
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(3-81) 

1 
where P I 
solution for H i s  then 

(cos e) i s  an associated Legendre polynomial. The general 

q) 

(3-83) 

I 
I I where a and a'' are the arbitrary constants to be determined by boundary 

conditions. 
A 

C.2 E-polarized i n  the @ Direction 

In analogy to the H-polarized case, we seek solutions to the 

differentia I equation 

Q X V Y r  + v h E ' O  

A A 
with the vector taken to l ie  in the $I direction: 

0 
The only electric field i s  E 

and the only fields are 
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Then must have the functional form 

6 =-&v) 

and the condition 

3 (any function) = 0 

aP 
must be satisfied. From these assumptions, 

and the equation to be solved becomes 

In the homogeneous case e = e this also reduces to the form (3-79). 

From the definition of the curl and (3-2), 
r a’ 

- 
vxg = -iw)JH 

we obtain 

giving al l  the nonzero fields. To solve (3-85) by separation of variables, 

let e = L&\M (e) 
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22 
and two ordinary differential equations are obtained: 

The 8 dependence i s  again obtained in Legendre polynomials, and in 

terms of the solutions L 1  and Llll to (3-87), E i s  given i n  general as 
I + 

I As before, (3-87) and (3-88) represent the complete solution, with bl and 
I1 b I 

conditions. 

arbitrary constants that must be chosen to satisfy the given boundary 

D. Summaw of Derived Equations 

For each of the problems discussed in Sections 3A - X, a differential 

equation in the form of equation (2-1) has been derived. In each case, the 

solution to the appropriate wave propagation problem can be obtained only 

by obtaining the solution to this differential equation. A method for obtaining 

such a solution has been outlined'in Chapter 11, so that the only aspect of  each 

problem s t i l l  undefined i s  the choice of boundary symmetries compatible with 

the assumptions already made. The differential equations that have been 

derived are summarized below. 

See Equation (3-81) b r  reference. 
22 
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D. 1 Rectanzlu lar Coordinates 

h 
H-polarized in the z direction 

4 
E-polarized in the z direction 

D.2 Cylindrical Coordinates 

E 
H-polarized in the L direction 

A 
E-polarized in the z direction 

h 
H-polarized in the 8 direction 

h 
E-polarized in the 8 direction 

D.3 Spherical Coordinates 

A 
H-polarized in the @ direction 
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A 

E-polarized in  the @ direction 



CHAPTER IV 

SOLVABLE PROBLEMS 

A. Plane 

A.l H-polarized i n  the $ Direction 

The differential equation to be solved i s  (3-22) 

subject to the requirements that 

(any function) = 0 
a 

’ *  aZ 
2. a l l  fields are periodic in y with period T 

3. the only field component i s  H 

4. the only i? field components are E and E 
Z 

X Y 
5. e = e (x) . 

(4-1) 

These conditions can be satisfied by placing the conducting boundary at 

the plane x = 0 with H-field strip antennas (magnetic strip sources) in the 

z direction, a distance T apart so that 

\ r o scattering 

where the fb are determined by the choice of antenna. From (3-18) 
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and from the orthogonality relations derived in Appendix 1, 

so that the boundary conditions (4-1) apply to fhe derivative of L . We 

can let L = F 

hold when obtaining a solution. From (2-lo), (2-1 l), (2-26), and (2-37), 
we must demand that 

n 
[See equation (2-1)1 and Case I 1  [equation (2-5)I wil l  n n 

By comparing (2-1) and (3-22), we have 

X,Ch,X, 3 = 0 
d 

and from (2-9) and (3-18), k = k i f  

cV (xe) = €a 

e e  

Combining a l l  of  these conditions, a (x) must satisfy a l l  the following 

re lotions: 
r 
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From (4-4) 

and from equation (3-18a), with e,= Ea) 

we have 

Equations (2-41) - (2-43) now give the solution immediately. 

A.2 E-polarized in  the 1 direction 

The differential equation to be treated i s  (3-29), 
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. 

subject to the requirements (4-1) with the roles of E and H reversed. These 

conditions can be satisfied by placing the conducting boundary at the plane 

x = o with E-field strip antennas (electric strip sources) in the z direction 

a distance T apart 50 that 

0 scattering ( 
E,(x=o) = 

n 

(4-8) 

where the 

conditions (4-8) are applied to the variable in equation (3-29), we can let 

F = a and Case I [equation (2-4) 1 wi l l  apply. The conditions (4-3) 

must again be satisfied, and by comparing (2-1) and (3-29) we have 

are determined by the choice of antenna. Since the boundary 
I 

n n' 

From (2-9) and (3-30), we wil l have 

ke = ke 

automatically, 50 that none of the conditions (4-3) wi l l  restrict 6 at r 
any point. From (4-9), 

(4- 10) 
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and for e r  = e 7 I i s  given by (4-7). a ’  n 

B. Cylinder 

A 
8.1 H-polarized i n  the z Direction 

The differential equation to be solved now i s  (3-45), 

subject to the requirements that 

(any function) = 0 a ’- Z T  
2. the only H-field component i s  H 

3. the only E-field components are E and Ee . z 

P 

(4-1 1) 

These conditions can be satisfied by placing a conducting cylinder of 

radius p. i n  the z direction with an H-field strip antenna (magnetic 

strip source) in the z direction so that 
I 

= 0 scattering 

sm0 
radiation 

where the S are determined by the antenna. From (341) 
m 

and from the orthogonality relations in Appendix 1, 

(4-12) 
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so that the boundary conditions (4-12) apply to the derivative of A . 
m 

We can let F = Am [ from equation (2-1)land Case II w i l l  hold. 

Conditions (4-3) must also hold, and by comparing (2-1) and ( 3 4 9 ,  

we have 

m 

x ,  h,r, cl- ' - P  
J-JU x,  Lh,f t  &(f) 1 = f 

fdf 

and so that k = k 
e e '  

€,(pel c- €a 

Combining these conditions, we must have 

E,(*)= & 

From (4-13), 

(4- 14) 

(4- 15) 
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and from equation (3-42) with e = e 
r a '  

we have 

(4- 16) 

where J and Y are Bessel functions. Equations (2-41) - (2-43) now m m 
give the solution. 

A 
8.2 E-polarized i n  the z Direction 

The equation to be solved i s  (3-52) 

subject to the requirements (4-11) with E and H interchanged. The 

conditions can be satisfied by placing a conducting cylinder of radius p. 
i n  the z direction with an E-field strip antenna (electric strip source) 

i n  the z direction, so that 

I 

= 0 scattering 

(4- 17) 

radiation 

E,@=qi) = 

where the t are determined by the antenna. Since (4-17) applies 

directly to the field variable in (3-52) we can take F = M 
m m 

Case 1 .  Conditions (4-3) must hold, and by comparing (2-1) and (3-52), 

m 
and apply 

1 En J )  Q C,-(eKI= X ,  L,P,&I= ' I f  
x 2 h  Q, 8 ~ 1 4 ,  f'j c2]s 6 mypa (4-18) 
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and the condition k = i s  automatically satisfied from (3-49). e e 

r 
We see that e (p) i s  not restricted by any of these conditions. 

From (4- 18)‘ 

and when = e the solution to (3-52) i s  given by (4-16). 
r a‘ 

A 
8.3 H-polarized i n  the 8 Direction 

The differential equation that has to be solved i s  (3-62) 

subject to 

(any function) = 0 a ’- ae 
e 2. the only H field component i s  H 

3. the only E field components are E and E 
Z P 

(4- 19) 

(4-20) 

4. H must be periodic i n  the z direction with period T. 

These conditions can be satisfied by placing a conducting cylinder of radius 

p. i n  the z direction, with H-field strip antennas in the 8 direction a 

distance T apart in the z direction. The boundary conditions wi l l  be 

e 

1 

0 scattering 

i w  0 
radiation 

m 

(4-2 1) 
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where g 
orthogonality relations in Appendix 1, 

determines the choice of antenna. From (3-59) and the m 

so that we can let F = B and apply Case I I ,  equation (2-5). 

Conditions (4-3) must hold, and by comparing (2-1) and (3-62), 
I J P  

X,Cfi,P,4@3= '/p - '/&p x, cn, Q, 3 = '9 
xz b, p, 3 = cr - Vra - r 

(4-22) 

and to make k = E , we must take 
e e 

Gr cf%> = €a 
from (3-59). Combining the restrictions, we obtain 

(4-23) 

From (4-22), 

(4-24) 
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and from equation (3-58), we have 

. where J andY are BesseI functions. 1 1 

B.4 E-mlarized in the 8 direction 
4 

The differential equation i s  (3-71) 

subject to conditions (4-20) with E and H interchanged. The conditions 

can be satisfied by placing a conducting cylinder of radius p. in the 

z direction with E-field strip antennas in  the 8 direction a distance T 

apart in  the z direction. The boundary conditions wi l l  be 

I 

0 scattering 
(4-26) 

radiation 
m 

where y characterizes the antenna. We can let C = F [see equation 
m I J P  

(2-1)l since the boundary conditions apply directly to the variable. 

Comparing (2-1) and (3-71), 

(4-27) 

and k =x automatically from (3-68). There are no restrictions on 
e e 

Er ( P I .  



, 
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From (4-26), 

and ' i s  given by (4-25). 
n 

C. Sphere 
A 

C.l H-polarized i n  the d~ direction 

The appropriate differential equation i s  (3-82) 

subject to requirements that 

(any function) = 0 a ' -  zj 
@ 

r 

2. the only 

3. the only E field components are E and E 

4. e = e(r) . 

field component i s  H 

0 

(4-29) 

These conditions can be satisfied by placing a conducting sphere 

of radius r. about the origin, with a circumferential H-field strip antenna 

in  the 9 direction on the surface. Therefore, we wil l  have 
I 

( o scattering 
(4-290) 
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where the g I 
orthogona I ity relations, 

specify the antenna. From (3-80) and the Appendix '1 

so that  the  variable F in equation (2-1) must be chosen equal to the  

product r G I .  Under this transformation, (3-82) becomes 

(4-30) 

where Case I 1  now applies [equation (2-5) 1 . Conditions (4-3) must hold, 

and by comparing (2-1) and (4-30) we see tha t  

and from (3-80) we must have 

(4-3 1) 

so that ke = Ee . In summary, the relations that  must be  satisfied a r e  
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From (4-30) 

(4-33) 

and from equations (3-79) and (4-a), we have for 6 = 
r a8 

with the solution 

where J and Y are Bessel functions. 

fi  
C.2 E-polarized in  the $ Direction 

The differential equation to be solved i s  (3-87) 

subject to conditions (4-29) with E and H interchanged. The conditions can 

be satisfied by placing a conducting sphere of radius r. about the origin, with 

a circumferential €-field strip antenna i n  the $ direction on the surface. The 
1 



boundary condition w i l l  be 

r 0 scattering 

(4-35) 

where h determines the antenna. Since the boundary condition (4-35) 

applies to L directly, we may choose F - L , and Case I applies. 

Conditions (4-3) again must be satisfied, and by comparing (4-35) and 

(2-1) we find that 

I 

I I -  I 

(4-36) 

and k = 5; 

identically, and do not restrict the choice of 6 . r 

automatically, from (3-86). Equations (4-3) are satisfied 
e e  

From (4-87) 

and from (3-29), 5 ' i s  also given by (4-34). 



CHAPTER V 

PARTIALLY SOLVABLE PROBLEMS , 

The wedge and cone are considered in this chapter, and it i s  shown 

that complete solutions cannot be obtained using the boundary value 

techniques of this paper. The wedge configuration i s  shown in Figure 5 and 

the cone i n  Figure 6. 

A. Wedge 

In  a l l  the prior problems in  cylindrical coordinates, e has been a 
r 

function of p and the boundary conditions have been specified by choosing 

the value o f  one of the fields at a constant radius. We have shown in 

Appendix 1 that for e @) the 8 dependent functions are orthogonal for r 
different values of the spearation constant m. We wi l l  now consider the 

difficulties encountered when either of these conditions are changed. 

Consider f i r s t  the H-field polarized in the z direction. I f  er i s  allowed 

to be a function of  both p and 8, (3-37) must be modified to the form 

h 

€ v Z ' X O X G  = 

1 3 H r  -3> 0 
P a e  Y 

The expression for the VXVX 
partial differential equation for H i s  

Z 

i s  unchanged, 50 from (3-39) the 
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or  if € =  62s go 4r (e) . € E l  
Pa This equation is separable if  

For e = e and letting HZ = A (p) B (e), we obtain 

E =  €, = Go 

1' 

A red, 7 0 

rea l  

where K and are  not quantized. The form of the separation constant has 

been determined by requiring A to be finite at p = 00 . A similar require- 

ment cannot be made at the origin since € ( p = 0 ) = 00. If  a n  attempt is 

made to set X = 0, a n  inconsistent result i s  obtained. The functions A ( p) 

a r e  not orthogonal for different choices of (ik - A), and the functions B (e) 
will not be orthogonal either for different separation constants if e (e) is 

allowed to exist. 

If we let 6 = e and separate a s  before, we obtain 

r 

2 

(5-6) 

The separation constant in this case has been quantized by the requirement 

S / 0 ) =  Bbtzn).  For the wedge, we wish to specify E at + eo, and for P -  
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I I  where A 

p = 0 i s  included in  the region of interest. A new difficulty i s  now encoun- 

tered, however. When F (p) and G(p) have been specified, the coefficients 

(p) representing the irregular solution has been dropped since 
m 

I -r% 00 
and 9, @ cannot be determined. In order to Qvme 

evaluate the constants, the functions A I @) and A I (p) must be orthogonal 
m rn, 

over some range of integration of p: 

[where some known weighting function W (p) might be included], so that 

we may write 

(5-9) 

However, the functions A I (p) are unknowns, and the integrals (5-9) 

1' 
cannot be evaluated even i f  (5-8) can be shown to exist. For 6 = 6 

the functions A ( p) are not orthogonal, and the same difficulty i s  met i n  

applying the boundary conditions. 

m 

A 
Consider now the E-field polarized in the z direction. The partial 

differential equation for E i s  
Z 

(5-10) 
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This equation can be separated if =G,=  ‘LE’’ or if G = ~ ~ = t , ~ ~ ) :  r 

Equation (5-12) leads to exactly the same difficulties encountered in 

equations (5-7) to (5-9). Equation (5-1 1) , however, is similar to (5-3) 

and (5-4). Separating variables, 

Qz= A(e) $(e) 
we obtain 

(5-13) 

with the resulting equations 

When a n  attempt is made t o  solve the problem of a cylinder clad in a 

medium CL = go 6r 

boundary conditions can  again not b e  applied since the  8 dependent 

solutions a r e  unknown functions and a r e  nonorthogonal for different 

separation constants. 

with a strip antenna in the z direction, the  e 

The problem of strip antennas in the p direction on  the surface of 

a wedge is not solvable since ne i ther7  nor E will have only one  nonzero 

component. The same difficulty is encountered with a cylinder clad in a 

medium with a 8 dependence and strip antennas in the 6 direction. 

B. Cone 
I\ - 

Consider first the H-polarized in the 4 direction, where e is r 
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allowed to be a function o f  r and 0 .  Equation (3-75) becomes 

AI -  

The curl curl remains unchanged, so that the new equation for H~#J is 

This will separate i f  + 61 = E, & Y ce) or i f  f&= 4= &,,&w) . The 
rz- 

choice e - leads to difficulties encountered in equations (5-7) to 

(5-9). If e = e we obtain 
- €2 

1' 
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where the form of (ik - A) is  chosen so that A is f inite at p = 00 . This 

problem is again unsolvable in all cases since neither the functions A ( p) 

or  B ( 0 )  a re  orthogonal with their Same member for different separation 

2 constants. For the fields E-polarized in the $direction, the e = e 

case is unsolvable for the Same reasons already given. For 6 = we 

obtain 
1' 

(5-18) 

aga in  leading to nonorthogonal functions. 

The sphere clad in a medium EL= & 'a with a strip antenna in  
f L  

the $J direction is not solvable since the 0 dependent functions a r e  unknown 

and  nonorthogonal. 
I\ 

The problem of a strip antenna in  the r direction on the surface of 

will both have more than one  nonzero a cone is not solvable since E and 

component. This difficulty is  encountered also if er is allowed to be a 

function of $J . 
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CHAPTER VI 

DETAILED ANALYSIS OF THE PLANAR CASE 

A 
A. E-Polarized i n  the I Direction 

1. The Iterative Solution 

Consider now the case of an electric strip source on a 

conducting plane (fields E-polarized i n  the 2 direction) with a variation 

in e represented by the equation 
23 

r 

Above the antenna we may take p = 0. This relation has the properties 

that 

=I d x  o = O  

We wi l l  choose X small enough so that only first order terms need be 

considered. From Equation (2-551, we find that 

Refer to Figures 7-10. Figure 8 represents the e variation close to the 
23 
missile nose, Figure 9 the variation at the nose-body junction and Figure 10 
the variation above the antenna. 
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Figure 7. Shape of SCOUT Missile 
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and from (4-7) and (4-IO), 

where 

I G % = f z q -  gx , 
05-41 

, since the fields 

%L ) 

We a r e  only interested in  real values of 4; (h& 5 * 
outside the sheath 

Jr i f i 3 O l * y  ib&c 
Ez,, = D,e e 

0 will be exponentially attenuated b r  all imaginary K . From the  
th nx 

orthogonality of the functions e ih’0l-t~ a d  eim’o/,y , ea& n 

term must individually satisfy appropriate boundary conditions, and only 

those terms for which VI%* 5 inside the sheath will contribute to 

the  radiation fields outside the sheath. The term n = 0 represents a wave 

propagating without any  y dependence; i .e. , a plane wave moving in  

the x direction. From symmetry considerations, this term must be the 

same for both fields E-polarized in  the z direction and  fields E-polarized 

in the z direction. The term n A$= 1 is a wave propagating along 

the surface of the sheath in  the y direction and is a surface wave. The 

terms for which O f h b  5 1 a r e  a mixture of the above situations. 

A 

A 20 

‘c- 

n’ I f  we define the antenna by the coefficients y 
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then by the straightforward application of boundary value techniques, we 

find that 

We wi l l  choose €2 = L so that we have 

and 

In order to better understand and analyze (6-9), the following computa- 

tions wi l l  be made for n?!~ 4 C 1 : 
3 

(i) Find A (x ) to first order i n  A for a sheath of  width x = t 
t-tl e e 

with a constant value of  e = 1 + A . This result should show why the step- 

function approach i s  not an adequate way to treat inhomogeneous media. 
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This problem can be worked by rigorous boundary value techniques, by the 

WKB method and by the iterntive solution derived i n  this paper. A l l  these 

results should agree and a check on prior computations may be obtained. 

(ii) Find A,, (x,) to f int  order in using the WKB technique. This 
1 

result should agree with Equation (6-9) for large values of t (which w i l l  

make f slowly varying over a wavelength). This  problem w i l l  again provide 

a way of checking the equations derived in this paper. 

2. The Step Function Solution 

a. Rinorous method 

given by 

I f w e l e t e  = 1 + X ,  

~ _ _ _ _  

From Equations (6-3), (6-5), and (6-6), the field at x i s  
e 

(6- 10) 

and we obtain 

+ 
e 

(6-1 1) 

(6- 12) 

(6- 1 3) 
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b. WKB method 

The WKB method gives for the electric field: 

A t x  = X  
e l  

(6- 15) 

I f  we take f (x) z 1, Equation (6-16) i s  identical with (6-lo), a useful 

check. But without making this restriction, i f  we let A be small and 

take only first order terms, we obtain 
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(6- 17) 

for f (x) 5 1, this solution i s  identical with the one obtained before, 

Equation (6-13). 

c. Iterative method 

From Equation (2-55) 

and Equations (6-3), we obtain by direct integration 

a result identical with those obtained by the other methods. 

3. The WKB Solution 

This solution i s  easily obtained from Equation (6-17) with 

%I= e -2'c'+(l+ Wt): 

4. Comparison of the Different Methods 

We have now derived the following equations: 

(6- 19) 
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. 

We first note that 

(6-20) 

as i t  must, since this i s  the region of validity for the WKB Method. It i s  

also interesting to see that the step-function approximation has introduced 

a non-existent oscillating term into the answer, due to the properties of  

the step-function region acting as a resonant cavity. However, for small 

t, the step term i s  a much better approximation than in  the WKB solution. 

All three solutions are graphed in Figure 11 for n = 0 and the iterative 

solution i s  graphed for several n for the case T = .lO X in Figures (11-15). 
0 

A 
B. fl-polarized i n  the z Direction 

Now consider the case of a magnetic line source on a conducting 

plane (fields H-polarized i n  the z direction) with the same e variation 

as before. 

From equation (2-56), we have 

(6-2 1) 
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and from (4-6) and (4-7) 

(6-22) 

We define the antenna coefficients y as in (6-4) and find from direct 

integration that 
n 

From (2-46), we see that to first order in A ,  

so that the total correction term i s  

I 

(6-24) 

(6-25) 

e 

From symmetry considerations, we must require that Equation (6-25) i s  

equal to Equation (6-9) when n = 0, k 

exist, an important check on the whole situation. 

0 
= 1 This equality does i n  fact 

nx 

th 
We now wish to show graphically how each n term contributes to 

the total field intensity at a given observation point and how the change in  

the field intensity a t  this point varies with the plasma thickness and the 

choice of antenna. In order to do this, we first note that the solution in  



c 

06 

Region l l  (outside the plasma) i s  always of the form 

A o r \  h A 
x +  n- y a n d T = x  x + y  y. When the plasma 

h 
whereE = ko .. n nx T 

thickness i s  reduced to zero, the components are denoted as T " . The Fourier 

components for which k o  

x direction and wi l l  not contribute to the radiation field. Therefore, i f  we 

restrict ourselves to consideration of the field intensity at large distances from 

the plane, we may write 

n 
i s  imaginary wi l l  be exponentially damped in the 

nx 

h 

( radiation field) 

th I I  term in  this sum represents a plane wave of amplitude a Each n 

in  the 'I; direction. We can therefore describe each component F,, by a vector 

of length a " i n  the direction of En. There wi l l  be a finite number of terms 

contributing to the radiation field and a l l  these terms wi l l  be directed into the 

upper-half plane above the plasma. The length of each vector wi l l  represent 

the maximum value this component wi l l  ever have. In order to find the actual 

radiation field intensity from the graphical plot described above the magnitude 

of each component must be multiplied by a complex phase factor, and the 

resultant scalars added together. These complex phases are of  course dependent 

on the particular point of  obsewation chosen. 

I I  

traveling 
n 

n 

n 

The angular pattern may be presented i n  another form i f  we apply the 

symmetry relation F (y) = F (-y) and note a 

may then be written i n  the form 

= a I '  . The field intensity 
n -n 
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II In order for the vector representing F n 
coordinates, we must take y = 0 once the sum has been reduced to positive 

n only. This restriction greatly reduces the impcrtance of this particular form 

of F. We will return now to the prior, more geneml form and utilize it in all 

further discussion. 

to have a length independent of the 

- I I  For convenience F is chosen t o  be a normalization factor and we define 
0 

II absolutevalue of F 

absolute value of I' 

n r =  n 
0 

-1 x component of iT 8 = t a n  n y component o f E  . 

(6-26) 

(6-27) 

Each point on the  angular pattern is defined by its radius vector r and angle  

with respect to the conducting plane 8 . Each Fourier component (or partial 

wave) F 

n 

n I 1  
n will give rise to a single vector on this graph. 

In order to illustrate the results of the  example worked out in this 

chapter, we choose T = 10 A . Therefore, n will run from -10 to +10 

and 21 such vectors will exist. Equation (6-25) has been graphed for n = 0, 

+2, + 5, + 7, + 10 in Figures (1 1 - 15), and the angular pattern in Figures 16 

and 17 were plotted using these results, where from the general definition 

0 

- -  - - 
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(6-28) 

(6-29) 

The end-points of the vectors have been indicated by points and  then these 

points have been joined together by a smooth curve. 

For both E and H sources the t = 0 curve is a semicircle about the  antenna, 

so that  for this case the radius vector may b e  defined to be unity for all 8 and 

the other patterns will then be shown with relative magnitudes. The electr ic  

line source is considered in Figure 16, and it will be noted that the partial waves 

with large y components contribute less and less to the total field intensity as  

the plasma thickness increases. O n  t h e  other hand, when the magnetic line 

source pattern in Figure 17 is examined, i t  may be noted that the partial waves 

with large y components contribute more and more strongly to the total field 

intensity as the  plasma thickness increases. 

n 



89 

0 

(Y 

. 

0 

0 
(Y 

0 

X 
u) 

$ 
C 
Y 
V 
-t 
I- 

.- 

: 
0 - 
n 

3 

rr) 

0 
Y 
X 

a 
S 
Y 
V 
I: 
I- 

3 

.- 

ul F 
0 
L 

3 

0 0 ,  

.-? 
.o 0” 
2 5  
5-0 

c +  

v a  
4- 

S 
N O  



90 

cv 
4 

0 
Y 
X 

Q) 
C 
Y 
0 

L 
k- 
0 

U 
a 

VI VI 

.- 

5 - 

0 

cv 
v 

0 
Y 
X 

Q) 
C 
Y u 
11 
I- 
O 

0 
a 

v) VI 

.- 

E 
VI 

0 



0 

0 

t 

iu 
4 

0 
Y 
X 

a! 
C 
Y u 
I c 

u) v) 

.- 

v) z 
0 
a 
- 

O 

N 

-Q 

0 
Y 
X 

a 
C 
Y 
U 

-r 
I- 

v) v) 

.- 
F 
VI 
0 
L 
- 

0 



0 

w 
4 

0 
Y 
X 

a, 
S 
Y 
V 
s 
I- 

u) u) 

.- 

u) ; 
0 
P 
- 

0 



. 93 

hl 
i 

0 
Y 

X 

al 
C 
Y 
0 

SI 
I- 

v) v) 

.- 

E 
v) 
U 
a 

0 - 
0 

hl 

* 

0 
Y 

X 

aJ 
S 
Y 
0 
-(I 
I- 

v) v) 

.- 

v) F! 
U 
a 

0 

+ 

x 
S 

c .- 
r;: 
K .- 
I I  

I: 

+ 
. o  

m t 2  - .- 
m a  .- 

L L C  T 



94 

x 

0 

c 



95 



. 

APPENDIX 1 

THE FOURIER TRANSFORM 

A. The Finite Fourier Transform 

Given  a function f with 

that can be represented by a Fourier series 

then the C can b e  found by evaluating t h e  integral n 

(Al-1) 

(A 1 -2) 

(A 1 -3) 

This representation exists if  the  summation (Al-2) converges uniformly to 

f (t) for all t. O n e  of the most important results of this requirement is 24 

the series can b e  integrated term by term. 

Let g (t) = 1 d e in  be another function of t and require that n n  

(A 1 -4) 

i nXt Since e 

only be satisfied by choosing c = d . This can be proven a s  follows: 

and eimXt a r e  orthogonal functions, then Equation (Al-4) can 

n n  

W. Kaplan, Operational Methods for Linear Systems, Addison-Wesley, 
24 

1 962. 



- ipXt 
Multiply both sides by e 

and integrate from 0 to 7 : 

We know that 

so that 

a+ 0 

Q= 0 

97 

(A 1-5) 

(A 1-6) 

(A 1-7) 

(A 1 -8) 

"'f (Al-9) 
)= 0 

Only the term n = p contributes to the lee-hand side of (Al-7) and only the 

term m = p contributes to the right-hand side, i.e., 

C r = d * q .  (A 1 - 10) 

B. The Fourier Transform 

n 
C 

, equations (A1 -2) and (A 1-3) become n =  X I f  we write A 

(Al-11) 
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1 -% 

Now let L+=.)1-h , so that 

d-t 
(A 1 - 12) 

(A1 -13) 

(A 1 - 14) 

(A 1 - 15) 

(A 1 - 16) 

(A 1-1 7) 

These are fundamental relations for Fourier integrals. Orthogonality 

relations similar to (Al-10) also exist for this wse. 



APPENDIX 2 

OTHER METHODS OF SOLUTION 

25 A. WKB Solution 

The Wentzel-Kramers-BriI louin, or WKB approximation, i s  

applicable to situations in  which the wave equation can be separated 

nvolves a into one or more total differential equations, each of which 

single independent variable. 

The basic propagation equation considered can be wr 

the form 

Now make the change of variable 

and (A2-1) becomes 

tten i n  

(A2- 1) 

(A2-3) 

-1 
We substitute an expression of S i n  powers of k 
equal powers of  k : 

in (A2-3) and equate 
0 

0 

I s = s o t  - 5 ,  + 1s,+ ... 
ko 16' (A2-4) 

25 L. Schiff, Quantum Mechanics? McGraw-Hill, 1955. 

V. Ginzberg, Propagation of Electromagnetic Waves in Plasma, Gordon 
and Breach, 1960. 
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Integration of these equations gives 

and we thus obtain to this order of approximation 

The WKB solution will be useful i f  

(A2-6) 

(A2-7) 

(A2-8) 

(A2-9) 

(A2- 10) 

(A2-11) 

which means that the fractional change in 6 r over a wavelength must be 

small compared to unity. 
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B. Green's Function Solution 

- -  
If G ( r , r ) is a field at the observer's point r caused by a unit 

0 

point source at T 
p (7 ) is the integral of Gp over the whole range of r 
source. The function G is called the Green's function. It is a solution to 

a given partial differential equation that is homogeneous everywhere except  

at one point. When the point is on a boundary, the Green's function may be 

used to satisfy inhomogeneous boundary conditions; when it is out  in space, 

it may b e  used to satisfy the inhomogeneous equation. 

then the field a t  T caused by a source distribution 
0,  

occupied by the 
0 0 

26 

If t h e  partial differential equation of interest is the Helmholtz equation 

(A2- 12) 

then the required Green's function i s  the solution of the inhomogeneous 

Helmholtz equation 

It can be shown that Gk is a symmetric function of ;.'and r and from this 
0' 

requirement it follows that we must have 

To find the behavior of gk for R '0, we integrate both sides of 

(A2-13) over a sma l l  sphere of radius e about r - This gives us 
0 

An inhomogeneous boundary condition is one that  requires the field or its 26 

derivative to have a specified, nonzero value on  the boundary. An inhomo- 
geneous equation contains a source term (a term not multiplied by the 
dependent variable or its derivatives). 
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(A2- 15) 

The integral on the right-hand side equals -4 T because of the properties of 

the delta function and become the sphere integrated over includes the point 

r = r . We assume that the first integml in  (A2-15) will dominate as 

R + O .  

- 
0 

The divergence theorem states that 

and applying this to (A2-16), since v23g .w  

or written another way, 

so that 

E - 0 ,  (A2- 16) 

(A2- 17) 

(A2- 18) 

(A2- 19) 
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for the three-dimensional case.  Similarly, f o r  two dimensions 

(A2-20) 

For one dimension, the Green's function G has a discontinuity in slope 

equal to  -4n at x = x 0 : 

(3 :;rck = - + f T  ~ t30. 

If the boundaries of a particular problem are at infinity, then 

(A2-2 1) 

(3 dimensions) 

(2 dimensions) 

(1 dimension) . 

(A2-22) 

(A2-23) 

(A2-24) 



APPENDIX 3 

PROPERTIES OF ORDINARY, LINEAR, SECOND 
ORDER DIFFERENTIAL EQUATIONS 

The following definitions and statements can be found in many texts 
27 

on differential equations: 

1. The order of a differential equation i s  the order of the highest- - 
ordered derivative appearing i n  the equation. 

2. An equation i s  linear i f  each term in  the equation i s  either - 
linear i n  a l l  the dependent variables and their various derivatives or does 

not contain any of  them. 

3. An equation involving ordinary derivatives i s  called an ordinary 

di ffe rent ia I equation. 

1 4. Given the functions fl (x) . . . . . , f (x) then i f  constants c 
n 

c not a l l  zero, exist such that 
n' 

c f (x)+ .... + c  f (x) = 0 1 1  n n  

identically, the functions f (x) . . . f (x) are said to be linearly dependent. 

If no such relation exists, the functions are said to be linearly independent. 
1 n 

th 5. An ordinary differential equation of the n order has, i n  general, 

a solution containing n arbitrary constants. For a second order equation in 

y, the solution can be written 

y = c,y ,  f Ly? .  " 

For instance see E. Rainville, Elementary Differential Equations, 
MacMi I lian, 1957. 
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The functions y and y must be linearly independent or c and c degenemte 

to only one arbitrary constant. 
1 2 1 2 



APPENDIX 4 

BOUNDARY CONDITIONS ON THE ELECTROMAGNETIC FIELDS 

Maxwell's equations can be written in the form 
- 

v)(g= - 
2 - t  (A4- 1 ) 

(A4-2) 

i7.E =O 
(A4-3) 

(A4-4) 

In order to establish the boundary conditions on the fields, Equations 

(A4-I) - (A4-4) must be combined with the vector relations 

(A4-6) 

known respectively as the divergence theorem and Stokes' theorem. 

From (A4-3), (A4-4) and (A4-5), we obtain 

R.i idda=O (Ad-7) 
5 

c 



. 

. From (A4-l), (A4-2), and (A4-6), we obtain 
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(A4-8) 

(A4-9) 

(A4- 10) 

If a pillbox i s  constructed on S in the usual manner, we obtain from (A4-7) 

and (A4-8), 

(A4-11) 

(A4- 12) 

where w i s  the surface change density. I f  a rectangular path C i s  drawn 

cutting S in the usual way, we obtain from (A4-9), 

(A4- 13) 

where 7 and r 
to the plane of path C. 

are in the direction of circulation and perpendicular 1 2 0 

From (A4-lo), 
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- 
where I(= 1 h  YAi 

exists only if the conductivity of one medium becomes infinite. 

A b  o 

. 



APPENDIX 5 

DESCRIBING A PLASMA SHEATH IN TERMS OF A VARYING 

The equation that governs the electron motion i n  a plasma i s  

which wi l l  be recognized as the Lorentz force equation. E and Bare the 

applied electric and magnetic fields, -r/ i s  the collision frequency for 

momentum transfer between electrons and atoms or ions, and a term multiplied 

by the pressure gradient has been assumed negligible. 

We take and to be time harmonic, E = B  =0, and static static 
neglect B 

(A5-1) becomes 

since it i s  v/c times smaller than the electric force term. 
wave 

and solving for 
O0 

The current densityJ becomes 
0 

(A5-2) 

28 This material was taken partly from "Outline of A Course i n  Plasma Physics') 
Part 2, American Journal of Physics, Vol. 31, Number 8, August 1963. 
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(where N i s  the ionization density) 

and substituting into Maxwell's equation, we obtain 

(A5-4) 

Comparing with Equations (3-1) and (3-2), we see that 

L 



. 
c 

APPENDIX 6 

NPICAL VARIATIONS AROUND A RE-ENTERING MISSILE 

Computed values of  the ionization density and collision frequency for 

a typical plasma sheath have been shown i n  several publications. The values 

used in  the current example were taken from AFCRL Report 87, 29 anciare 

computed for a SCOUT missile (Figure 7). This data, when substituted into 

Equations (M-5) yields values of e in  the sheath (Figures 8-10). 

29 W. Rotman and G. Meltz, Experimental Investigation of the Electro- 
magnetic Effects of Re-Entry, Air Force Cambridge Research Laboratories, 
Bedford , Mass. 
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