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lz . 1. INTRODUCTION

This report deals with the determination of free flight spacecraft
trajectories from noisy tracking data. Although the observations may be
correlated, the method of statistical estimation is restricted to weighted
least squares. An earlier report [4] has already examined the relative
merits of least squares and other more sophisticated estimation techniques.
The emphasis in this report will be on special topics which arise in
connection with systems analyses of space missions. Specifically, these
topics are:

(i) A Priori Data. The handling of a priori information on parameters
to be estimated from observational data is discussed.

(ii) Separation of Parameters. The separation of parameters into
classes, for example orbital and non-orbital parameters, is
studied. This includes the problem of simultaneously estimating two
classes of parameters, and that of determining the degrading
effects of uncertainties in parameters which are not solved for.

(iii) Midcourse Maneuvers

‘ Tracking through a midcourse correction is treated both from the
point of view of real time operation and preflight error analysis.

(iv) Up-dated Least Squares

A simplified least squares orbit determination technique suitable
for onboard use is considered. The essence of this technique is to
continually up-date the latest estimate of position and velocity,
modifying this estimate as new data is taken.

2. BACKGROUND

Before proceeding to the specialized topics with which this report is
primarily concerned, it is well to review briefly the basic statistical theory
of orbit determination. This theory may be formulated as follows: A set
of observations (radar tracking data, optical observations, etc.) denoted by
an n-vector z is given. From the laws of mechanics and from geometrical
considerations, the true value u of this vector of observations is
expressible as a known function of a set of p parameters (p < n) denoted
by the p-vector y: pu=p (y). Inthe simplest case, y denotes six

(or less) position and velocity components at a specified epoch. In general,
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however, y may include other non-orbital parameters such as physical
constants, biases in observations, tracking station coordinates, etc. The

non-linear regression equation is then

z =p {y) +w, (1)

where w denotes an n-vector of noise. Given z, the functional form of
i, and the statistical properties of w, the problem is to estimate vy.

In practice, (1) is linearized by expanding p about an initial guess g,
Letting Ay = y - g, and Az = z - u (go) (the components of Az

are called "residuals"), we have
Az = B8AYy + w , (2)

where 6 is an nxp matrix of known regression coefficients, which are
simply partial derivatives of p with respect to y. The non-linear problem
(1) is then solved by iteratively solving linear equations such as (2). Since
we are primarily concerned here with the solution to the linearized

equation (2), we shall in the future occasionally drop the A's in (2) for

the sake of notational convenience:
z = 8y +w . (3)

It should be obvious when this convention is followed.

A "weighted least squares" (WLS) estimate of y in (3) takes the

form

- 0'we) ' orwaz (4)

gwLs

where W is an n xn diagonal matrix of non-negative weights specified
in advance. This unbiased estimate has the property that of all linear

unbiased estimates g, minimizes F(g), the sum of squares of

EwLs
residuals weighted according to the matrix W,

F(g) = (z-08g)' W(z-6g) . (5)
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The p x p covariance matrix of EWLS is

- ! -1 H ¥ -1
Gyrs = (@'W8)™" 6'WRW® (6'W8) (6)

where R = Eww' is the noise covariance matrix ("E" denotes the mathe-
matical expectation operator).
1

When the noise is uncorrelated, it is optimal to choose W = R~ a

diagonal n x n matrix. For then GyLs = (@ WO)-1 and is a minimum
among the covariance matrices of all linear unbiased estimates of vy.
When the noise is correlated and W is restricted to_being diagonal, the
criterion for selecting W is less obvious. Golub 2 has considered the
problem of optimizing W, subjectto W being diagonal, and has solved
this problem for the case in which the correlation matrix is exponential.
For the general case in which there are several mutually uncorrelated
data types, the authors 4 have proposed a "minimax" weighting which
may be described as follows: let the observations be grouped into k
consecutive data types which are mutually uncorrelated but are internally
correlated. Let Mi be the diagonal matrix of reciprocal standard
deviations for data type i, let Gi be the matrix of regression coefficients
corresponding to data type i, and let )‘i be the maximum eigenvalue
(or an upper bound on the maximum eigenvalue) of the noise correlation
matrix for data type i. Then the conventional LS estimate of y based

on data type i, only, is

2 . -1 2
g, = (B/Me)7 ! M z (7)

and has covariance matrix Gi satisfying (see [4] )

2 .. -1
1
G; = »; (6] M7 9) (8)

The minimax estimate EMM of y is a linear combination of the g; in

which each g; is weighted according to (9{ MZi ei)/x i The explicit

formula for 8mM 18 25 2 WLS estimate (4) with weighting matrix WM
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M%/\, !
1" i
I R
W - b M2 (9)
MM |22
NN
.MkAk
L ! -
(ideally, WMM is chosen as the maximum diagonal n xn matrix
. . -1 . .
satisfying W= R ~.) The covariance matrix GMM of EnvM then has
the property that
G... =@ WwW... 0 l<x (0. M%0), i=1, ..., k. (10)
MM — MM = TitioTicivy ! ’

In other words, the covariance matrix of the minimax estimate, GMM’
is never greater than the upper bound on the covariance matrix of the
conventional LS estimate based on any single data type alone. This
property is achieved by giving less weight to data types which are highly
correlated and therefore may contain less information than their RMS
values would indicate. It should be noted that if data types are weighted
according to Mzi', as in conventional LS analysis, this property cannot

be assured. In fact, the authors have encountered actual cases in
practical orbit determination in which the inclusion of additional highly
correlated data, weighted according to its reciprocal variance, actually
degraded the accuracy of the determination over not using that data at all.
When the noise is uncorrelated, then of course the minimax solution
coincides with the conventional LS solution which, in turn, is the minimum

variance solution.

When the minimax least squares estimate is to be employed, it is
sometimes conceptually convenient to replace the correlated noise w in
(3) with "equivalent-or-worse" uncorrelated noise v for which the
covariance matrix is the reciprocal of the minimax weighting matrix W, (.

The new regression equation is then

z = 0y + v . (11)
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The optimal estimate of y in (11) is now the minimum variance estimate
(for which the formula is identical with the minimax estimate of y in (3)):
-1

8'wW z . (12)

- '
= (O WMM 0) MM

EMV

The new covariance matrix of EMV is then simply

-1

G = (0'W 8) (13)

MV MM
which is an upper bound on the covariance matrix of the minimax estimate.
Thus the uncorrelated noise v may be said to be "equivalent-to-or-worse-
than" the correlated noise w. Since gmyv 2nd Gypyo above, are forms
which are commonly computed in numerical orbit determination programs,
we are thus led to a theory which is not only conceptually simple, but
readily adaptable to analysis using existing computer programs. The
concept of replacing correlated noise with equivalent-or-worse uncorrelated
noise is not new and is often used to advantage in an heuristic way;

the particular formulation proposed here, however, has the advantage of

being both convenient and rigorous.

In concluding, we note that the actual success of a space mission may
be judged on the basis of one's ability to control a set of mission para-
meters, denoted by a vector o of dimension of q < p, rather than on
one's ability to control y explicitly. For example, on a lunar mission
a could denote the two impact parameter coordinates at the moon. It
may nevertheless be more practical to perform the statistical estimation
with respect to y. When this is the case, and when variations in a are
related to variations in y by a known q x p matrix ¢, Ac = $Ay, then
the covariance matrix A of uncertainty in o is related to the covariance

matrix G of uncertainty in y by the well-known formula

A = ¢Go' . (14)



8976-6002-RU-000
Page 6

3. A PRIORI DATA

In the standard non-linear regreésion equation,

z =py) + w, (1)

one is given z, the functional form of i, the statistical properties of w,
and some criterion for specifying the weighting matrix W. We assume
here that, in addition, the initial estimate go of y has associated with
it an a priori "information" matrix S. S is formed out of the reciprocal
of the a priori covariance sub-matrix oi those components of g6 for
which a priori variances are available, together with zeros in rows and
columns corresponding to the remaining components of g, For example,
if only the first two components of g, are specified with a priori

covariance matrix Ao, S takes the form

There is no restriction that S be non-singular. The problem then is to
incorporate go into the WLS procedure for estimating y. This may be

done as follows:

Let Ay = y - g.- Then the a priori estimate of Ay is zero,
having information matrix S. The WLS estimate of Ay, based on
= ' -1 g
ABwis * (6'We) " 8'"W Az, where
Az = z - ;:,(go), and the covariance matrix of AgWLS is GWLS =
0'we) lowrRwe (8'we) L.

observations only, is, of course,

Py
If the actual covariance sub-matrix is not known, an upper bound on
the sub-matrix may be used instead.
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Optimal Combination

The optimal way to combine these two estimates of Ay is to weight

each according to its information matrix. This leads to the estimate

% -1 -1 -1
g 7 g, * (Gypg * 8 Gyrs %8y1s (15)
having covariance matrix
* -1 -1
G = (GWLS + S) (16)

One may now iterate for the solution of the non-linear regression equation,
each time weighting the a priori estimate go according to its information

matrix S.

The disadvantage of the optimal procedure described above is that it
requires explicit use of the noise covariance matrix R, which can make
the computations excessively difficult when R is not diagonal (i.e., when
the noise is correlated). Moreover, R may not be known explicitly.

For these reasons we propose the following procedure when the observa-

tional noise is correlated:

Minimax Combination

Let W be the minimax weighting matrix WMo described in Section 2.
Then we know that the covariance matrix of the WLS estimate of Ay based
on observations, only, satisfies GWLS = (6'W 6)'1 . Now weight the
a priori estimate according to S, but weight the WLS estimate based on
observations, only, according to 6'W 6 to generate the combined

estimate g:

-1 :
—_ ] 1
g = g, + (6'W8 + S) 6'Wo AgWLS . (17)

Since 0'W 6o AgWLS = 0'W Az, (17) reduces to a simple operation on the

observational data:

g = g, t (6'Wo + S)‘1 8'W Az. (18)

The covariance matrix of g is

G = (0'woe +85) " (eWRWo + 5) (6'Wo + 5~ L. (19)
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Since R = WI:/IIM (see Section 2),an upper bound on G is

G=(6'Wo + S)'1 (20)

which, in turn is bounded by (8'W 9)-1. In case S possesses an inverse,
then G = S-l, also, so that the minimax property of BWLS is
preserved in g. For this reason it is proper to call (18) a minimax
utilization of a priori data. Of course, if the observations are actually
uncorrelated with diagonal covariance matrix equal to W'l, then all

of the above formulas apply except that now equality holds in (20).

It should be noted that if additional iterations are called for in order
to solve the non-linear regression equation, some of the simplicity of
(18) is lost. The principle to follow then is in each iteration to weight
g, according to S and to weight the estimate based on observations
only according to 8'W 0, evaluated at that iteration. However, the
inequality (20), based on 6 evaluated for the "nominal" trajectory, will
usually be acceptably accurate as a final answer when the true trajectory

is not far from nominal.
4. SEPARATION OF PARAMETERS

Sometimes the components of the vector parameter y will fall
quite naturally into two classes. For example, the components of vy
may be classified as orbital and non-orbital, or the orbital parameters
may be subdivided into position and velocity components. One may then
be interested in actually determining only those components belonging
to one class, but be concerned about the effect of neglecting or simul-
taneously estimating components in the other class. This section deals

with this aspect of orbit determination.

4.1 Estimating Only One Class of Parameters

Let us write (3) in the form

z = p(yl, Yp) tow (21)

where Yy, and Y, denote a separation of the total vector parameter vy

into two sub-vector parameters, and suppose that we plan to estimate only
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‘ Yy either because we are unaware of any uncertainty in Y, OF else
because it is not practical to estimate both Yy and y,. (Often, the avail-
able observations will not contain enough "information" about the
parameter y, to allow its estimation.) Then the linear expansion of (21)

about the initial guesses g10 and 820 of Yq and Yo takes the form
Az = el (Y]_ 'glo) + eZ(YZ 'gzo) tw ; (22)

| When g10 has a priori information matrix Sl’ then by analogy with (18)

the new estimate of Yy is

— -1 t
811 = £10 + (9.‘1W91 + 8) BIWA z (23)

where W is the weighting matrix. It is instructive to substitute from (22)
for Az, then add and subtract (e'1 We1 + S‘;l)'1 X S1 (yl - glo) to the
right hand side of (23), to obtain

_ -1
o gip T Yyt (B W6y +85y) ['Sl(Yl - 8ol * 81 WO, vy - g3
(24
L] ] )
+ GIWWJ

The advantage of this formulation is that it shows explicitly that gy, is
an unbiased estimate of Yy in which there are three sources of error:
(i) the a priori estimate g10 of Yy (ii) the incorrect value 8,09 Wwhich

was assumed for Yy and (iii) the random noise w on the observations.

We shall assume that the a priori estimates 819 and g,, are

*
uncorrelated. Then the covariance matrix of gy in (24) is

_ -1
G11 = (9'1W91 + Sl) [GiWRwel + S1 + G'IWBZ_A_ZGéWGIJ x

_ (25)
(e‘IW el + Sl)

—
If gy 2and g,, are cross- correlated, then the formula (25) for
merePy made more camplicated by the presence of cross correlatedltlerms.
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where AZ is the a priori covariance matrix of uncertainty in g,0° When

the noise w is uncorrelated with R = W-l, then (25) reduces to

- 1 -1 -1 '
Gy, = (elwe1+sl) +(eiwe1+sl) elwez,l\ze'zwelx

(26)

\ -1
(€)1W61 +Sl) .

If the noise is correlated but R < W'1 (as in the case with minimax esti-

mation), then the right side of (26) is an upper bound on Gll'

Formula (26) may be interpreted as follows: (0] W0, + sl)'1 is the
covariance matrix of uncertainty in the estimate g11 resulting from
uncertainty in the initial estimate of Y; and from noise on the tracking
observations, only. This is the matrix which is commonly computed in
tracking programs. The additional term on the right in (26) is a non-
negative, symmetric matrix of the same order as (9'1 we, + Sl)-l which
shows the additional uncertainty in g11 resulting from having used the
incorrect value of Yo in the WLS determination of Y- Thus, the effect
of uncertainties in the Y, Pparameters on the orbit determination process
may be examined by comparing the relative contributions of the two terms
in equation (26). In high precision orbit determination work, the second
term can play an important role in establishing the confidence which is

to be assigned to the estimate gy1-

To carry this analysis one step further, let us assume now that the
(vector) mission parameter a which one is interested in (see Section 2)

is related to the parameters Y3 and Yy by

Aa = ¢ By, + ¢, Dy,

Then the final uncertainty in a can be written as

i -1
Ba = ¢ (6] W6 +5) [e'lwez (v2 - 820 = 51 {vy - 819)
(27)
1
+ BIWW] + 4)2 (YZ - gZO)
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It is useful to regard the coefficient of (y, - 8,0) in (27) as the "total
derivative" of & with respect to Y,: Since it shows how uncertainty in Yp

affects a both explicitly and implicitly:

' -1 d ~
b (8] WO, +5))7 ojWe, + ¢, = a_“ = 9, (28)

The final formula for the covariance matrix of uncertainty in a 1is thus

_ -1 -1
A = ¢, (8]We, +S))7 (6B)]WRWo, +S)) (6] We, +S) 4]

(29)
+ 5N, )

As before, this equation simplifies in the obvious way to give an upper bound

on A when REW'I.

4.2 Estimating Two Classes of Parameters Simultaneously

The problem of estimating two classes of parameters simultaneously is,
in principle, completely covered by Sections 2 and 3. The purpose of this
section is to put the results into a form which can be readily compared with

the results of Section 4. 1.

We shall write (22) as

= : 2! 30
= = [0 ]0,] S (30)
Yi| o
dropping the A's for convenience. The WLS estimate of —Y-- is then
2
! | t -1
& [elw 0, + 5, | 8]W6, + 5, oWz -
R R - ratwa 1 ¢  ° W
g, Lezwel + S21 | OZWGZ + Sz eZWz
|
5111512
where --——:—---— is the a priori information matrix on parameters.
21 | “22

The total covariance matrix of this estimate in the general case when the
noise is correlated is given in Section 3 and need not be repeated. We are

interested here in some simple relations which arise when the noise is
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uncorrelated, and will therefore make the simplifying assumption that
R =Eww' = W-l. (This is actually no great restriction, since if the noise
were correlated it could be replaced with "equivalent-ot-worse" uncorrelated

noise as shown in Section 2.) We shall now introduce the notation

' (N P ] !
c - leel + S11 ! elwez + S12 ) C11 : CIZ. C'l ) 11 ,'CIZ
- rrwromn 1 e T el I R rooTT - TN TS
O,Wo, +5;,18,We, +5,, Ca1 1 Ca2 ], c?l i c??],
(32)
covariance of est. of y,; : .
cross-covariance
i e C-l _ parameters i
. “y - | et e ccearcacamearrecrcns e "= r-—-——.— ————————————————
cross-covariance | covariance of est. of vy,
i parameters
- g
Then C 1 is the total covariance matrix of [—g-l-} in (31), and C“, C22
2

12 2 . . .
and C (= (C 1) '}, are the covariance and cross-covariance matrices

of gl and g5 individually.

It is useful to be able to express the above matrices in terms of the
. . -1 -1 .
more easily computed matrices Clly C,> and C12 (= CZ'I). This can be

done as follows: If we let b, = 6.'l Wz and b, = 9'2 Wz, then (31) can be

1 2

written as

g = C'lb + clPy, (33)

g, = c*lo, + c*o, (34)
or as the inverse transformation

Py = €8 T C28; (35)

b, = Cor8 * Cpz8, (36)

Now eliminate g, from (35) and substitute into (36):

-1 -1
b, = G, (Cybp - C1Cip8y) + Chrpy
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This equation may now be solved for 855

-1 -1
g, = (Cyy - Cpy CI7 Cy5) i -1
2 22 21 “11 %12} (b, - ¢, C[ b))

and the coefficients of b1 and bZ compared with those in (34), leading to

22 -1 1
C = (G - G5 Gy G2 (37)
and
21 1 -1 -1 12,1
C = (Cyy - G C11 Cyp) G Gy = (C) (38)
Similarly, one can show that
11 B -1
€~ = (6 - G2 %2 G (39)

We have thus succeeded in expressing the components of the inverse of
the matrix C in terms of the more easily computed sub-matrices CI;,
Cié and C, (= C,,) without explicitly inverting the entire matrix C. This
is of interest if, for example, we are primarily interested in orbital para-
meters (denoted by Yl{’ and therefore interested in the covariance matrix

of orbital elements (C ]), but must decide between estimating or not

estimating non-orbital parameters.

Actually, the case which we have treated here is slightly more general
than the case treated in Section 4.1 in that we have not required the a
priori estimates of Yy and Y, to be uncorrelated and we have not
required S22 to possess an inverse. If we now add these restrictions, we

can rewrite equation (26), using our new notation:

S 1
Gy = €1t C1C25;

le. ¢!

21 ~11 (26)

We can now distinguish three levels of sophistication in orbit determination:

(i) Estimate y, only, ignoring uncertainties in y,. It is common
practice to estimnate only orbital parameters an% give no attention
to uncertainties in physical constants, station location, etc. The
covariance matrix which is ordinarily assigned to the resulting

estimate of Yy is C“l‘% = (6'1W el + Sl)‘ .



8976 -6002-RU-000
Page 14

(ii) Estimate Yq only, as above, but include the effects of uncertainty
in y, in computing the covariance matrix of the estimate of Yq-
This ?[eads to the correct formula for Cr11 as given by (26).

(iii) Estimate both YL and y,. Then Cl,1 which is the "upper left
hand sub-matrix™ of C-!"in (32), is the covariance matrix for the
estimate of Yy

The following relations will exist among the above covariance matrices:

-1 _ 11 -l .
Cll— Cc = C‘:11 = C11 + (Non-neg. def. matrix).

4.3 Discussion

In a typical problem, Yy in (21) may represent the six orbital para-
meters of position and velocity at a specified epoch and the non-orbital
components y, may represent such parameters as physical constants,

tracking station coordinates, and biases in observations.

We note first that whenever eiw 92 = 0, then (24) shows that there
will be no interaction between g0 and the WLS estimate of Yy and that
using an incorrect value of Y, in the estimation of Yq does not effect the
answer to first order. This is confirmed in Section 4.2, which shows that

11 . -1 z2 -1
1 _ - - -
wlllgn 61W92 + S12 = ClZ = 0, then C = = (Cll) , C = (CZZ)

C = 0, so that there is no correlation between estimates of the two

and

classes of parameters.

In order to evaluate the effects of either neglecting or solving for Y,
in a general case, it is necessary to know the elements of the matrix
62 . Evaluating these coefficients involves varying degrees of complexity,

depending on the exact nature of Yp!

(i) Biases. Partial derivatives of # with respect to biases in
observations are the simplest to evaluate, since in that case the
partial derivative is either one or zero, depending on whether
the bias is or is not associated with the particular observation
in question.

(ii) Station Coordinates. Partial derivatives with respect to
tracking station coordinates are merely geometric transfor-
mations which do not involve the equations of motion of the
spacecraft.
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. (iii) Physical Constants. Partial derivatives with respect to physical
constants such as the mass of the earth or the astronomical unit

are more difficult to evaluate, since they involve the actual
equations of motion. These partial derivatives are usually
evaluated through variational equations or use of analytic derivative
formulas. The evaluation is normally carried out in such a way as
to keep constant the various angles and angular rates associated
with the solar system, since planetary angles and angular rates
are generally known with sufficient accuracy that they may be
considered as known, compared with other measurements. On

the other hand, when the velocity of light c enters into an orbit
determination problem, it usually enters merely as a scaling
factor on range or range rate data, so that partial derivatives of

p with respect to ¢ do not involve the equations of motion.

The analytic tracking accuracy prediction program (TAPP)*, which is
under development at STL as a part of the Space Systems Analysis Study
Contract, will generate partial derivatives of spacecraft observational data
with respect to all of the above non-orbital parameter. Depending on how
these partial derivatives are subsequently processed in the program, one
will be able to simulate the fitting on non-orbital as well as orbital
parameters, or else estimate statistically the degrading effect of using

. incorrect values for non-orbital parameters.
5. MIDCOURSE MANEUVERS

5.1 General Theory

Actual Midcourse
Maneuver

hypothetical impulsive
maneuver

The above diagram represents schematically a spacecraft trajectory

in which there is a midcourse maneuver, i.e., a short powered flight, which

* . .
This program makes use of a completely analytic (i.e., non-integrating)
formulation and is designed for the pre-flight tracking and guidance
analysis of space missions, rather than real-time operation.
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begins at time t  and lasts until t_+ At. We are concerned here with
reconstructing this trajectory from tracking data taken during the free-flight
portions of the trajectory (prior to tg and after t, + At) and from a
priori information on the maneuver itself. Since the handling of any
tracking data taken during powered flight is beyond the scope of this report,
we shall assume that none is taken. For the same reason, we shall extra-
polate the second portion of free flight back to time ty and conceptually
replace the actual maneuver with an equivalent "impulsive" correction in
both position and velocity, which occurs instantaneously at to - see dashed
curves. As'a further simplification we shall assume that all tracking
observations are uncorrelated. This is no great restriction, since if the
‘tracking noise were correlated, it could be conceptually replaced with

"equivalent-or-worse" uncorrelated noise (see Section 2).

As a matter of notation, \21 will denote true position and velocity at
t, - (just before the maneuver) and the subscript 1 will denote observa-
tions, etc., before the maneuver, z; = 8 vy t wp, where
Ew,w| = W;', diagonal. Similarly, y, will denote true position and
velocity at ty, t (just after the equivalent impulsive maneuver) and the
subscript 2 will denote (free-flight) observations, etc., after the maneuver,
z, = 8, y, t w,, where Ew,w, = ng, diagonal, and Ew, wj); = 0.
Next let A(a) be the 6 x 6 covariance matrix of execution errors, with'a”
the commanded value of the maneuver. We shall discuss the origin of A (a)

later, merely noting here that it is a function of a.

As a rule, the statistical problem is to estimate Yy and this is the
problem we shall consider. Assuming that execution errors are

independent of tracking errors, we have two independent determinations of
Yo

(i) From pre-midcourse tracking plus any a priori information, the
estimate of y, has covariance matrix G; = (9;W] 8] + S;)-1l.
Since the maneuver has covariance matrix /A(a), the covariance
matrix of uncertainty just after the hypothetical maneuver is
(6'1 W61 + Sl)'1 + A(a). (Note: in practice, G, may actually
be obtained by estimating orbital elements at a different epoch
and then up-dating to epoch to’ This in no way affects the results.,)

(ii) From post-midcourse tracking, only, the estimate of Y, has
covariance matrix (G'ZW2 62) -1
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Therefore the net covariance matrix of uncertainty of an estimate of vy,

which is a linear combination of the above estirnates (with each estimate

being weighted inversely as its covariance matrix) is

G,(a) = (85W,0, + ((8JW 0!+ S)™" + Afa)) ")

If the orbit determination is performed in real time or later, then a is a
known vector, viz., the (hypothetical) commanded correction, and (40) can
be evaluated numerically., If the analysis is carried out prior to the actual
flight in order to perform an error analysis on the mission, then G, (a)
must be averaged over the random variable a. When the pre-flight error
analysis is done by Monte Carlo technique, this averaging can be done
quite conveniently. * On the other hand, if the analysis is purely analytic,
then it is more convenient to approximate this averaging by replacing

A (a) in (40) with its average value A,

A = jdf(a)./\(a)

where f(a) is the distribution function of a. The distribution f(a) comes
from a priori knowledge of how close to nominal the trajectory is likely to
be, together with the guidance logic of which orbital parameters the
midcourse maneuver is designed to correct. Although the philosophy of
replacing A (2) in (40) with its mean value is not strictly correct, this is
not a critical point and it is highly questionable that it would be worth the
effort to perform analytically the exact averaging. Therefore we may
conclude that for a pre-flight analysis, the net covariance matrix of

uncertainty in Y2 is given by the approximate formula

—

-1 -1, -1
G, = (85W,0, + ((8jW; 0, +S;)7 + A)™)™"

The Monte Carlo technique is a mission analysis tool which encompasses
injection, multi-midcourse, and terminal guidance analysis, as well as
orbit determination. It will not be discussed here, since it is covered in
other reports - e.g. [5] '

(40)

(41)
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It should be noted that the distribution of the estimate of Yy, over the
ensemble of all possible trajectories and all possible tracking data, is
non-Gaussian and hence not completely characterized by the second moment
matrix GZ' However, this does not mean that G2 is not a meaningful
matrix to generate. Furthermore, the degree of non-Gaussianness of this
distribution will depend upon the extent to which /_\2 dominates C'i2 in (41),
and may be very slight.

5.2 The Matrices A(a) and j_\

The chief item which makes the analysis of orbit determination compli-
cated when there is a midcourse maneuver is that the midcourse execution
error is functionally dependent upon the maneuver which is commanded,
which, for purposes of pre-flight analysis, is a random vector. This
feature makes the real time (or post flight) analysis different from the pre-

flight analysis, as we have just seen.

For the purpose of illustrating execution errors more concretely, we
shall examine in detail a simplified model of a midcourse maneuver which,
although not the most general, is typical of maneuvers occurring on many
space missions. This model is characterized, first, by the fact that the
actual correction may be considered impulsive (and therefore in velocity,
only) and thus is identical with the hypothetical correction. The actual
execution errors are most easily expressed in terms of a spherical
coordinate system generated by the commanded correction vector V,

shown below. The expressions for velocity errors in terms of basic error

z
A
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sources are
6V = ) + €5 lVI
5Ve:e3+e4|V| (42)
6V¢: €5 + €6 lVI

where IVI is the magnitude of V and where

¢, is a speed error due to engine shutdown,

1

€5 is a proportional speed error due to accelerometer,

€3 and € are lateral velocity errors due to control system,

€4 and €y are "pointing" errors dué to angular misalignment.

We assume that the ¢, are mutually uncorrelated with zero means and

2 2 Y2 2 2 2 .
Eel-kl,Eez-kz,Ee3—E65—k3,Ee4~Ee6—k4. It is con-

venient to introduce a rotation U relating the above variations in

spherical coordinates to variations in the rectangular reference coordi-

nate system x, y, z:

oV oV
X
oV = U ov
y 6
6VZ _6V¢_
where
sin ¢ cos 6 -sin® cos¢ cos B
U = |sin¢ sin 6 cos © cos ¢ sin 8 (43)
cosé 0 - sin ¢

Thus the final form of the 3 x 3 execution velocity error covariance matrix,
Z(V), is

(V) = U | k U+ VU K U (44)
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The 6 x 6 matrix A(a) which occurs in (40) is simply
0!o0
AV) = [-cfeee-- (45)
01 = (V)

where the 6-vector a is in this example replaced by the 3-vector V.

When the 3-vector V is specified numerically, = (V) and A(V) can

be evaluated numerically. On the other hand when V is specified by its

probability distribution and it is required to compute /A, thé calculation is

not so simple. Lass and Solloway[3 and Gates 1]ha,ve proposed integration

techniques for evaluating A which appear promising. For the present, the

following special cases and approximations to T can be useful in computing

A:
(i)

(ii)

Degenerate Case. When the a priori distribution of V is actually
one-dimensional along a direction characterized by 6 and ¢ _,
then U = U, evaluatedat 6 _ and ¢ _, and the mean value of

. o o o
Z(V) is

U 4
o} k3 o o k4

i
uy (46)
where V = E IVi2 It frequently happens in practice that this is
very nearly the case for the first midcourse correction after
injection. Thus (46) may often be used as an approximate formula
for execution errors dquring the first midcourse correction, with
0  and ¢ _ denoting the direction of the maximumn eigenvector of
the a pri,ogi covariance matrix of V, and V< as the trace of the
a priori covariance matrix of V.

Symmetric Case. When the a priori distribution of V is
spherically symmetric, then |V| » 8 and ¢ are independent with 6
uniformly distributed from 0 to 2w and ¢ distributed with frequency
(1/2) sin 4 between 0 and w. Thus, averages with respectto V,

6 and ¢ may be performed independently in (44), leading to

T = 1/3 [(k1 ¥ 2Kk,) V2 (k, + 2k4)] I (47)

In practice, the distribution of V for the second or third mid-
course correction is likely to be very nearly symmetric. Thus
(47) can often be used as an approximate formula for execution
errors going with these later midcourse corrections.
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(iii) Upper Bound on ~. Let A = ©iax ’(kl, k
Thex it follows that

3) and p = max (kZ’ k4).

o2

T = (a+ VOI (48)

3

This easily computed upper bound on T can always be used as a
conservative substitute for X. If it happens that k; = k3 and

k2 = kg, then, of course, equality is attained in (48) and the
formula is exact.

6. UPDATED LEAST SQUARES

This section describes an orbit determination technique which, because
it does not require the storage of large quantities of observaticnal data, is
especially adapted to real time operation by an on-board computer. The
essential features of this method have been proposed by Smith and Schmidt[é:|
who, because of the analogy between the estimation of orbits and the
prediction of a time series by linear filtering, refer to this scheme as an
"optimal filter" method. From our point of view, however, it is more
natural to regard it as a least squares estirnation procedure in which

11

estimnates of orbital parameters are continually updated znd modified as new

data arrives.

Cousider the following estimation problem: an initial unbiased estimate
g, of spacecraft pecsition and vdocity at time to together with an a
priori 6 x 6 covariance matrix Go of urcertainty in g, is provided. At
each observation time t,, kK =1, 2, ... , & ¢-vector of unbiased obser-
vations 2z, is taken. (The dimensicn q may be different for different

k

observation times Wz assume for the present that all chservations are

-
unceocrrelated, and that the observations teken at time tk are characterized
by a knewn (diagonal) covariance matrix R’k’ k=1, 2, ... . Then at
each observation time t,, it is required to cornbine the old estimate of
the orbit with the new dé,ta, to form a wew "best" estimate of position and

velocity at t and to determine the covariance matrix Gk of g This

k’
concept is illustrated in the accompanying diagram, in which Yor Y10 Y2

denote the true position and velocity vector at to’ tl, t.,
[

In the solution to this problem, it is sufficient to describe the

. . k . .
calculations performed just after the k'™ set of obzervation: is taken. Let
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True Trajectory _ -~

Calculated Trajectory

Yo €o
Updated least squares orbit determination. Yor Ypo e denote the true
position - velocity vectors at times to’ tl’ o B is the "best" esti-

mate at time by while Xk is k-1 updated to time ty
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Xk denote the result of integrating the equations of motion from te.1 to

te using g1 25 initial conditions. Then ){k serves as an initial
estimate of Yic for which the "a priori" covariance matrix, Ak’ is Gk-l
updated to time tk:
A = ¢k k-1) G ¢' (k, k-1) (49)
where ¢ (k, k-1) is a known 6 x 6 transition matrix satisfying
Ay, = ok, k1) By | (50)
The observations zy satisfy the non-linear regression equation
ze = Ry ()t W (51)

where K is a known function of the orbital parameters V! and Wy is
noise for which Ewkwl'< = Rk - We may now proceed exactly as in Section 3.

The linearized form of (51) is

Azk = ekAyk + W, (52)
8;J‘k
where Ayk = Y - Xk’ Azk =z - P (Xk), and ek = N isa gqxp
matrix of known coefficients. Setting W, = Rﬁl’ the new estimate of Yy is
g, = X+ Gy 0, W, Az (53)
where Gk is the covariance matrix of By’
' A-l -1
Gk = (ekaek + k) (54)

We have described above the basic orbit determination technique. This
technique can be generalized and/or modified to fit different situations.

Some such modifications are described below.

(i) Matrix Identity. An equivalent formulation of (54) is as follows:

-1

1 S |
G = Ak -Akek (wk + 0 Ak ek) ek,Ak. (55)
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When q < 6, this formula has the computational advantage that
the matrix which must be inverted is of order q x q, rather than
6 x 6 as in (54). This new formula follows from (54) as a result
of the matrix identity below:

Theorem. Let A and W be positive definite symmetric matrices

of orders p x p and q x q, respectively. Let © be any q x p
matrix. Then

(j\_'1 + ea'we)'1 = A -Ag (w'1 + e_/\e')'1 oA . (56)

Proof: Consider first the special case W = I_. By solving the
matrix equation e

(A + 00 (A X =1 (57)

P

for the unknown p x p matrix X, we obtain

X At + o leeA

(58)

A(Ip + @ 9/\)'1 o' o A
Next we note that
(Ip + 0' 9o\ o uq + e/\.e')'1 = 9o'.

Substituting this expression for 8' in (58) leads to

1 -1 ] [ ,-1
A(Ip + 8'0A) (Ip + 000/\) o (Iq + A6 8 A

-1 (59)
o' (I + oAen " oA

which proves the theorem in this special case. The general case
may now be proved by substituting 6 = W-1/29 into (56), which
reduces the general case to the special case just examined, Q.E.D.

Correlated Observations. Suppose that the q observations taken at
time t), are correlated with non-diagonal covariance matrix Ry,
but that observations taken at different times are uncorrelated.
Then it is optimal to use the non-diagonal weighting matrix

Wy = REI in (53). Equation (54) for the covariance matrix of the
estimate is still valid, using Wj = REI. If it is not convenient
to use a non-diagonal weighting matrix, of if Ry is not known
explicitly, then a "minimax" diagonal weighting matrix may be
used. When this is done, the right hand side of (54) becomes an
upper bound on the covariance matrix of the estimate.




(iid)

8976-6002-RU-000
Page 25

If observations are correlated in time as well as instantaneously,
then diagonal weighting matrices may still be used, but they should
be scaled down according to the minimax principle enunciated in
Section 2 to insuee that highly correlated data types are not overly
weighted.

Midcourse Maneuvers. The (real time) handling of midcourse
maneuvers can be incorporated quite easily  into the updated least
squares routine. For example, if a maneuver occurs just prior
to time t), then the commanded correction should be added to
the estimate Xy, and the covariance matrix of execution errors
should be added to Ay, to form a new a priori estimate and
covariance matrix at tk'
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