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1. INTRODUCTION 

This report  deals with the determination of f ree  flight spacecraft 

trajectories from noisy tracking data. Although the observations may be 

correlated,  the method of statistical estimation is restr ic ted to weighted 

least  squares.  An ear l ier  report  [4] has already examined the relative 

mer i t s  of least  squares and other more  sophisticated estimation techniques. 

The emphasis in this report will  be on special topics which a r i s e  in 

connection with systems analyses of space missions. Specifically, these 

topics a re :  

(i) A Pr io r i  Data. 
to  be estimated from observational data is discussed. 

The handling of a priori  information on parameters 

(ii) Separation of Parameters .  The separation of parameters  into 
classes ,  for example orbital and non-orbital parameters,  is 
studied. 
c lasses  of parameters,  and that of determining the degrading 
effects of uncertainties in parameters  which a r e  not solved for .  

This includes the problem of simultaneously estimating two 

(iii) Midcourse Maneuvers 

Tracking through a midcourse correction is treated both from the 
point of view of real  t h e  operation and preflight e r r o r  analysis. 

(iv) Up-dated Least Squares 

A simplified least  squares orbit determination technique suitable 
for onboard use is considered. 
continually up-date the latest estimate of position and velocity, 
modifying this estimate as new data is taken. 

The essence of this technique is to 

2. BACKGROUND 

Before proceeding to  the specialized topics with which this report  is 

pr imari ly  concerned, it i s  well to review briefly the basic statistical theory 

of orbit determination. 

of observations (radar  tracking data, optical observations, etc. ) denoted by 
an n-vector z is given. From the laws of mechanics and from geometrical 

considerations, the true value 

expressible a s  a known function of a set  of p parameters (p  -= n) denoted 

by the p-vector y : p = p  (y) .  In the simplest case,  y denotes six 

(or  less )  position and velocity components a t  a specified epoch. 

This theory may be formulated as follows: A set  

p of this vector of observations is  

In general, 
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however, y may include other non-orbital parameters  such a s  physical 

constants, biases in observations, tracking station coordinates, etc. The 

non-linear regression equation is then 

e 

where w denotes an n-vector of noise. Given z ,  the functional form of 

pLo and the statistical properties of w, the problem is to estimate y. 

In practice, (1) is linearized by expanding p about an initial guess go. 

Letting A y  = y - go and A z  = z - p (go) (the components of A z  

are called "residuals") , we have 

where 8 is an nxp mat r ix  of known regression coefficients, which are 
simply partial derivatives of p with respect to y. The non-linear problem 

(1) is then solved by iteratively solving linear equations such as (2).  
we a r e  primarily concerned here  with the solution to the linearized 

equation (2), we shall in the future occasionally drop the A ' s  in (2) for 

the sake of notational convenience: 

Since 

0 

It should be obvious when this convention is followed. 

A "weighted least squares" (WLS) estimate of y in (3) takes the 
form 

where W is an n x n diagonal matrix of non-negative weights specified 

in advance. 

unbiased estimates g, 

residuals weighted according to the matr ix  W, 

This unbiased estimate has  the property that of all linear 

gwLs minimizes F(g),  the sunn of squares of 
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i s w LS The p x p covariance matrix of g 

where R = E w w '  is the noise covariance mat r ix  ( I I E I I  denotes the mathe- 

matical expectation operator). 

When the noise is uncorrelated, it is optimal to choose W = R-I ,  a 

diagonal n x n matrix. For  then GWLS = ((3' W e ) - '  and is a minimum 

among the covariance matr ices  of all linear unbiased estimates of y. 
When the noise is correlated and W is restr ic ted to being diagonal, the 

cri terion for selecting W is less  obvious. Golub E21 has considered the 

problem of optimizing W, subject to W being diagonal, and has solved 

this problem for the case in which the correlation matrix is exponential. 

Fo r  the general case in which there are several  mutually uncorrelated 

data types, the authors L41 have proposed a "minimax" weighting which 

may be described a s  follows: le t  the observations be grouped into k 
consecutive data types which a r e  mutually uncorrelated but a r e  internally 

correlated. 

deviations for data type i ,  let 6 ) .  be the matr ix  of regression coefficients 

corresponding to data type i, 

(or an upper bound on the maximum eigenvalue) of the noise correlation 

mat r ix  for data type i. Then the conventional LS estimate of y based 

on data type i,  only, is 

Let Mi be the diagonal mat r ix  of reciprocal standard 

-1 
and let  X i  be the maximum eigenvalue 

and has covariance mat r ix  G satisfying (see i 

2 - I  
Gi I Xi  (0; M i  0 )  

The minimax estimate g MM of y is a linear combination of the gi in 

formula for gMM is as a WLS estimate (4) with weighting mat r ix  WMM, 
which each g. is weighted according to (e!  M i  2 0,)/X The explicit 

1 1 i' 
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r 

I 
2 ' I M 2 / > L z [  

I 

( 9 )  

(ideally, 

satisfying W 5 R . )  The covariance mat r ix  G 

the property that 

WMM is chosen as the maximum diagonal n x n matrix 

then has -1  
MM of ~ M M  

In other words, the covariance matrix of the minimax estimate, 

is never greater than the upper bound on the covariance mat r ix  of the 

conventional LS estimate based on any single data type alone. 

property is achieved by giving less  weight to data types which a r e  highly 

correlated and therefore may contain less  information than their RMS 
values would indicate. 

according to Mi, 

be assured.  

practical orbit determination in which the inclusion of additional highly 

correlated data, weighted according to i t s  reciprocal variance, actually 

degraded the accuracy of the determination over not using that data at all. 

When the noise is uncorrelated, then of course the minimax solution 

coincides with the conventional LS solution which, in turn, is the minimum 

variance solution. 

GMM, 

This 

It should be noted that if data types a r e  weighted 
2 as in conventional LS analysis, this property cannot 

0 
In fact, the authors have encountered actual cases  in 

When the minimax least  squares estimate is to be employed, it is 

sometimes conceptually convenient to replace the correlated noise w in 

( 3 )  with "equivalent -or -worse" uncorrelated noise v for which the 

covariance matr ix  is the reciprocal of the minimax weighting mat r ix  WMM. 

The new regression equation is then 
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The optirnal estimate of y in (11) is now the minimum varlance estimate 

(for which the formula is identical with the minimax estimate of y in ( 3 ) ) :  
0 

gMV = (el wMM e)-1 8 '  WMM 2 . 

The new covariance matrix of gMv is then simply 

= ( 0 '  WMM e) - I  GMV 

which is an upper bound on the covariance mat r ix  of the minimax estimate. 

Thus the uncorrelated noise v may be said to be "equivalent-to-or-worse- 

than" the correlated noise w. Since gMv and GMV, 

which a r e  commonly computed in numerical orbit determination programs, 

we a r e  thus led to a theory which is not only conceptually simple, but 

readily adaptable to analysis using existing computer programs. The 

concept of replacing correlated noise with equivalent -or -worse uncorrelated 

noise is not new and is often used to advantage in an heuarjstic way; 

the particular formulation proposed here,  however, has the advantage of 
being both convenient and rigorous. 

above, a r e  forms 

0 

In concluding, we note that the actual success of a space mission may 

be judged on the basis of one's ability to control a se t  of mission para-  

me te r s ,  denoted by a vector 01 of dimension of q = p, rather than on 

one's ability to control y explicitly. For example, on a lunar mission 

u could denote the two impact parameter coordinates at the moon. 

m a y  nevertheless be more  practical to perform the statistical estimation 

with respect to y. Whetl this is the case,  and when variations in c? a r e  

related to variations in y by a known q x p mat r ix  +, A c = + A y ,  then 

the covariance mat r ix  A of uncertainty in Q is related to the covariance 

ma t r ix  G of uncertainty in y by the well-known formula 

It 

A = +G+' . 
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3. A PRIORI DATA 

In the standard non-linear regression equation, 

one is given z ,  the functional form of 1.1, the statistical properties of w9 

and some criterion for specifying the weighting matrix W.  

here  that, in addition, the initial estimate g of y has associated with 

it an a pr ior i  "information" matr ix  S. S is formed out of the reciprocal 

of t3e a pr ior i  covariance sub-matrix of those components of go for  

which a pr ior i  variances a r e  available, 

columns corresponding to the remaining components of g F o r  example, 

if only the f i r s t  two components of go are specified with a pr ior i  

covariance matrix Ao, S takes the form 

W e  assume 

0 

* 
together with zer0s  in rows and 

0' 

There is no restriction that S be non-singular. The problem then is to 

incorporate go into the W L S  procedure for estimating y .  This may  be 

done as follows: 

Let A y  = y - go. Then the a pr ior i  estimate of A y  is zero,  

having information matrix S .  The W L S  estimate of A y ,  based on 

observations only, is, of course, 

A z  = z - p.(go), and the covariance mat r ix  of Ag 

( O ' W  6 ) - l  8 'WRWB (el W e ) - ' .  

= ( Q ' W  0g- l  8 'W A z ,  where 
- 

n g w L s  
is GWLS - w LS 

*If the actual covariance sub-matrix is not known, an upper bound on 
the sub-matrix may be used instead. 
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l G *  = (G:Ls t S) - l  

Optimal Combination 

The optimal way to combine these two estimates of Ay i s  to weight 
each according to i ts  information matrix. This leads to the estimate 

having covariance matr ix  

One may now iterate f o r  the solution of the non-linear regression equation, 

each time weighting the a pr ior i  estimate go according to i t s  information 

mat r ix  S. 

The disadvantage of the optimal procedure described above is that it 

which can make requires explicit use of the noise covariance mat r ix  R, 
the computations excessively difficult when R is not diagonal (i. e .  , when 

the noise is  correlated). Moreover, R may not be known explicitly. 

Fo r  these reasons we propose the following procedure when the observa- e tional noise is correlated: 

Minimax Combinat ion 

Let W be the minimax weighting mat r ix  WMM, described in Section 2. 

Then we know that the covariance matr ix  of the WLS estimate of Ay based 

on observations, only, satisfies G 

a pr ior i  estimate according to S, 

observations, only, according to 8' W 8 to generate the combined 

estirnate g: 

5 (el W e)-1. Now weight the w LS 
but weight the WLS estimate based on 

(17) 
- 1  g = go t ( e l w e  t s) e l w e  ngWLS . 

- 8 ' W  Az, (17) reduces to a simple operation on the WLS - Since 8 ' W  8 Ag 

observational data : 

The covariance mat r ix  of g is 

G = (elwe t s)-1 (elwRwe t s) ( e l w e  t s)+[ (19) 
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Since R 5 w - ~  (see Section 2),an upper bound on G is MM 

which, in turn is bounded by (e l  W e)? 
then G 5 S , also, so that the minimax property of g 

preserved in g. 
utilization of a priori  data. 

uncorrelated with diagonal covariance mat r ix  equal to W - l ,  

of the above formulas apply except that now equality holds in (20) .  

In case S possesses an inverse, 
-1 

is W L S  
F o r  this reason it i s  proper to call (18) a minimax 

Of course, if the observations a r e  actually 
then all 

It should be noted that i f  additional iterations a r e  called for in order  

to solve the non-linear regression equation, some of the simplicity of 

(18) is lost. The principle to follow then i s  in each iteration to weight 

go according to S and to weight the estimate based on observations 

only according to 8 ' W  8, evaluated at that iteration. However, the 

inequality (20)> based on 8 evaluated for the "nominal" trajectory,  will 

usually be acceptably accurate as  a final answer when the true trajectory 

is not far from nominal. 

4. SEPARATION OF PARAMETERS 

Sometimes the components of the vector parameter y will fall 

quite naturally into two classes ,  Fo r  example, the components of y 

may be classified as orbital and non-orbital, o r  the orbital parameters  

may be subdivided into position and velocity components. 

be interested in actually determining only those components belonging 

to one class ,  but be concerned about the effect of neglecting o r  simul- 

taneously estimating components in the other class.  

with this aspect of orbit determination. 

One may then 

This section deals 

4. 1 Estimating Only One Class of Parameters  

Let us write ( 3 )  in the form 

= CL(Y1, Y2) + w (21) 

where y1  and y 2  denote a separation of the total vector parameter y 
into two sub-vector parameters,  and suppose that we plan to estimate only 
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y l ,  
because it is not practical to estimate both y 1 
able observations will not contain enough "information" about the 

parameter y2 to  allow its estimation.) 

about the initial guesses g and g20 of y1 and y2 takes the form 

either because we are unaware of any uncertainty in y 2' o r  e l se  

and y2. (Often, the avail-  a 
Then the l inear expansion of (21) 

When gl0 has  a pr ior i  information matrix SI, 
the new estimate of y is 

then by analogy with ( 1  8) 

1 

- - gl0 t ( e i W 0 ,  t S)-' 0iW A z I 
g11 

a 

where W is the weighting matrix. It is instructive to substitute from (22) 

for Az, then addand  subtract  (e i  W e 1  t Si)-'  x SI (y, - gl0) to the 

right hand side of (23) ,  to obtain 

The advantage of this formulation is that it shows explicitly that g l l  is 

an unbiased estimate of y in which there are three sources of e r r o r :  
1 

(i) the a pr ior i  estimate g of y l ,  (ii) the incorrect value g20 which 10 
was assumed fo r  y and (iii) the random noise w on the observations. 2' 

We shall assume that the a priori  estimates g 10 and 820 are * 
uncorrelated. Then the covariance mat r ix  of g in (24) is 11 

P 
If glp and g20 a r e  cross-correlated,  then the formula (25) for  G 
mere y made m o r e  complicated by the presence of c ross  -correlatedll!erms. 

is 
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where n2 is the a priori  covariance matr ix  of uncertainty in g20. 
the noise w is uncorrelated with R = W - I ,  then (25) reduces to 

When * 
(26) 

(e i  w el t sl)-l . 1 

If the noise is correlated but R 5 W - l  

mation), then the right side of ( 2 6 )  is an upper bound on G 

(as in the case with minimax es t i -  

1 1 '  

Formula (26) may be interpreted as follows: (0; W el  t S 1 ) - l  is the 

covariance matr ix  of uncertainty in the estimate g l l  resulting from 

uncertainty in the initial estimate of y 1 
observations, only. 

tracking programs. 

negative, symmetric matrix of the same order as ( O f  W el  t SI) 
shows the additional uncertainty in g 1 1  
incorrect value of y Thus, the effect 

of uncertainties in the y2  parameters on the orbit determination process 

may  be examined by camparing the relative contributions of the two t e rms  

in equation (26).  

t e r m  can play an important role  in establishing the confidence which is 

to be assigned to the estimate 

and from noise on the tracking 

This is the matrix which is commonly computed in 

The additional te rm on the right in (26) is a non- 
-1 which 

resulting from having used the 

in the WLS determination of y l .  2 
0 

In high precision orbit determination work, the second 

g l l .  
To c a r r y  this analysis one step further, let us assume now that the 

(vector) mission parameter a which one is interested in (see Section 2) 

is related to the parameters y 1  and y 2  by 

Then the final uncertainty in a can be written as 

L 

1 
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It is useful to regard the coefficient of (y, - g20) 

derivative" of G with respect to y since it shows how uncertainty in y 

affects CL both explicitly and implicitly: 

in (27) as the "total 

2 2' 

The final formula for  the covariance mat r ix  of uncertainty in a is thus 

A s  before, this equation simplifies in the obvious way to give an upper bound 

on A when R C  W-'. 

4 . 2  Estimating Two Classes of Parameters Simultaneously 

The problem of estimating two classes  of parameters  simultaneously is, 

in principle, completely covered by Sections 2 and 3 .  

section is to put the resul ts  into a form which can be readily compared with 

the resul ts  of Section 4. 1. 

The purpose of this a 
We shall write (22)  a s  

dropping the AIS for  convenience. The WLS estimate of [-:-:-I is then 

e;w e l  t sll  I e iw  e2 t s12 I I e i w z  I 

is the a pr ior i  information matrix on parameters .  

The total covariance matrix of this estimate in the general case when the 

noise is correlated is given in Section 3 and need not be repeated. 

interested he re  in some simple relations which a r i s e  when the noise is 

W e  a r e  
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uncorrelated, and will therefore make the simplifying assumption that 

R = E w w '  = W . (This is actually no great restriction, since if the noise 

were correlated it could be replaced with "equivalent -ot -worse" uncorrelated 

noise as shown in Section 2. ) We shall  now introduce the notation 

- 1  0 

J I 
I covariance of est .  of y2 
I parameters  c r o s s - covariance 

Then C - l  is  the^ total covariance mat r ix  of 

and C ( = (C ) I ) ,  are the covariance and cross-covariance mat r ices  

in (31), and C", C22 
1 2  21 

of g1 and g2# individually. . 
It is useful to  be able to express the above mat r ices  in t e r m s  of the 

m o r e  easily computed matrices C l 1 9  -1 C22 -1 and C12 ( = C i l ) .  This can 

done as follows: 

written as 
If we let bl = 0; W z and b2 = 0; WZ, then (31) can be 

0 

12 = Cl1 bl t C b2 81 

22 g2 = CZ1 bl t C b2 

o r  as the inverse transformation 

bl = 5 1  gl  4- c12 g2 

Now eliminate gl f rom (35) and substitute into (36): 

be 

(33) 

(34) 

(35) 

(36) 



8976 -6002 =-RU-000 
Page 13 

This equation may now be solved fo r  gz, 

-1 - 1  
g2 = (‘22 - ‘21 ‘11 ‘12) (b2 - C21 C - l  I l  b 

and the coefficients of bl and b2 compared with those in (341, leading to  

IC22 = (c22 - c21 c;; C l z ) - l  I (37) 

and 
r 

12 I c21 = (c22 - c21  c-1 11 c 12 1 - l  c21 c;; = (C )‘ 1 
Similarly, one can show that 

I d l  = (cll - d,, c-l 22 e 21 1 - l  I 

(389 

(39) 

W e  have thus succeeded in expressing the components of the inverse of 
-1 the mat r ix  C in t e rms  of the more easily computed sub-matrices Cl  , 

C22 and C12 (= Czl)  without explicitly inverting the entire mat r ix  C. 

is of interest  if ,  for example, w e  a r e  primarily interested in orbital para-  

me te r s  (denoted by y l ) ,  and therefore interested in the covariance matr ix  

of orbital elements (C1j9 but must decide between estimating or  not 

estimating non-orbital parameters. 

-1 This 

Actually, the case which we have treated here  is slightly more  general 

than the case treated in Section 4 .1  in that we have not required the a 
pr ior i  estimates of y 

required SZ2 to possess an inverse. 

can rewrite equation (26), using our new notation: 

and y 2  to be uncorrelated and we have not 1 
If we now add these restrictions, we 

1 G1l = 5: + 5: C12 sel 22 G 21 c-l 11 1 
We can now distinguish three levels of sophistication in orbit determination: 

(i) Estimate y1 only, ignoring uncertainties in y It is common 
practice to estimate only orbital parameters an26 give no attention 
to uncertainties in physical constants, station location, etc. The 
covariance matr ix  which is ordinarily assi ned to  the resulting 
estimate of y is c - 1  = ( e iwe ,  t sl)-F. 1 11 
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(ii) Estimate y1 
in y 
This 4eads to the correct formula for G, 

hand sub-matrixh of C-  
estimate of y 

only, as above, but include the effects of uncertainty 
in computing the covariance mat r ix  of the estimate of y l .  

as given by (26). 

Then C1! which is the "upper left 
and ylz' (iii) Estimate both y 

in ( 3 2 ) ,  is the covariance mat r ix  for the 
1' 

The following relations will exist among the above covariance matr ices:  

1 C ; ; =  C 11 Z G l l  = C;: t (Non-neg. def. rnatrix).I 

4. 3 Discussion 

In a typical problem, y1 in (21) may represent the six orbital para-  

me te r s  of position and velocity at a specified epoch and the non-orbital 

components y2 may represent such parameters  as physical constants, 

tracking station coordinates, and biases in observations. 

We note f i r s t  that whenever 8 ' W  8 = 0, then (24) shows that there 

will be no interaction between g and that 20 
using an incorrect value of y in the estimation of y does not effect the 

arrswer to f i r s t  order.  This is confirmed in Section 4. 2, which shows that 

C12 = 0, 

c lasses  of parameters.  

1 2  
and the WLS estimate of y l ,  

2 1 0 
when e iwe,  t S12 = C12 = 0, then C 11 = ( C l l )  -1 , C; 22 = (622) -1 and 

so  that there  is  no correlation between estimates of the two 

2 In order  to evaluate the effects of either neglecting o r  solving f o r  y 

Evaluating these coefficients involves varying degrees of complexity, 

in a general case,  it is necessary to know the elements of the matr ix  

O2 . 
depending on the exact nature of y2: 

(i) Biases. Partial  derivatives of EJL with respect to biases in 
observations a r e  the simplest to  evaluate, since I~L that case the 
partial derivative i s  either one or zero,  depending o w  whether 
the bias is or  i s  not associated with the particular observation 
in question. 

(ii) Station Coordinates. Partial derivatives with respect to 
tracking station coordinates a r e  merely geometric transfor - 
mations which do not involve the equations of motion o b  the 
spacecraft. 
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(iii) Physical Constants. Partial derivatives with respect to physical 
constants such as the mass  of the earth or  the astronomical unit 
a r e  more  difficult to evaluate, since they involve the actual 
equations of motion. These partial derivatives a r e  usually 
evaluated through variational equations or use of analytic derivative 
formulas. 
to keep constant the various angles and angular ra tes  associated 
with the solar system, since planetary angles and angular rates 
a r e  generally known with sufficient accuracy that they may be 
considered as known, compared with other measurements.  On 
the other hand, when the velocity of light c enters  into an orbit 
determination problem, it usually enters  merely as a scaling 
factor on range o r  range rate  data, so that partial derivatives of 
p with respect to c do not involve the equations of motion. 

The evaluation is normally car r ied  out in such a way as 

* 
The analytic tracking accuracy prediction program (TAPP) which is 

under development at STL as a part of the Space Systems Analysis Study 

Contract, will generate partial derivatives of spacecraft observational data 

with respect to all of the above non-orbital parameter.  Depending on how 

these partial derivatives are subsequently processed in the program, one 

will be able to simulate the fitting on non-orbital as well as orbital 

parameters,  or else estimate statistically the degrading effect of using 

incorrect values for non-orbital parameters. 

5. MIDCOURSE MANEUVERS 
e 

5.1  General Theory 

a1 impulsive 
maneuver / 

The above diagram represents schematically a spacecraft trajectory 

in which there is a midcourse maneuver, i. e. , a short  powered flight, which 

*This program makes use of a completely analytic (i. e. , non-integrating) 
formulation and is designed for  the pre-flight tracking and guidance 
analysis of space missions, rather than real-t ime operation. 
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begins a t  time to and las t s  until to  t At. 

reconstructing this trajectory from tracking data taken during the free  -flight 

portions of the trajectory (prior to to and after to t A t )  and from a 

pr ior i  information on the maneuver itself. 

tracking data taken during powered flight is beyond the scope of this report ,  

we shall assume that none is taken. 

polate the second portion of free flight back to time to and conceptually 

replace the actual maneuver with an equivalent "impulsive" correction in 

both position and velocity, which occurs instantaneously a t  t - see dashed 

curves. 

observations are uncorrelated. This is no great restriction, since if the 

tracking noise were correlated, it could be conceptually replaced with 

"equivalent -or-worse" uncorrelated noise (see Section 2). 

We a r e  concerned here  with a 
Since the handling of any 

For  the same reason, we shal lextra-  

0 
Asia further simplification we shall assume that all  tracking 

As a matter  of notation, y 1  will denote t rue position and velocity at 

- (just before the maneuver) and the subscript 1 will denote observa- 

tions, etc. , before the maneuver, z1 = O1 y1 t wl, where 

Ewl  wi = W i l y  diagonal. Similarly, y 2  will denote t rue position and 

velocity at to t (just after the equivalent impulsive maneuver) and the 

subscript 2 will denote (free-flight) observations, etc. , after the maneuver, 

z2 = e2 y2  t w2' where Ew2w; = Wi , diagonal, and Ewl  w i  E 0. 

Next let h ( a )  be the 6 x 6 covariance mat r ix  of execution e r r o r s ,  with'la'' 

the commanded value of the maneuver. 

l a te r ,  mere ly  noting here  that it is a function of a. 

0 
- 1  

We shall discuss the origin of h ( a )  

As a rule, the statistical problem is to estimate y 2' and this is the 

problem we shall consider. 
independent of tracking e r r o r s ,  we have two independent determinations of 

Assuming that execution e r r o r s  a r e  

Y f  

(i) From pre-midcourse tracking plus any a priori  ,information, the 
estimate of y 
Since the maneuver has covariance matr ix  A ( a j  
mat r ix  of uncertainty just after the hypothetical maneuver is 
(e i  W1 81 t Si) - '  t h ( a ) .  (Note: in practice, G may  actually 
be obtained by estimating orbital elements at a diflerent epoch 
and then up-dating to epoch t 

(ii) F rom post-midcourse tracking, only, the estimate of y2  has 
covariance matr ix  ( C I ~ W ~  e2) - 1. 

has covariance matr ix  G1 = (elwl 81 t S1)-1. 
the covariance 1 

This in no way affects the resu l t s , )  
0' 
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Therefore the net covariance matr ix  of uncertainty of an estimate of y2  

which is a linear combination of the above estimates (with each estimate 

being weighted inversely a s  i ts  covariance matrix) is 

e 

If the orbit determination is performed in rea l  time or  la ter ,  then a is a 

known vector, vis . ,  the (hypothetical) commanded correction, and (40) can 

be evaluated numerically. If the analysis is car r ied  out prior to the actual 

flight in order to perform an e r r o r  analysis on the mission, then G2 (a) 
must  be averaged over the random variable a. 
analysis is done by Monte Carlo technique, this averaging can be done 

quite conveniently. 

then it is more  convenient to approximate this averaging by replacing 

A (a) in (40) with i ts  average value A ,  

When the pre-flight e r r o r  

* 
On the other hand, if the analysis is purely analytic, 

- 

where f ( a )  is the distribution function of a. The distribution f(a) comes 

from a pr ior i  knowledge of how close to nominal the trajectory is likely to 

be, together with the guidance logic of which orbital parameters  the 

midcourse maneuver is designed to correct.  

replacing (a) in (40) with its mean value is not strictly corrects  this is 

not a crit ical  point and i t  is highly questionable that it would be worth the 

effort to perform analytically the exact averaging. 

conclude that for a pre-flight analysis, the net covariance matr ix  of 

Although the philosophy of 

Therefore we may 

uncertainty in y2 is given by the approximate formula 

P 
The Monte Carlo technique is a mission analysis tool which encompasses 
injection, multi -midcourse, and terminal guidance analysis, a s  well as 
orbit  determination. It will not be discussed here ,  since it is covered in 
other reports - e. g. [5] . 
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It should be noted that the distribution of the estimate of y2, over the 

ensemble of all possible trajectories and all possible tracking data, is 

non-Gaussian and hence not completely characterized by the second moment 

mat r ix  G2. However, this does not mean that G2 is not a meaningful 

mat r ix  to generate. 

distribution will depend upon the extent to which A 
and may be very slight. 

5.2 The Matrices A ( a )  and A 

a 

Furthermore,  the degree of non-Gaussianness of this 

dominates G2 in (41), 2 

- 

The chief item which makes the analysis of orbit determination compli- 

cated when there is a midcourse maneuver is that the midcourse execution 

e r r o r  is functionally dependent upon the maneuver which is commanded, 

which, for purposes of pre-flight analysis, is a random vector. This 

feature makes the real  time (o r  post flight) analysis different from the pre-  

flight analysis, as w e  have just seen. 

For  the purpose of illustrating execution e r r o r s  more  concretely, we 

shall examine in detail a simplified model of a midcourse maneuver which, 

although not the most  general, is typical of maneuvers occurring on many 

space missions. This model is characterized, f i rs t ,  by the fact that the 

actual correction may be considered impulsive (and therefore in velocity, 

only) and thus is identical with the hypothetical correction. 
execution e r r o r s  a r e  most easily expressed in t e rms  of a spherical 

coordinate system generated by the commanded correction vector V,  
shown below. 

The actual 

The expressions f o r  velocity e r r o r s  in te rms  of basic e r r o r  

J X 
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sources  a r e  

6V 8 = € 3  ' 4 Iv l  

where I V 1 i s  the magnitude of V and where 

is a speed e r r o r  due to engine shutdown, 

is a proportional speed e r r o r  due to accelerometer ,  

and E a r e  la te ra l  velocity e r r o r s  due to control system, 

and E 

'1 

'2 

€ 3  5 
a r e  "pointing" e r r o r s  duk to angular misalignment € 4  6 

We assume that the c 2  are mutually uncorrelated with zero means and 
2 E € 6  = k 4 .  E c 2  = kZ,  E c 3  = E c 5  = k3, E c 4 =  E c l  = k l ,  It i s  con- 2 2 l 2  2 2 

venient to introduce a rotation U relating the above variations in 

spherical coordinates to variations in the rectangular reference coordi-  

nate system x ,  y ,  z :  

where 

= u  

cos 0 - sin Q 
sin 8 cos 8 

0 

cos + cos 8 

cos + sin 8 

- sin + I .  (43) 

Thus the final form of the 3 x 3 execution velocity e r r o r  covariance matr ix ,  

x ( V ) ,  is 

C(V9 = u I k3k3 

U' t v 2 u  

- 
k2 

k4 

k4 

U' 0 (44) 
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The 6 x 6 matrix Aea) which occurs in (40) is simply 0 

where the 6-vector a is in this example replaced by the 3-vector V. 

When the 3-vector Y is specified numerically, Z (V) and A(V) can 

be evaluated numerically. On the other hard when 'J is specified by i ts  

probability distribution and it is required to compute h, 
- 

the calculation is 
not so  simple. Lass and Solloway PI and GatesLlIhave proposed integration 

techniques for evaluating h which appear promising. For  the present, the 
following special cases  and approximations to F can be useful in computing 

A: 
- 

(i) Degenerate Case. When the a pr ior i  distribution of V is actually 
one-dimensional along a direction characterized by 6, and +,, 
then U = Uo, evaluated a t  eo and +o and the mean value of 
X ( V )  is 

7 - 

where 7 = E 
very nearly the case for the f i rs t  midcourse correction after 
injection. Thus (46) m a y  often be used as an approximate formula 
for  execution e r r o r s  during the first midcourse correction, with 
8, and +o denoting the direction of the maximum eigenvector of 
the a pr ior i  covariance matrix of V,  and v2 a s  the t race of the 
a pr ior i  covariance matrix of V. 

It frequently happens in practice that this is 

(ii) Symmetric Case. When the a pr ior i  distribution of V is 
spherically symmetric,  then IVl 
uniformly distributed from 0 to %T and C$ distributed with frequency 
(1/2) sin + between 0 and ~ h .  Thus, averages with respect to V, 
e a d  + may he performed independently in (441, leading to 

6 ami + a r e  independent with 6 

-7 lr = 1/3 [(kl + 2k3) t V (kz t 2k4)]  I3 I (47) 

12 practice, the distribution of V for the second or third mid-  
course correction is likely to be very nearly symmetric.  Thus 
(47) can often be used as  an approximate formula fo r  execution 
e r r o r s  going with these later midcourse corrections. 
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- 
This easily computed upper bound on Z can always be used as a 
conservative substitute for z. If it happens that k l  = k3 and 
k2 = k4, 
formula is exact. 

then, of course, equality is attained in (48) and the 

6. UPDATED LEAST SQUARES 

This section describes an orbit determination technique which, because 

it does not require the storage of l a r g e  qabantEties of observational data, is 

especially adapted to rear time operation by an on-board computer. The 
essential  features of this method 3ave been proposed by Smith and Schmidt bl 
who, because of the analogy between the estimation of orbits and the 

prediction ob a time ser ies  by linear fEltering, refer to this scheme as an 

"optimal filtey" method. From our  point of view, h-owever, i t  is more  

natural to regard it as a least  sqiares estimation prozednire in lA+.ich 

estimates ob orbital parameters a r e  co2t52~a1Ey updated z ~ d  moCfled as new 

pEata a r r ives .  

Consider the fdlowing estimation problem: a r  initial unbiased estimate 

of spacecraft p s  tfon and vdocity a t  t-kne t 

pr ior i  6 x 6 ~ ~ ~ a : r ' d x e e  matr tx  G of uncertainty 

each observation time tk, k 2 1, 2, . o .  , 
vations z is taken. (The dimension q may be different for  different k 
observation t imes.)  We assume 401- the Xzeset-t that all observations a r e  

uncorrelated, 2nd thzt tSe obsezvatkws taken at  t ' h e  t are  characterized 

by a kq 
each observation t h e  t it is  reqn;red to combine the old estimate of 

the orbit with the ne-m data t~ form a ~ e -  "bestvs estimate of position and 

velocity a t  t 

together with an a go a' 
1s pro%fded. At 

-vector of unbiased obser- 
g* o 

a 

k 
(d iagard)  ccrvariance matrix l$ k =. 1,  2 ,  Then at  

k' 

and to detersnim-e t%e ccPvasla-!,ee mntr,x Gk of gk. This k' 
concept is illustrzted .n tkre accompa.ryFng diagzam, ir i A k h  y 0, Y 1 '  Y2' 
. . . denote the true position and velocity vector at  t o, t l '  tL '  0 * 

In the solution to this problem, ' t  '3 subficietrt to  describe the 

calculations performed just after the k th set of observation- i s  taken. Let 
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True Trajectory 

L 
0 

Trajectory 

d 

Updated least  squares orbit  determination. yo, y l ,  . . . denote the t rue  

is the "best" es t i -  gk position - velocity vectors at times t o ,  t l '  

k '  mate at time t while Xk is gk-l  updated to  time t k' 
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a Xk denote the result  of integrating the equations of motion from tk - to 

as initial conditions. Then serves  as an initial k-1 tk, using g 

estimate of yk for which the I r a  priori" covariance m a t r i x , A k ,  

updated to time : tk 

is Gk - , 

where 9 (k, k-1) is a known 6 x 6 transition mat r ix  satisfying 

The observations z satisfy the non-linear regression equation k 

where j.i is a known function of the orbital parameters  y and wk is k' 
noise for  which Ewkw& = %. 
The linearized form of (51) is 

W e  may  now proceed exactly as in Section 3.  

(52)  k A Z  = B o y k  t w k 
a:J.k 

- xk, AZk = Zk - I-'- (s), and 8k = (K) is a q x p 
-1  yk where A y k  = 

mat r ix  of known coefficients. Setting Wk = Rk , the new estunate of yk is 

I = t G~ e; w k n  zk I gk (53)  

where Gk is the covariance matr ix  of gk, 

W e  have described above the basic orbit determination technique. This 

technique can be generalized and/or modified to fit different situations. 

Some such modifications are described below. 

(i) Matrix Identity. An equivalent formulation of (54) is as follows: 
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When q -= 6, this formula has the computational advantage that 
the mat r ix  which must be inverted is of order  q x q, ra ther  than 
6 x 6 as in (54). This new formula follows from (54) as a result  
of the matrix identity below: 

Theorem. Let A and W be positive definite symmetric mat r ices  
of orders  p x p and q x q, respectively. 
matrix. Then 

Let 8 be any q x p 

Proof: Consider first the special case W = I By solving the 
matrix equation q' 

for  the unknown p x p matr ix  X, we obtain 

= A ( I  t el e t  e A  . 
P 

Next we note that 

Substituting this expression for  el in (58) leads to 

(ii) 

which proves the theorem in this special case.  s h e  general case 
m a y  now be proved by substituting 8 = W - l i 2  8 into (56), which 
reduces the general case to the special case just examined, Q.E.D.  

Correlated Observations. 
time tk a r e  correlated with non-diagonal covariance matrix Rk, 
but that observations taken a t  different t imes a r e  uncorrelated. 
Then i t  is optimal to  use the non-diagonal weighting matrix 
wk = R1;' in (53). 
estimate is stillvalid, using w k  = R G ~ .  
to use a non-diagonal weighting matrixP of. i f  Rk is not known 
explicitly, then a "minimax" diagonal weighting matrix may  be 
used. 
upper bound on the covariance mat r ix  of the estimate.  

Suppose that the q observations taken at 

Equation (54) for the covariance matrix of the 
~f it is not convenient 

When this is done, the right hand side of (54) becomes an 
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If observations a r e  correlated in time as well a s  instantaneously, 
then diagonal weighting matrices may still be used, but they should 
be scaled down according to the minimax principle enunciated in 
Section 2 to insuee that highly correlated data types a r e  not overly 
weighted. 

(iii) Midcourse Maneuvers. The (real  time) handling of midcourse 
maneuvers can be incorporated quite easily into the updated least  
squares routine. F o r  example, if a maneuver occurs just prior 
to time tk, 
the estimate Xk, and the covariance mat r ix  of execution emrors 
should be added to h k  , to form a new a pr ior i  estimate and 
covariance matrix at  t 

then the commanded correction should be added to 

k' 
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