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Abstract

The first stage in an adaptive finite element scheme (cf. [CAS95, bor1]) consists in
creating an initial mesh of a given domain Ω, which is used to perform an initial
computation (for example a flow solver). A size specification field is deduced (e.g.
at the vicinity of each mesh vertex, the desired mesh size is specified), based on the
numerical results. If the mesh does not satisfy the size specification field, then a new
constrained mesh, governed by this field, is constructed. The size specification field
is usually obtained via an error estimate [FOR, VER96]. Actually, the estimation
gives a discrete size specification field. Using an adequate size interpolation over the
mesh elements, a continuous field is then obtained.

Metrics are commonly used to normalize the mesh size specification to one in
any direction (cf. [VAL92]), and are defined as a symmetric positive definite matrix
associated to any point of the domain.

A classical adaptation loop is:

0 Build a initial mesh T 0
h

1 loop i = 0, ...
• Solve your problem on mesh T i

h

• Compute an error indicator , and if the error is small enough then stop.
• Compute a metric Mi+1 ,
• Bound, regularize the metric Mi+1 ,
• Compute a new unit mesh T i+1

h with respect to the new metric.

In this kind of algorithm, there are two problematic cases:

One) if the minimal mesh size is reached then we generally lose the anisotropy of
the mesh in this region.

Two) In the adaptation loop, we use a hidden scheme to evaluate the metric, so
some-times the mesh size to compute a good approximation of the solution is
incompatible with the scheme to get a good approximation of the metric.
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First, we do the numerical experiment to show this two snags. All the experi-
ments are done with FreeFem++ software , see [freefempp, DAN03].

In this article we present the classical mesh adaptation with metric in section 2.
And in section 3 we present the first trouble and some way to solve it. In section 4,
a second problem is described and we explain when it occurs.

1 Metric and anisotropic mesh adaptation

In this section we recall the notion of mesh adapted to a control space or a metric
map. Let Ω be a domain of Rd (d = 2 or 3) and Md(Ω) be a continuous field of
metrics associated with the points of Ω. The metric at a point P of Ω characterizes
the desired edge- or element-size in the vicinity of P . By normalizing the desired
size to one, the metric at P can be defined as a symmetric positive definite matrix
of order d, denoted as Md(P ),

Under this metric definition, in the Riemannian space the length L of a curve Γ
of IRd, parametrized by γ(t)t=0..1, is

L =
1

0

tγ(t) M(γ(t))γ(t) dt (1)

The metric given is a tool to govern the local mesh size, and so we build a unit
mesh in the metric. A unit mesh is such that the size of all the edges in a metric is
close to 1.

A way to build a metric with a method of order 2 in space, is to use the Hessian
H as a good error indicator. Details on the ingredients used in the metric definition
for inviscid and viscous laminar and turbulent flows involving shocks and boundary
layers can be found in [missi, bor2, CAS00, HEC97, GEO99, HAB].

The Key idea is that: the order of the error is given by of the interpolation
error, and for a P 1 Lagrange discretization of a variable u, the interpolation error
is bounded by:

E = ||u−Πhu||∞ ≤ 1

2
sup

T∈Th

sup
x,y,z∈T

|H(x)|(y − z).(y − z) (2)

where Πhu is the P 1 interpolate of u, |H(x)| is the Hessian of u at point x after
being made positive definite, and where . is the dot product.

The formular (2) give a way to evaluted the interpolation Epq error on an edge
(p, q)

Epq = |H(x)|(q − p).(p− q)
1

0

|H(tp + (1− t)q)|(q − p).(p− q)dt

Now, we generate, using a Delaunay procedure as a mesh generation method, a
mesh with edges close to unit length in the metric

M =
|H|
(E)

. (3)

The interpolation error Epq is equi-distributed with E over the edges pq of the mesh.
More precisely, we have
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(pq)TM(pq) =
1

E (pq)T |H|(pq) ≤ 1. (4)

so the interpolation error is less than E . Remark, we forgot the coefficient 1
2

because the two screw E and E
2

are equivalent.
For systems, the previous approach leads to a metric for each variable. For two

metrics M1 and M2, we define a metric intersection M = M1 ∩M2, such that the
unit ball of M is included in the intersection of the two unit balls of metric M2 and
M1 with the procedure defined in [GEO99, chap 10.3.3] for example.

To evalute the Hessian of uh a P1 finite element function, we can use two formulas
like:

Hk
hij = − 1

3|Ωk| Ωk

∂iuh∂jw
k (5)

where wk is the finite element basis function associated to the vertex k and |Ωk| is
the measure of the support of this basis function.
Remark, this approximation generally does not converge when the size of the tri-
angle becomes close to zero.

Or a more stable technique is to make a double projection like:

Hh = IL2 ∇ IL2(∇u) (6)

where IL2 is the L2 projection on the P1 Lagrange finite element space.
Remark, we have no convergence proof, but result is better with using(6, see
[alauzet, remark 1.14] for more detail. For the convergence problem, just take the
following example approximation of f(x, y) = x2 + y2. If we take a mesh pattern
around point x0 = 0, and we do a homothety with matrix ( h 0

0 h ) on this pattern.
The value of approximate Hessian at mesh point x0 given by the two method on the
transform pattern are independent of h, because f is quadratic.

1.1 Mesh generation and adaptation

We use the mesh generation tools developed at INRIA-Gamma project [bamg,
GEO99]. One novelty however in this work in the Delaunay mesh generation part
is to introduce an extra criteria keeping the new mesh nodes and connectivities
unchanged as much as possible compared to the previous mesh where the mesh pre-
scribed by the metric is similar to the previous mesh. This is of course suitable for
time dependent simulations and reduces the perturbation introduced by remeshing
and solution interpolation from the background over the new mesh.

The algorithm of adapted mesh generation is a Delaunay-like method ( [GEO99,
Sec. 7.3.1]) where the insert point procedure is fully described in [GEO99, Sec. 7.6.1].

To introduce the idea above, we need to use the points of the background mesh.
The algorithm is:

1. Create a bounding box mesh.
2. Discretize the boundary with respect to the metric, Let P be a set equal SB the

set of boundary point.
3. Sequentially add the internal points of the background mesh to P, if a point is

not too close (distance in the metric less than 1√
2
) to a point of P.
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4. Insert the points of P one by one.
5. Enforce the boundary mesh.
6. Remove outside triangles.
7. DO: far field point creation S = ∅.

• Split all the edges which are too long such that the lengths of sub-edges ’in
the metric’ are close to one. Add the new splitting points in S.

• Insert all the points of S,if they are not too close ’in the metric’ to an
existing point.

8. if S is not empty, repeat 7.
9. Do some small regularization.

.

Finally, the adaptation loop scheme is:

0) Build a initial mesh T 0
h

1) loop i = 0, ...
1. Solve your problem on mesh T i

h

2. Compute an error indicator , and if the error is small enough then stop.
3. Compute a metric M ,
4. Bound, regularize the metric M ,
5. Compute a new mesh unit mesh T i+1

h with respect to the new metric.

Remark, all these tools are available in the FreeFem++ software [freefempp].

2 Lose of Anisotropy

In case of a solution with shock layer, the minimal mesh size goes to zero perpen-
dicularly to the shock during the adaptation loop, so the user wants a method to
bound computations in size or in time. To do this, he gives a minimal mesh size
cutoff value to limit the number of mesh points.

We see the problem immediately, if the adaptation loop tries to build an
anisotropic mesh with smaller a mesh size than the minimal mesh size cutoff value.

First, to focus on this problem, we just try to build an optimal mesh with respect
to the function

f(x, y) = yx2 + y3 + tanh(10(sin(5y)− 2x)).

This function has a smooth shock line. the equation of the line is sin(5y) = 2x.
Figure 3 shows a three dimensional representation of this function f .

The adaptation algorithm in FreeFem++ [freefempp] language is:
// interpolation error: eps = E, see formula (2)
real eps = 0.002;

the user parameter to set the miminal mesh size hmin
real hmin=0.005;// see figure 1
// or hmin=0.000005 see figure 2
func f = y*x*x+y*y*y+h*tanh(10*(sin(5.0*y)-2.0*x));
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border cercle(t=0,2*pi) x=cos(t);y=sin(t);

mesh Th=buildmesh(cercle(20));

for (int i=0;i<6;i++)

{
Th=adaptmesh(Th,f,hmin=hmin,err=eps,nbvx=100000);
plot(Th,ps="la-Th-"+hmin+".eps");
}

Fig. 1. Adaptated mesh with hmin = 0.005, the left picture seems good but on the
picture on the right , we see the lose of anisotropy (Number of Triangles = 11456,
Number of Vertices 5806)

Fig. 2. Adaptated mesh with hmin = 0.00005, everything is correct (Nb of Trian-
gles = 14054, Nb of Vertices 7110)
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The natural question is: ”Why does this problem of losing anisotropy occur?”
The answer is given in the three dimensional plot of the f function on a coarse

grid with shading. As you can see thanks to the shading in the shock region it is
dented, irregular because the surface is badly approximated. In a tangent direction
to the shock layer, the second derivative is high and thus the method puts lots of
points in this direction, and the mesh become isotropic.

Fig. 3. the 3d representation of function f on a grid which is too coarse, with
hmin = 0.05

Now, how to solve this problem?

• Change the mesh generator or do some optimization, to force points to be on
extremal curvature lines to get super convergence propriety (see paper with
J.-F. Lage in preparation).

• Change the error indicator, in a shock region, see the work of F. Alauzet
[alauzet].

• Smooth the solution before the computation of the metric with for example a
convolution with a regularizing real function Φh of IRd to be sure that the built
metric respects the constraint on hmin.
Remember that, the convolution operator of two functions is defined by

(f g)(x) = f(x− y)g(y)dy.
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The regularizing function must clearly satisfy:

IRd
Φh(x)dx = 1, and ||(∂ij(Φh))ij∈(1,..,d)2 || ≤ 1

h2
(7)

where here h is the minimal mesh size cutoff value hmin.
The function can be radial and can be defined with Φh(x) = φh(||x||). The real
function φh has a small support, must verify

∞

0

rd−1φh(r)dr =
1

Sd
, |φh| ≤ 1/h.

where Sd is the measure of the sphere in dimension d ( S2 = 2π, S3 = 4π).
Let us introduce the function ρ defined by

ρ(x) =

⎧⎨⎩
1− 1

2
x2 if x ∈ [0, 1],

1
2
(x− 2)2 if x ∈ [1, 2],

0 otherwise x ∈ [2,∞].

and denote αd =
∞
0

xd−1ρ(x)dx, we have α2 = 7/12 and α3 = 1/2 and we can
remark that |ρ | = 1 on ]0, 2[.
We define the function φh by

φh(x) =
1

h̃dαdSd

ρ(
x

h̃
).

On the support [0, 2h̃[ of φh(x) we have

|φh| = 1

h̃d+2αdSd

=
1

h2
thus h̃ = (

h2

αdSd
)

1
d+2

So finally the function is

Φh(x) = (αdSd)−
2

d+2 h− 2d
d+2 ρ((

h2

αdSd
)−

1
d+2 ||x||)

The same example with this technique solves the problem, as you can see on
figure 4.

Remark, we preserve the anisotropy but we lose a little bit in the thickness of
the shock layer. This is due to the size of the support of function Φh.

3 Problem of convergence in adaptation

As I say in the introduction, there is a hidden scheme to compute the metric. To
compute the metric we use formula (3). Here, to evaluate the Hessian of a discrete
function uh, we use (6). This hidden scheme has some criterion of convergence,
this criterion is hard to define exactly. But anyway, it is possible to show some
convergence problems.

Let take the same adaptation loop with a more harder function f .

f = 0.1 ∗ (y ∗ x ∗ x + y ∗ y ∗ y) + h ∗ tanh(200 ∗ (sin(3y)− 2x));
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Fig. 4. Adaptated mesh with hmin = 0.005, with the convolution technique, Nb
of Triangles = 9659, Nb of Vertices 4905

Fig. 5. iteration 12 and 13 , zoom around point (0,0)

Fig. 6. iteration 14 and 16, zoom around point (0,0)
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The shock on this function is straighter, due to the coefficient set to 200.
real eps = 0.01;

real hmin=0.000005; //

int nbiter=40;

func f = 0.1*(y*x*x+y*y*y)+tanh(200*(sin(3*y)-2*x));

// same loop and initial mesh as in the previous // freefem++ example at page
2.

We see that at iteration 12 the mesh is correct, but in the next three steps
the meshes are bad because the metric is cleary wrong. The reason is: We do not
have enough points to compute the second derivative to evaluate the metric of the
function f correctly, from the interpolation of f on the current mesh.

A classical analysis of a scheme to compute a second order derivative, shows
that the error depends of the third derivative. In the example the third derivative
is huge compare to the second.

First, This problem happens rarely, if we change the norm to evaluate the error
, the L∞ norm is changed to a more geometrical error (the Hausdorff distance). In
this case, the metric associed to function u is defined by

M =
|H|

( 1 + ||∇u||2E)
, (8)

where H is the Hessian of u.
With this metric, computational results are often better (see figure 7 and 8) ,

but the problem can still occur, and I have no another solution that completely
solves this problem.

Conclusion:
This kind of adaptation scheme gives very good results but sometimes, as you

have seen they are problems. Generally, we can explain why the problem occurs, by
analysing an example. Sometimes it is more difficult to correct, but anyway mesh
adaptation can help you to solve a lot of problems.
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