pmc logo imageJournal ListSearchpmc logo image
Logo of narJournal URL: redirect3.cgi?&&auth=0t1dSqov9leZPpgU5ZMgENHZ4HaJWhAcAzP0qD5XP&reftype=publisher&artid=147500&article-id=147500&iid=4452&issue-id=4452&jid=4&journal-id=4&FROM=Article|Banner&TO=Publisher|Other|N%2FA&rendering-type=normal&&http://nar.oupjournals.org
Nucleic Acids Res. 1998 April 15; 26(8): 2008–2015.
PMCID: PMC147500
Skipper, an LTR retrotransposon of Dictyostelium.
P Leng, D H Klatte, G Schumann, J D Boeke, and T L Steck
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
Abstract
The complete sequence of a retrotransposon from Dictyostelium discoideum , named skipper , was obtained from cDNA and genomic clones. The sequence of a nearly full-length skipper cDNA was similar to that of three other partially sequenced cDNAs. The corresponding retrotransposon is represented in approximately 15-20 copies and is abundantly transcribed. Skipper contains three open reading frames (ORFs) with an unusual sequence organization, aspects of which resemble certain mammalian retroviruses. ORFs 1 and 3 correspond to gag and pol genes; the second ORF, pro, corresponding to protease, was separated from gag by a single stop codon followed shortly thereafter by a potential pseudoknot. ORF3 (pol) was separated from pro by a +1 frameshift. ORFs 2 and 3 overlapped by 32 bp. The computed amino acid sequences of the skipper ORFs contain regions resembling retrotransposon polyprotein domains, including a nucleic acid binding protein, aspartyl protease, reverse transcriptase and integrase. Skipper is the first example of a retrotransposon with a separate pro gene. Skipper is also novel in that it appears to use stop codon suppression rather than frameshifting to modulate pro expression. Finally, skipper and its components may provide useful tools for the genetic characterization of Dictyostelium.
Full Text
The Full Text of this article is available as a PDF (168K).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
  • Poole, SJ; Firtel, RA. Genomic instability and mobile genetic elements in regions surrounding two discoidin I genes of Dictyostelium discoideum. Mol Cell Biol. 1984 Apr;4(4):671–680. [PubMed]
  • Marschalek, R; Borschet, G; Dingermann, T. Genomic organization of the transposable element Tdd-3 from Dictyostelium discoideum. Nucleic Acids Res. 1990 Oct 11;18(19):5751–5757. [PubMed]
  • Cappello, J; Handelsman, K; Lodish, HF. Sequence of Dictyostelium DIRS-1: an apparent retrotransposon with inverted terminal repeats and an internal circle junction sequence. Cell. 1985 Nov;43(1):105–115. [PubMed]
  • Marschalek, R; Hofmann, J; Schumann, G; Gösseringer, R; Dingermann, T. Structure of DRE, a retrotransposable element which integrates with position specificity upstream of Dictyostelium discoideum tRNA genes. Mol Cell Biol. 1992 Jan;12(1):229–239. [PubMed]
  • Marschalek, R; Hofmann, J; Schumann, G; Dingermann, T. Two distinct subforms of the retrotransposable DRE element in NC4 strains of Dictyostelium discoideum. Nucleic Acids Res. 1992 Dec 11;20(23):6247–6252. [PubMed]
  • Ashworth, JM; Watts, DJ. Metabolism of the cellular slime mould Dictyostelium discoideum grown in axenic culture. Biochem J. 1970 Sep;119(2):175–182. [PubMed]
  • Feinberg, AP; Vogelstein, B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. [PubMed]
  • Henikoff, S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. [PubMed]
  • Kozak, M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. [PubMed]
  • Kozak, M. A consideration of alternative models for the initiation of translation in eukaryotes. Crit Rev Biochem Mol Biol. 1992;27(4-5):385–402. [PubMed]
  • Hansen, LJ; Chalker, DL; Sandmeyer, SB. Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol Cell Biol. 1988 Dec;8(12):5245–5256. [PubMed]
  • Williamson, VM. Transposable elements in yeast. Int Rev Cytol. 1983;83:1–25. [PubMed]
  • Cappello, J; Cohen, SM; Lodish, HF. Dictyostelium transposable element DIRS-1 preferentially inserts into DIRS-1 sequences. Mol Cell Biol. 1984 Oct;4(10):2207–2213. [PubMed]
  • Nakamura, Y; Wada, K; Wada, Y; Doi, H; Kanaya, S; Gojobori, T; Ikemura, T. Codon usage tabulated from the international DNA sequence databases. Nucleic Acids Res. 1996 Jan 1;24(1):214–215. [PubMed]
  • Copeland, TD; Morgan, MA; Oroszlan, S. Complete amino acid sequence of the basic nucleic acid binding protein of feline leukemia virus. Virology. 1984 Feb;133(1):137–145. [PubMed]
  • Covey, SN. Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucleic Acids Res. 1986 Jan 24;14(2):623–633. [PubMed]
  • Henderson, LE; Copeland, TD; Sowder, RC; Smythers, GW; Oroszlan, S. Primary structure of the low molecular weight nucleic acid-binding proteins of murine leukemia viruses. J Biol Chem. 1981 Aug 25;256(16):8400–8406. [PubMed]
  • von der Helm, K. Cleavage of Rous sarcoma viral polypeptide precursor into internal structural proteins in vitro involves viral protein p15. Proc Natl Acad Sci U S A. 1977 Mar;74(3):911–915. [PubMed]
  • Yoshinaka, Y; Luftig, RB. Properties of a P70 proteolytic factor of murine leukemia viruses. Cell. 1977 Nov;12(3):709–719. [PubMed]
  • Johnson, MS; McClure, MA; Feng, DF; Gray, J; Doolittle, RF. Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7648–7652. [PubMed]
  • Doolittle, RF; Feng, DF; Johnson, MS; McClure, MA. Origins and evolutionary relationships of retroviruses. Q Rev Biol. 1989 Mar;64(1):1–30. [PubMed]
  • Xiong, Y; Eickbush, TH. The site-specific ribosomal DNA insertion element R1Bm belongs to a class of non-long-terminal-repeat retrotransposons. Mol Cell Biol. 1988 Jan;8(1):114–123. [PubMed]
  • Kulkosky, J; Jones, KS; Katz, RA; Mack, JP; Skalka, AM. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol. 1992 May;12(5):2331–2338. [PubMed]
  • Xiong, Y; Eickbush, TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 1990 Oct;9(10):3353–3362. [PubMed]
  • Jacks, T; Townsley, K; Varmus, HE; Majors, J. Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag-related polyproteins. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4298–4302. [PubMed]
  • Yoshinaka, Y; Katoh, I; Copeland, TD; Oroszlan, S. Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1618–1622. [PubMed]
  • Feng, YX; Yuan, H; Rein, A; Levin, JG. Bipartite signal for read-through suppression in murine leukemia virus mRNA: an eight-nucleotide purine-rich sequence immediately downstream of the gag termination codon followed by an RNA pseudoknot. J Virol. 1992 Aug;66(8):5127–5132. [PubMed]
  • Rein, A; Levin, JG. Readthrough suppression in the mammalian type C retroviruses and what it has taught us. New Biol. 1992 Apr;4(4):283–289. [PubMed]
  • Jacks, T; Varmus, HE. Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science. 1985 Dec 13;230(4731):1237–1242. [PubMed]
  • Jacks, T; Madhani, HD; Masiarz, FR; Varmus, HE. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell. 1988 Nov 4;55(3):447–458. [PubMed]
  • Jacks, T. Translational suppression in gene expression in retroviruses and retrotransposons. Curr Top Microbiol Immunol. 1990;157:93–124. [PubMed]
  • Chamorro, M; Parkin, N; Varmus, HE. An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):713–717. [PubMed]
  • Brierley, I; Digard, P; Inglis, SC. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989 May 19;57(4):537–547. [PubMed]
  • Dinman, JD; Icho, T; Wickner, RB. A -1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein. Proc Natl Acad Sci U S A. 1991 Jan 1;88(1):174–178. [PubMed]
  • Belcourt, MF; Farabaugh, PJ. Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site. Cell. 1990 Jul 27;62(2):339–352. [PubMed]
  • Farabaugh, PJ; Zhao, H; Vimaladithan, A. A novel programed frameshift expresses the POL3 gene of retrotransposon Ty3 of yeast: frameshifting without tRNA slippage. Cell. 1993 Jul 16;74(1):93–103. [PubMed]
  • Evgen'ev, MB; Corces, VG; Lankenau, DH. Ulysses transposable element of Drosophila shows high structural similarities to functional domains of retroviruses. J Mol Biol. 1992 Jun 5;225(3):917–924. [PubMed]
  • Schwartz, DE; Tizard, R; Gilbert, W. Nucleotide sequence of Rous sarcoma virus. Cell. 1983 Mar;32(3):853–869. [PubMed]
  • Yoshioka, K; Honma, H; Zushi, M; Kondo, S; Togashi, S; Miyake, T; Shiba, T. Virus-like particle formation of Drosophila copia through autocatalytic processing. EMBO J. 1990 Feb;9(2):535–541. [PubMed]
  • Matthews, GD; Goodwin, TJ; Butler, MI; Berryman, TA; Poulter, RT. pCal, a highly unusual Ty1/copia retrotransposon from the pathogenic yeast Candida albicans. J Bacteriol. 1997 Nov;179(22):7118–7128. [PubMed]
  • Chang, LJ; Pryciak, P; Ganem, D; Varmus, HE. Biosynthesis of the reverse transcriptase of hepatitis B viruses involves de novo translational initiation not ribosomal frameshifting. Nature. 1989 Jan 26;337(6205):364–368. [PubMed]
  • Schlicht, HJ; Radziwill, G; Schaller, H. Synthesis and encapsidation of duck hepatitis B virus reverse transcriptase do not require formation of core-polymerase fusion proteins. Cell. 1989 Jan 13;56(1):85–92. [PubMed]
  • Yu, SF; Baldwin, DN; Gwynn, SR; Yendapalli, S; Linial, ML. Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science. 1996 Mar 15;271(5255):1579–1582. [PubMed]
  • McMillan, JP; Singer, MF. Translation of the human LINE-1 element, L1Hs. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11533–11537. [PubMed]
  • Kikuchi, Y; Sasaki, N; Ando-Yamagami, Y. Cleavage of tRNA within the mature tRNA sequence by the catalytic RNA of RNase P: implication for the formation of the primer tRNA fragment for reverse transcription in copia retrovirus-like particles. Proc Natl Acad Sci U S A. 1990 Oct;87(20):8105–8109. [PubMed]
  • Voytas, DF; Ausubel, FM. A copia-like transposable element family in Arabidopsis thaliana. Nature. 1988 Nov 17;336(6196):242–244. [PubMed]
  • Levin, HL. A novel mechanism of self-primed reverse transcription defines a new family of retroelements. Mol Cell Biol. 1995 Jun;15(6):3310–3317. [PubMed]
  • Levin, HL. An unusual mechanism of self-primed reverse transcription requires the RNase H domain of reverse transcriptase to cleave an RNA duplex. Mol Cell Biol. 1996 Oct;16(10):5645–5654. [PubMed]
  • Lin, JH; Levin, HL. A complex structure in the mRNA of Tf1 is recognized and cleaved to generate the primer of reverse transcription. Genes Dev. 1997 Jan 15;11(2):270–285. [PubMed]
  • Chalker, DL; Sandmeyer, SB. Transfer RNA genes are genomic targets for de Novo transposition of the yeast retrotransposon Ty3. Genetics. 1990 Dec;126(4):837–850. [PubMed]
  • Craigie, R. Hotspots and warm spots: integration specificity of retroelements. Trends Genet. 1992 Jun;8(6):187–190. [PubMed]
  • Devine, SE; Boeke, JD. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev. 1996 Mar 1;10(5):620–633. [PubMed]
  • Zou, S; Ke, N; Kim, JM; Voytas, DF. The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 1996 Mar 1;10(5):634–645. [PubMed]