SENSORS: A NEW WAY TO COLLECT DATA FOR ENVIRONMENTAL DECISON-MAKING?

Elizabeth Conroy, Environmental Specialist New Jersey Schools Development Authority Real Estate Division EConroy@NJSDA.gov 609-777-1854 www.ITRCweb.org Interstate Technology Regulatory Council Sampling **Characterization and Monitoring Team**

Process

Traditional Sampling

Collect Sample

 \rightarrow

Pkg. Sample for Shipment

Mail Sample to Lab.

Prepare Sample for Analysis

Analyze Sample

Review Results

Sensor Collects Data in Field; Transmits to Office

WHAT IF?

☑ It was possible to get real-time, continuous environmental data without having to physically obtain a sample

What are the benefits of this type of data?

What types of applications would this type of information be useful for?

☑If the technology exists, what are some of the issues with the use of sensors?

CURRENT SENSOR ACTIVITY

☑Commercial marketplace is booming

Extensive academic and commercial research

XEPA

• Strategic Plan 2006-2011: Goal 4

XNSF

- National Ecological Observatory Network (NEON)
- Sensors for Environmental Observatories report: 2006

☑Interstate Technology Regulatory Council (ITRC)

ITRC – Shaping the Future of Regulatory Acceptance

Documents

 Technical and regulatory guidance documents
 Technology overviews
 Case studies

Training

☑ Internet-based
 ☑ Classroom

% Network

- State regulators
- Federal government
- ☐ Industry
- ☐ Consultants
- Academia
- Community stakeholders

ITRC State Members

WHAT DO I MEAN BY "SENSOR"?

 A sensor is any device that collects environmental data on water or soil in situ without the need to obtain a discrete sample.
 Sensors collect large amounts of data on a continuous basis over time, with the sensor often placed in one location.

We are not considering applications for —Air —Homeland Security

TYPES OF SENSORS

				and the second
Ж	Sensor Category	Parameter	Cost (\$)	Field-Readiness
¥	Physical	Temperature	50-100	High
Ħ	- Hydrodi	Moisture, Content	100-500	High
Ħ		Flow Rate, Flow Velocity	1,000-10,000	High
		Pressure	500-1,000	High
Ж		Light Transmission (Turbidity)	800 -2,000	High
Ж	Chemical	Dissolved Oxygen	800-2,000	High
Ħ		Electrical Conductivity	800-2,000	High
Ж		рН	300-500	High
Ħ		ORP	300-500	Medium
Ħ		Major lons (Cl ⁻ , Na+)	500-800	Low-Med
Ж		Nutrients (NO3 ⁻ , NH4 ⁺)	500-35,000	Low-Med
Ħ		Heavy Metals	NA	Low
Ħ		Small Organic Compounds	NA	Low
Ж		Large Organic Compounds	NA	Low

Examples of environmental sensors: cost (NA=Not Available). (From: Distributed Sensing Systems for Water Quality Assessment and Management, WWC &CENS)

EXAMPLES OF SENSORS: PHYSICAL & CHEMICAL

Chemical Sensors

Lab. On a Chip

With permission of the Woodrow Wilson International Center for Scholars

BENEFITS TO SENSOR DATA COLLECTION

#Real time data availability

#Lower analytical cost

#Ability to evaluate trends

#Timely response to public concerns

#Transparency to data presentations

AREAS OF APPLICATION: SEPTIC SYSTEMS

With permission of the Woodrow Wilson International Center for Scholars

Illustration of a sensing system used to monitor aqueous contaminants in soil and groundwater. Sensors embedded in the soil and groundwater monitor a chemical plume spreading from a source, such as a septic tank. If concentrations become too high, the system generates an alert. *Illustration: J. Fisher, UC Merced.*

Septic Systems

Malfunctions are unpredictable & detrimental effects slow to accumulate

Temporal data provides info. on wastewater composition

"Meter Readers" could monitor septic systems

AREAS OF APPLICATION: NON-POINT SOURCE RUNOFF

With permission of the Woodrow Wilson International Center for Scholars

Figure 4.2 Illustration of a hypothetical non-point source runoff drain and javeline-based monitoring system. Illustration: J. Fisher, UC Merced.

% Non-Point Source Runoff

☑ By its nature, NPS pollution is distributed over wide areas
☑ Two scenarios: NPS discharges into ditches or through soils

AREAS OF APPLICATION: BEACH WATER QUALITY

 Fecal levels do not correspond to actual pathogen levels

 Immunoassay promising; only detects live organisms

More complete
 coverage will save \$\$\$

Photo: G. Kleinheiz UW Oshosh

With permission of the Woodrow Wilson International Center for Scholars

AREAS OF APPLICATION: COMBINED SEWER OVERFLOWS

With permission of the Woodrow Wilson International Center for Scholars

Photo © Stockphoto.com/JacobH

Combined Sewer Overflows
 Characterize effluent distribution
 Actuation to minimize/avoid overflows

AREAS OF APPLICATION: GOLF COURSE MAINTENANCE

Golf courses require lots of water, which is often a scarce resource**#** Use of moisture sensors can minimize usage

OPERATIONAL ISSUES

₩Where to deploy?

#Durability

#Reliability

DATA QUALITY ISSUES

- **#** Data Acceptability
- **#** Data Comparability
- B Data Quality
 - Accuracy
 - Precision
 - Decision-quality vs. screening
- **#** Quality Assurance
- **#** Certification

REGULATORY ISSUES

Constant and/or federal regulations allow the use of sensor data? If so, which program areas?

Do regulatory agencies have the computer infrastructure to accept the large amounts of data that sensors can provide?

Sensor data can be real-time, transparent and thus uncensored; is this OK with regulators?

WHERE DO WE GO FROM HERE?

Continue to publicize the interest in sensors by regulatory agencies; they drive the market!!

ID regulatory barriers and propose solutions: see ITRC

- **#** Provide training on sensors: see ITRC
- Conduct pilots where sensors are directly compared to traditional data acquisition systems

Highlight numerous advantages to sensor use

Fund research on complex chemical sensor systems

CRITERIA FOR SENSOR RESEARCH PILOT(S)

Must have broad national interest

⊠ Highlight potential for long-term regulatory applications

Sensor(s) chosen must be durable/reliable

Sensor data must be comparable to traditional approaches

⊠Can address a regulatory deficiency

SENSOR RESEARCH PILOT(S): POTENTIAL APPLICATIONS

⊠Groundwater Monitoring in NJ

• Anthropogenic nitrate inputs above 10 ppm DW std.

XTCE Plume Delineation at Andrews AFB, MD

• In conjunction with ESTCP, use ORP, cond. & pH to help characterize a TCE plume

XCAFOs. OK

• Examine impact of effluents from animal feeding operations for nitrate and ammonia to DW and GW sources

Questions?

Elizabeth Conroy, Environmental Specialist New Jersey Schools Development Authority Real Estate Division EConroy@NJSDA.gov 609-777-1854 www.ITRCweb.org Interstate Technology Regulatory Council **Sampling Characterization and Monitoring Team**