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From Hamilton's principle and a factorization Ansatz we derive a class of exact solutions for three-dimensional 
motion in ideal, compressible MHD. These exact nonlinear solutions are motions generated by time-dependent afline 
transformations, under which the fluid rotates, circulates and deforms. They reduce to three-dimensional self-similar 
solutions when rotation is absent. Continuous symmetries of Hamilton's principle for the afline MHD motions generate 
various constants of motion. Discrete symmetries establish duality relations among classes of solutions. In a special case, 
rotational and circulatory MHD motion is expressed as classical mechanical .motion upon its own symmetry group, the Lie 
group O(4), in the well-known Arnold-Lax-Euler commutator form, M = [to, M]. 

I .  Introduction 

Three-dimensional  p lasma dynamics  can be very complex when considered in all its microscopic 
detail. However ,  the gross features  of p lasma equilibrium and dynamics  on time scales intermediate 
between particle collision times and t ransport  times are describable by the relatively simple equations 
of ideal magne tohydrodynamics  (MHD), 

In the ideal M H D  model, electrically neutral p lasma convects  like an adiabatic fluid that carries an 
embedded  magnetic field. During convection,  induced electrical currents flow instantaneously to 
oppose  change of magnetic flux through every co-moving surface. The resultant magnetic stresses 
alter the convect ive  motion of the p lasma by opposing bending of magnetic field lines. Thus M H D  
flow is anisotropic and essentially three dimensional.  

We shall seek motions in three-dimensional M H D  whose time dependence  factorizes in the 
Lagrange representation. The result is a class of  M H D  motions of  affine type which reduce to 
self-similar motions in a special case. 

We derive affine M H D  motions f rom Hamil ton ' s  principle, for arbitrary initial distributions of 
material and magnetic field. The afline motion is expressed  in a special case as torque-free rotational 
motion on the Lie group O(4), coupled to dilational motion along principal axes of the initial moment  of 
inertia tensor.  

Afline motions for M H D  generalize earlier work by F. J. Dyson [1] on isothermal expansion of an 
ideal fluid whose initial density profile is of Gaussian shape. Dyson ' s  work on affine isothermal fluid 
expansion bears on traditional analysis of ellips0idal figures of equilibrium for  self-gravitating, 
incompressible  fluids. That  traditional work is summarized by Chandrasekar  [2]. Before Dyson ' s  work 
was published, L. V. Ovsjannikov [3] had also studied affine motion for ideal fluids. Subsequently S. I. 
Anisimov and Yu I. Lysikov [4] have found special solutions to Dyson ' s  equations,  that involve 
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elliptic integrals for 3' = 5/3 ideal gas. Affine motions are also derived in [5] as a type of group- 
invariant solution for ideal, compressible fluids in one dimension. 

Use of the Lie group 0(4) as the configuration space for afline MHD motion follows recent 
mathematical formulations of classical mechanics and fluid dynamics on Lie groups [6] to [10]. A 
similar use of groups as configuration spaces has recently been applied to homothetic motions in 
Einstein spaces by O.I. Bogoyavlenskii and S.P. Novikov [I1]. The obverse of the affine motion 
problem, application of the equations of a classical rigid body to study hydrodynamics has recently 
been discussed by Dolzhanskii [12] and by Visik and Dolzhanskii [13]. 

In the next section we explain how time dependence factorizes out for affine motions in the 
Lagrange representation of ideal MHD. We then derive the equations for affine motion from 
Hamilton's principle, and use Noether's theorem to find constants of motion that generate the 
symmetry group 0(3) x O(3), isomorphic to 0(4). Following that result, we use 0(4) as a configuration 
space for the rotational part of the motion, which becomes torque-free rotational motion in four 
dimensions (six degrees of freedom) with a time-dependent inertia tensor. In the last section we study 
the coupling between the free rotational motion and the dilational motion along the three principal 
axes of the initial mass distribution. 

2. Lagrange representation of three-dimensional MHD 

In the Lagrange representation the particle paths are fundamental objects, and partial derivatives of 
the particle paths are basic dependent variables. The paths of fluid particles through fixed Eulerian 
space are given by vector functions X(Xo, t) with initial conditions x(x0, 0)= x0, the Lagrange coor- 
dinate. The partial derivatives of the particle paths specify the components of velocity 

def 

vi(xo, t) = Oxi/Ot I~o =YP 

and they specify displacement gradients 

F (xo, t)= ox'/ox  I,, 

with subscripts t, x0 that label the variables held constant in the partial derivatives. 
In the Lagrange representation the equation of motion for ideal MHD is 

O2Xi cgdetF 0 ( p + . ~ ) +  l__Bko~OkBi. 
P - ~ = -  OF' i ax~ 47r 

In the motion equation V°k is the covariant derivative in Lagrange curvilinear coordinates. MHD 
motion in Lagrange coordinates requires the following subsidiary relations: 

def 

p det F = p0 =p(x0, 0), 

B' = F~B~/det F, 

s(p, p) = s0 %f S(po, P0), 

e(p,s) = e(p, so). 
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These subsidiary conditions represent, respectively, conservation of ion mass, Faraday's Law of 
magnetic induction, and the equations of state for adiabatic convection and specific internal energy. In 
Faraday's Law and the motion equation one uses Ampere's Law, curl B = 4~rJ/c, and Ohm's Law for 
the case of infinite conductivity, E + v x B/c  = 0, in order to eliminate current density, J, and electric 
field, E, in favor of magnetic field, B, and particle velocity, v. 

Faraday's Law implies preservation of the divergence equation div B = 0, which thus may be taken 
as an initial condition. 

3. Hamilton's principle for three-dimensional MHD 

The equation of motion for ideal MHD follows from Hamilton's principle: 

3 - -  X X , , B i B J l  
0 =/5S =/5 dt d x0X/det g0p0 gij(x) T -  e(p, so) - gijtx) ~ .  

Hamilton's principle states that the action S is stationary for variations of particle paths /sx k that 
vanish on the boundaries of the Lagrange domain of integration. Variations of the particle paths result 
in variations of the density, specific energy, and magnetic field through the MHD subsidiary relations 
stated in the previous section. In the action integrand gij(x) is the Euclidean metric tensor in whatever 
Eulerian coordinate system we choose and det go is its determinant in Lagrange coordinates. The particle 
interpretation of MHD motion is quite clear in this form of Hamilton's principle: the action integrand is 
the difference between kinetic and potential energy densities on the particle trajectories. 

4. Factorization Ansatz 

Time dependence factorizes in all of the variables, e, p, p, v ~, B ~, of the Lagrange representation of 
MHD, provided the displacement gradient F '  i is a function of time only: 

Fij = Fij( t ) .  

The MHD subsidiary relations confirm this factorization of time dependence. Once factorized, ideal 
MHD motion reduces to classical particle dynamics, i.e. the problem reduces to solution of Newton's 
law of motion for the nine components of Fij(t). 

When the displacement gradient F'i is a function of time only, the particle paths are determined by 
the atiine transformation 

xi(xo, t) = FJj(t)x~. 

This affine transformation stretches the initial configuration of particles, and rotates it relative to both 
Euler and Lagrange coordinate frames. 

5. Hamilton's principle for afline motions in MHD 

Hamilton's principle is expressed in terms of the afline displacement gradient Fij ( t )  in Cartesian 
coordinates as 

f l" 1 ~ i~-,i ~-,j r kl F ~ k F i , }  0 = 8S = 8 dt ~ , i j -  k- l-0 - E(det F)IIo-/sii ~ S kl , 



D.D. Holm/Magnetic tornadoes 173 

where I0 kt, H0, and S k~ are constants defined by integrals over the initial distributions of matter and 
magnetic fields, 

iokl f 3 k l  = d XoPoXoXo (moment of inertia), 

Ho-- f d3xoPo (integrated pressure), 

BoBo Skt = d 3 x o ~  (magnetic stress). 

Hamilton's principle says that the action should be stationary for all variations of the particle paths 
in configuration space. The configuration space for affine flows is the space of trajectories whose 
coordinates are given by 

x i =  Fi~(t)x~. 

By definition, variation of these particle trajectories does not change the identity of the particles, 
labeled by x~; and the variation is performed at fixed time, t. Consequently the variation of particle 
trajectories is given by 

,Sx ~ = [ 6Fis( t )]x~. 

Thus it is the displacement gradient now regarded as a generalized coordinate which is being varied, 
subject to vanishing endpoint conditions. Hamilton's principle then provides the correct equations of 
motion for affine MHD. 

Variation of the action with respect to generalized coordinates F~(t)  produces the following motion 
equation, for homogeneous boundary conditions; 

11o Tr(FSF~)]  FikFJlSkt 
F~kF:~dk' = 8'i (det F)  v-~ + d " ~ F  J - 2 det F ' 

where for convenience we have taken a polytropic adiabat, p/pV = Po/p~. In curvilinear coordinates, 
metric tensor terms also contribute curvature forces, which are not considered in the present work. In 
addition, stresses and forces at the boundary have been neglected by imposition of homogeneous 
boundary conditions. In the case that the magnetic stress tensor S is absent and the initial moment of 
inertia is transformed to the identity, one recovers Dyson's equation [1] for the affine motion of a spinning 
gas cloud, 

6. Tensor virial equation 

The symmetric part of the previous affine motion equation is equivalent to the following relation, called 
the tensor virial equation [14], which holds for arbitrary MHD motion: 

2d-~ 2 v 2 s 
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Here T ~ is the total momentum-flux-density tensor, M ~j is the magnetic stress tensor, and I ik is the 

moment of inertia of the fluid, 

T~J = pv~vJ + 8°P - M~J' M~J -- -8~iB2/81r + B~B~/41r' IL~ = fv  d3 xpxix k. 

For homogeneous boundary conditions the surface integral vanishes in the virial equation. In that case 
one considers an isolated magnetic system for which pressures and magnetic fields vanish on the 
enclosing surface, perhaps located at infinity. 

For an isolated system, the trace of the tensor virial equation indicates that fluid motion, gas 
pressure, and magnetic forces all contribute toward expansion. 

1 d 2 f ~ - ~  (Tr I) = d3x[pl) 2 + 3p + B2/8'n "] > 0. 
V 

Thus, the gross motion is expansive: the sum of principal moments of inertia increases with time. 
However,  details of the MHD fluid motion can still be quite intricate even for an isolated magnetic 
system, because of anisotropy of the magnetic forces. In a later section of this paper, temporal 
evolution of the principal moments of inertia is described in terms of Newtonian dynamics. 

7. Continuous symmetries and constants of motion 

Before discussion of the motion of the fluid in detail, consider the symmetries of Hamilton's 
principle and the associated constants of motion. The Lagrangian in Hamilton's principle is, in matrix 
notation 

T r ( F S F  T) 
L = ~ Tr(FIoF T) det F 

This Lagrangian admits translations in the time variable t--* t' = t + St. Consequently there exists an 

energy integral 

H = ½ Tr(i~loF T) + E(det  F)IIo + Tr(FSFT) 
det F ' 

which is the Hamiltonian when expressed in terms of the following canonically conjugate variables: 

II'j = ojk- I~0, Qi = F'j. 

The Lagrangian L also admits the transformation 

F ~ F '  = 01F, 

where O~ is an orthogonal 3 × 3 matrix that reorients the Euler coordinate frame, 

X "-~ X' ----- 01X. 
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Such rotational invariance of the Lagrangian leads by Noether's theorem to a matrix constant of motion, 

J = Qrl T - riQ T. 

The skew-symmetric, matrix constant of motion, J, is the material angular momentum. Here the field 
angular momentum does not contribute: it vanishes when the displacement current is neglected in the 
MHD approximation. 

With the canonical Poisson bracket relations 

{Qij, Qkl} = 0 = {I[ih ]-[kt } , 

{Qij, Hkl} : ~,kfijl, 

one quickly verifies that the components of J commute with the Hamiltonian and generate the 0(3) Lie 
algebra. 

8. Discrete symmetries and duality relations 

Discrete symmetries also exist for affine flows. For example, the Lagrangian L is invariant under the 
substitution F--,F" = F T. This discrete symmetry reverses the roles of Euler and Lagrange coordinates, and 
is related to the symmetry between space-fixed and body-fixed coordinates in the dynamics of a rigid body 
(cf. [1], p. 96). 

Invariance of the Lagrangian under the adjoint transformation F ~ F T implies that F T is a solution 
of the equations of motion whenever F is a solution. For afline motions of incompressible fluids, duality 
under transposition of F is called the Dedekind duality principle by Chandrasekar [2]. 

Another example of discrete symmetry for affine MHD is time-reversal invariance. Invariance of 
the Lagrangian under time reversal t ~ - t .  means that expanding solutions can be time-reversed to 
describe three-dimensional implosions. 

9. Topological linkage numbers 

Finally, there are preserved topological linkage numbers, called "helicities" in [14]. For example, 
every motion of ideal MHD-att ine motions included-must  preserve the number, N, of linkages 
among lines of magnetic flux. By definition of N, 

N=f A k B k d 3 x = f  AokB~d3xo=No. 

This preservation of magnetic flux linkage, N, follows by substitution into the definition of N directly 
from the Lagrange representations of magnetic field, B k, and vector potential Ak, 

Ak(Xo, t) = Aj(xo, O)F-lJk(XO, t), 

B i = ~ i JkV iAk .  



176 D.D. Holm/Magnetic tornadoes 

So ideal MHD motion preserves N, the number of linkages of the magnetic field with itself. In 
other words, stretching and rotation by affine motions cannot unlink lines of magnetic flux. 

Another topological quantity for ideal MHD is the number, N', of linkages between lines of 
magnetic flux and lines of vorticity. The definition of N' is 

N' = f d3x v . B = f d3x ~ijviB% 

which is sometimes called "cross helicity". For cross helicity to be preserved requires there be no 
hydrodynamic source of vorticity; so gradients of density and pressure must remain everywhere 
colinear, i.e. Vp × Vp = 0. Under affine flow with polytropic adiabats p/pV= po/p~ one finds, for 
example, 

Eijk Op ~ =  Fit(t) El,.. Op00po 
ax' ox <d--~" ax~ axE" 

Both sides of this equation will vanish so that cross helicity will be preserved under affine motion, 
provided the pressure and density are related functionally at the initial time. For example, the initial 
conditions may be isothermal or isentropic; or the density or pressure may be initially uniform. In 
these situations, cross helicity is preserved under affine MHD flow. 

10. Three-dimensional description of afline motion 

At this point one may discuss affine MHD motion in detail, in terms of the transformation matrix 
Fij(t) whose temporal evolution stretches the initial configuration of particles, and rotates the particle 
configuration relative to both Euler and Lagrange coordinate frames. Accordingly, the displacement 
gradient F'j(t) may be decomposed into a matrix product 

F = R1DR2, 

where Rt and R2 are o.rthogonal and D is diagonal. Each matrix depends on time: the diagonal matrix 
D characterizes changes of shape of the spatial distributions of mass and magnetic field of the fluid; 
while the orthogonal matrices Rt and R2 specify respectively the changes of orientation of fluid 
relative to initial Euler and Lagrange coordinate frames, cf. [1]. 

In terms of matrix coordinates F --- R~DR2 with nine degrees of freedom, the matrix equations of affine 
MHD motion are, for a polytropic equation of state, 

F/0F T= 1 [ II0 Tr(FSFT)] FSF x 
(det F) ~-' + d~-tff ] - 2 - - ' de t  F 

Upon substitution of the triple product F(t)= R,DR2 into this equation, one obtains the following 
separated equations [16] 

)=0, 

/~= 2 
det F [ S, FT F], 

bi = a U, 
aD~ 
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where the skew-symmetric matrices J, K represent fluid angular momentum and circulation, respectively, 
with I0 = 1. 

J de_ff d3xp(xlv i _ xivi) = F F  T _ E F T ,  

def 
K = (v~,k - vk,I)FkiF~i = F T F  - -  F T F .  

The bracket in the/~ equation is the matrix commutator, and the potential function U in the equation for 
the dilation matrix D is given by 

U = ~- Tr(tolL + to2N) + - -  Tr S * D  2 II° (det D) -,+2 
det D , / -  2 

with dynamical matrix quantities tot, to2, L, N, S* defined by 

~ol = -Ri-lR~, oJ =/¢2R¢, 

L = R~IJR1 = D2~ol + tolD 2 - 2DtozD, 

N = R ~ I K R 2  = D2to2 + to2 D2 -- 2DtolD,  

S *  = R 2 S R {  1. 

The quantities tot, to2 are angular velocities of rotation and circulation, respectively. The quantities L, N 
represent the angular momentum and circulation expressed in fixed, Eulerian coordinates. Finally 
S * =  R 2 S R 2  ~ is the magnetic stress tensor referred to the fixed Eulerian frame. 

The equations of motion for J, K, and D first of all express conservation of fluid angular momentum, Z 
The circulation K is also conserved, provided the magnetic stress tensor S can be simultaneously 
diagonalized with the initial mass distribution I0. However, when the commutator IS, F T F ]  does not 
vanish, the circulation experiences a restoring torque due to magnetic stresses, which are developed as the 
lines of magnetic field wind around themselves during fluid circulation. Finally, the last equation for the 
dilation matrix D expresses the coupling between expansion of the fluid and its circulation and rotation. In 
the potential U, the centrifugal, hydrodynamic, and magnetic forces each are represented in 
conservative form, so energetic trade offs among them are clear. 

11. Angular MIlD motion in the group 0(4) 

Suppose that by suitable linear transformations and rescaling of initial conditions the Lagrangian for 
affine MHD motions can be brought into a form where the kinetic and magnetic energies are sums of 
squares, 

Tr(FF T) 
L = 1 Tr(ppT) _ IIoE(det F) - det F " 
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Then both J and K of the previous section are preserved and the nondiagonal parts of the affine MHD 
equation of motion can be expressed as angular motion in the group 0(4). In particular, one can obtain 
an Arnold-Lax-Euler (ALE) representation of the angular motion as a commutator relation. 

/fl = [to, M],  

with angular velocity to in the Lie algebra 0(4), and angular momentum M linearly related to to by the 
(time-dependent) inertia tensor. The time dependence of the inertia tensor is determined from the 
dilatational motion, which itself is coupled to the angular motion by inertial forces due to rotation in 
both Euler and Lagrange spaces. The dilatational motion is discussed in the next section. 

In order to regard the group 0(4) as configuration space for the angular part of affine MHD motion 
one recalls the isomorphism between [0(3)× 0(3)] and O(4), which is familiar to physicists in 
connection with the Kepler problem of planetary motion and its quantum-mechanical analog, the 
hydrogen atom [17]. 

The (1, 1) representation of 0(4) establishes an isomorphism between the real 3 × 3 matrix F~j, 
without symmetry; and a symmetric, traceless 4 × 4 matrix qb~, where 0/,/3 = 0, 1, 2, 3. Namely, 

Fnl + F22 + F33 

F 2 3 -  F32 

F3~- F13 

F12- F21 

F 2 3 -  F32 F31 - FI3 F12- Fzl 

] FIt - F22- F33 Ft2 + F2 t F3t + FI 3 

El2+ F2j F22 - F 3 3 -  Fit F23 + F32 

F31 + El3 F23 + F32 F33- F l l -  F22 

In canonical form d~ is expressed as 

where A is the diagonal matrix diag(A0, At, A2, A3) with elements 

A0 = ~Tr D; Ai = Di-½Tr D, 

and fl is a 4 × 4 orthogonal matrix, i.e. fl is an element of the group 0(4). 
The time derivative of the orthogonal matrix fl, when expressed as 

defines an angular velocity to in the Lie algebra 0(4), whose elements are antisymmetric. In matrix 
form the angular velocity co is given by 

toctfl ~--- 

"0 - i l l  

/3~ 0 

~32 -- 0/3 

/33 0/3 

-/32 -/3~ 

O/3 --0/2 

0 0/s 

--0/i 0 
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where a1 and/3i, i --- 1, 2, 3, are related to angular velocities 01 and ~i in Euler and Lagrange space by 

In terms of to and A the time derivative of the matrix <I> = II-IAI) may be expressed as 

= I~-I(A + [A, toN1. 

Here the components of the commutator  matrix [A, to] are 

[A, to]~ = F"~to~ (no sum), 

where the antisymmetric matrix F is defined as 

F~o = Ao - A s. 

The four-dimensional angular momentum • is given by the commutator  relation 

whose components belong to a (1, 1) @ (1, 1) representation of 0(3) x O(3), 

alt,,t3 = I 

0 K23-  J23 K31 - J31 K I 2 -  J12 

J23-K23 0 Jl2+ KI 2 JI3+ KI 3 

J31 - K3j J21 + K21 0 J23 + K23 

J12-K12 J31+K31 J32+K32 0 

The six independent components of the 4 × 4 antisymmetric matrix • are six constants of motion. One 
may also write g' in its canonical form 

~ = I I - lMl l .  

From the commutator  definition of • the matrix M is expressible as 

M = [A, [A, to]], 

which is also an element of the Lie algebra O(4), an antisymmetric matrix with components 

M"~ = (F"#)2to~0 (no sum). 

Since J and K are constants of  motion, ~ = 0, and one finds (cf. [1], eq. (48)) 

!~/+ [M, to] = 0, 
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which is the ALE equation we have sought, for conservation of angular momentum J and relative 
vorticity K in four-dimensional notation. 

The ALE equation means that motion in 0(4) generated by to preserves the eigenvalues of M. This 
is also clear from the expressions for • and ~ .  The motion in 0(4) is deformable-body, rotational 
motion with • the angular momentum in 0(4) "space coordinates", and M the angular momentum in 
0(4) "body coordinates". If the moment of inertia operator defined by (F~0) 2 = (A  - A0) 2 were not time 
dependent, the ALE equation would express rigid-body motion on O(4), which is completely 
integrable [17]. 

Thus the ALE equation on 0(4) expresses how the time dependence of the moment of inertia tensor 
affects rotational motion. In turn, we seek to express how rotational motion affects dilatational motion. 

12. Dilatational motion 

When the Lagrangian for affine MHD motions can be brought into a form where the kinetic and 
magnetic energies are sums of squares, 

L = ½Tr F p T _  U(det F) Tr F F  T 
det F 

by suitable linear transformations and rescaling of the initial conditions, one may take advantage of 
the following trace identity for the isomorphism between F and ~, 

Tr D 2 = Tr F F  T = Tr ~2 = Tr A 2 

in order to translate the Lagrangian in four-dimensional notation into the form 

L = ~ T r ~ 2 - U ( d e t F )  TrD 2 
det F ' 

where Di and/~i are now to be used as generalized coordinates and velocities. By direct calculation 

one finds 

Tr ~,2 = Tr(3, + [A, 0o]) 2 = Tr 4 2 + Tr[A, 0o]2 = Tr/k 2 - Tr Moo = Tr/)2 _ Tr Moo. 

So the kinetic energy separates into a sum of dilational and rotational parts in the four-dimensional 
notation. In terms of matrix components the kinetic energy is 

Tr c~ 2 = E 42 - ~ (F~)2(0o~)2 
a ~t,13 

= ~ / ) 2 + 2  ( D i - T r D ) 2 f 3 ~ + ( D , - D 2 ) 2 ~ + ( D 2 - D 3 ) 2 a ~ + ( D 3  - ,J 2 • 

The Lagrangian.is then expressible as 

1 
L(D,/))  = 2 l ~ / ) ~ -  U(det F ) -  det----- ~ ~ D, .2 

+ ~ j~ {[eJkt(Di + Dk)/31] 2 + [eikl(Dj - Dk)oq] 2} 
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and the Euler-Lagrange equations of motion for this Lagrangian become 

d 3 L _  3L 3 U + T r D  2 0 d e t F  2D~ 
13~=dtg/)~ aD~=-3D----~. ~ 3D~ d e t F  

+ Y~ {(Dj + Dk)(~Jk%)2(a~j + ,~k) + (D, - DO(d%)2(8~j - aD],  
j,LI 

where det F = DID2D3, and the last term is the ith diagonal element of the matrix of centrifugal force, 
[AED + D A  2 -  2 A D B  - 2 B D A  + D B  2 + B2D], with skew-symmetric matrices A and B from the earlier 
discussion. When this set of equations is rewritten as 

a ( T r D  2 ) 
/~, = - ~--~ U + ~---ff + Tr ~Mto 

one sees two interesting features. First, the magnetic, rotational, and hydrodynamic forces all enter 
as potential forces, which makes the energetic trade offs among them easy to study. However, more 
importantly, the magnetic force contributes a restoring force which opposes the expansion caused by 
thermodynamic pressure forces. If the initial magnetic stress tensor is large enough, the magnetic 
restoring force may actually overcome thermodynamic expansion and cause oscillatory dilations along 
the principal axes. In particular, solutions are possible which show multiple oscillations followed by 
collapse to a current sheet and then dramatic, explosive, expansion. 

The first question about such dilational oscillations concerns their stability. Certainly dilatational 
motion can be baroclinically unstable, for example. Also, instability can arise for deformable rotations of 
magnetic fluids, just as rotational instability occurs for rigid bodies. So stability is a major question for 
these affine MHD motions. However, a detailed analysis of stability is outside the scope of the present 
paper. 

13. Discussion 

The magnetic fluid analysis discussed here provides an exact, nonlinear description of plasma 
motion in three dimensions. Besides its conceivable utility in astrophysical models, there are several 
possible applications of this description and its associated Lie-group formalism for study of three- 
dimensional asymmetries in magnetic fusion research. For example, direct numerical integrations of 
the affine MHD equations in specific cases offer benchmark tests of the accuracy of more sophisti- 
cated computer simulation codes for design of magnetic fusion reactors. 

A one-dimensional example further illustrates the behavior of the afline solutions. Consider a 
cylindrical Z-pinch with homogeneous boundary conditions at the outside of the plasma. In that case a 
closed-form solution exists [19] for an isothermal plasma with Gaussian density profile, which exhibits 
radial, unstable oscillations; which may also be seen experimentally. In this case the restoration force is a 
geometrical effect due to cylindrical, 1/r divergence. 

Attine MHD analysis also contributes toward better understanding of three-dimensional effects in 
magnetic plasmas by providing a mathematical framework for study of bifurcation points [20] of the 
equations of motion, and their nonlinear instability upon expansion or implosion. Detailed study of 
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stability, and consideration of special cases of affine MHD motion obtained by numerical integration 
remain to be done. 

In fact, much remains to be done with the magnetic tornado system. In addition to stability analysis 
and specific numerical integrations, there remain the open problems of non-homogeneous boundary 
conditions, curvilinear coordinates, and dissipative effects. Also there are several other fluid dynamics 
models to which the affine factorization Ansatz applies, such as the Boussinesq model. Study of the 
nonlinear dynamical systems which result would be an interesting line of future research, especially in 
regard to their chaotic properties, such as strange attractors which seem to exist in the dissipative cases. 
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