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A drop in dispersion, F -ratio like, permutation test (D) for linear quantile regression 
estimates (0 ≤ τ ≤ 1) had relative power ≥1 compared to quantile rank score tests (T ) for 
hypotheses on parameters other than the intercept. Power was compared for combinations of 
sample sizes (n = 20 − 300) and quantiles (τ = 0.50 − 0.99) where both tests maintained 
valid Type I error rates in simulations with p = 2 and 6 parameters in homogeneous and 
heterogeneous error models. The D test required two modifications of permuting residuals 
from null, reduced parameter models to maintain correct Type I error rates when null models 
were constrained through the origin or included multiple parameters. A double permutation 
scheme was used when null models were constrained through the origin and all but 1 of the 
zero residuals were deleted for null models with multiple parameters. Although there was 
considerable overlap in sample size, quantiles, and hypotheses where both the D and rank 
score tests maintained correct Type I error rates, we identified regions at smaller n and more 
extreme quantiles where one or the other maintained better error rates. Confidence intervals 
on parameters for an ecological application relating Lahontan cutthroat trout densities to 
stream channel width:depth were estimated by test inversion, demonstrating a smoother 
pattern of slightly narrower intervals across quantiles than those provided by the rank score 
test. 
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1. INTRODUCTION 

Estimating the quantiles (0 ≤ τ ≤ 1) of a response variable conditional on some 
set of covariates in a linear model has many applications in the biological and ecological 
sciences (Cade, Terrell, and Schroeder 1999; Cade and Noon 2003). Quantile regression 
models allow the entire conditional distribution of a response variable y to be related to 
some covariates X , providing a richer description of functional changes than is possible by 
focusing on just the mean (or other central statistics), yet requiring minimal distributional 
assumptions (Koenker and Bassett 1978, 1982; Koenker and Machado 1999). Quantile 
regression estimates are especially enlightening for relationships involving heterogeneous 
responses where by definition rates of change are not the same across all parts of the response 
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distribution. Many ecological applications of quantile regression have focused on estimating 
some upper quantiles to characterize effects of limiting factors (Terrell, Cade, Carpenter, 
and Thompson 1996; Scharf, Juanes, and Sutherland 1998; Cade et al. 1999; Cade and Guo 
2000; Haire, Bock, Cade, and Bennett 2000; Eastwood, Meaden, and Grische 2001; Huston 
2002). Other applications (Allen, Cade, and Vandever 2001; Dunham, Cade, and Terrell 
2002; Cade, Noon, and Flather 2005) have used estimates across the entire [0, 1] interval 
of quantiles as a flexible method of characterizing effects associated with heterogeneous 
distributions. 

The Dunham et al. (2002) analysis of Lahontan cutthroat trout (Oncorhynchus clarki 
henshawi) standing stock as a function of channel morphology for small streams sampled 
in the state of Nevada is used as an example of ecological relationships estimated with 
quantile regression (Figure 1). Trout were captured by electrofishing in seven or more 25
meter (m) sections within a two-kilometer (km) reach in each of 13 streams from 1993 
to1999, and abundance in a stream was estimated with maximum likelihood estimates for 
removal methods (Dunham et al. 2002). Channel widths and depth were measured in each 
section and averaged for a stream. Here we considered the model relating density (trout 
m−1) of age  ≥1 year trout to stream channel width:depth ratio (n = 71). Width:depth 
ratio is a measure that integrates channel characteristics thought to be related to small 
stream integrity—and, thus, fish populations—and is easily measured for assessing fish 
habitat conditions and land use impacts over large regions. Lahontan cutthroat trout are a 
threatened species of special interest to federal land management agencies. Overgrazing 
by livestock in riparian areas and road construction impacts on the trout populations are 
reflected in increasing width:depth ratios of stream channels. 

The scatterplot in Figure 1(a) clearly demonstrates a pattern of increasing variation 
with decreasing width:depth ratios, where highest trout densities were observed only at 
smaller width:depth ratios. There appears to be some functional nonlinear relationship 
between trout density and width:depth ratio, but it is not adequately captured by using mean 
regression. A weighted least squares estimate of the mean function on natural logarithm 
of densities (ln y) yielded estimates of b0 = −1.475(90%CI = −1.94,−1.01) and b1 = 
0.001(90%CI = −0.014, 0.012), clearly supporting the impression that there is little change 
in mean densities [P (H0 : β1 = 0) =  0.90]. Yet higher quantiles for the same model 
indicated a decline in densities with width:depth ratio as shown here for the 0.90 quantile 
regression (Figure 1(a)). Our motivation for developing this permutation test was to provide 
improved inferences for quantile regression applications with small to moderate sample 
sizes where methods based on asymptotic arguments are likely to perform poorly. 

Inference methods with asymptotic validity for linear quantile regression models based 
on estimates of the covariance matrices (Koenker and Bassett 1978, 1982; Koenker and 
Machado 1999) require estimates of the reciprocal of the error density function at the quan
tile of interest, f(F−1(0)). These methods often perform poorly at smaller sample sizes 
(Koenker 1987; Buchinsky 1991) and the asymptotic theory becomes suspect at more ex
treme (τ > 0.7 and τ < 0.3) quantiles (Chernozhukov and Umantsev 2001). Koenker 
(1994) introduced the idea of constructing confidence intervals by inverting a quantile rank 
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score test (Gutenbrunner, Jurec̆ková, Koenker, and Portnoy 1993) as an alternative inference 
procedure which does not require estimating the sparsity function and that performed well 
under linear heteroscedastic regression models and smaller sample sizes. Here we consider 
a drop in dispersion, F -ratio like, test that is evaluated with permutation arguments based 
on modifications of the least absolute deviation regression test of Cade and Richards (1996). 
This test also avoids the sparsity estimation issue, but unlike the quantile rank score tests 

Figure 1. (a) Lahontan cutthroat trout m−1 and width:depth ratios for small streams sampled 1993 to 1999 (n 
= 71); exponentiated estimates for 0.90, 0.50, and 0.10 regression quantiles for the weighted model w(ln y) = 
w(β0 + β1X1 + (γ0 − γ1X1)ε), w  = (1.310 − 0.017 X1)−1. Solid lines in (b) and (c) are step functions for 
estimates of β0 and β1 by τ = [0, 1] and dashed lines connect pointwise 90% confidence intervals for τ ∈ {
0.05, 0.10, 0.15, . . . , 0.95 } based on inverting the double permutation D test. 
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(Koenker 1994) it uses the magnitude of the residuals in its construction, potentially pro
viding greater power and shorter confidence intervals. Two additional modifications of the 
basic permutation structure used by Cade and Richards (1996) were developed to provide 
improved Type I error rates when null hypothesis models were constrained through the 
origin or included multiple parameters. 

We evaluated performance of the drop in dispersion permutation test for central to 
extreme quantiles, a range of error structures, small to moderate sample sizes, and model 
forms likely to be encountered in ecological applications. Weighted forms of the test based 
on weighted quantile regression estimates were evaluated for heterogeneous error distribu
tions. The drop in dispersion permutation test was applied to the quantile regression analysis 
of Lahontan cutthroat trout response to variations in their stream habitat, expanding on the 
previous analyses of Dunham et al. (2002) made using the quantile rank score test. The sim
ulations and example application parallel those used by Cade, Richards, and Mielke (2006) 
for evaluating the chi-square distribution and permutation approximations of probabilities 
for the quantile rank score test. 

2. QUANTILE REGRESSION MODEL 

The τ th regression quantile (0 ≤ τ ≤ 1) for the heteroscedastic linear location-scale 
ΓΓ εεεmodel y = Xβ+Γε is defined as Qy (τ |X) = Xβ(τ) and β(τ) = β+F−1(τ)γ; where y is 

an n×1 vector of dependent responses, β is a p×1 vector of unknown regression parameters, 
X is an n× p matrix of predictors (first column consists of 1’s for an intercept term), γ is a 
p×1 vector of unknown scale parameters, ΓΓΓ is a diagonal n×nmatrix in which the ndiagonal 
elements are the n corresponding ordered elements of the n× 1 vector Xγ (diag(Xγ)), ε 
is an n × 1 vector of random errors that are independent and identically distributed (iid), 
and F−1 is the inverse of the cumulative distribution of the errors (Koenker and Bassettεεε

1982; Buchinsky 1991; Gutenbrunner and Jurec̆ková 1992; Koenker and Machado 1999). 
Homoscedastic regression models are a special case of the linear-location scale model when 
γ = (1, 0, . . . , 0)′ and Qy (τ |X) =  Xβ(τ),β(τ) =  β + (F−1(τ), 0, . . . , 0)′ , where all 
parameters other than the intercept (β0) in β(τ) are the same for all τ . More general forms 
of heteroscedastic errors can be accommodated with regression quantiles (Koenker 1997; 
Koenker and Machado 1999) but were not considered here. 

The restriction imposed on Fεεε to estimate regression quantiles is that a τ th quantile 
of y − Xβ(τ) conditional on X equals 0, Fεεε

−1(τ |X) =  0. Estimates, b(τ), of  β(τ) are 
solutions to the following minimization problem: 

εεε

   
n p 

min  ρτ yi − bj xij , (2.1) 
i=1 j=0 

where ρτ (e) = e(τ − I(e <  0)) and I(·) is the indicator function assigning 1’s for negative 
residuals and 0’s for non-negative residuals. The estimating equations in (2.1) yield primal 
solutions in a modification of the Barrodale and Roberts (1974) simplex linear program for 
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any specified value of τ (Koenker and d’Orey 1987). With little additional computation the 
entire regression quantile process for all distinct values of τ can be estimated (Koenker and 
d’Orey 1987, 1994). 

Consistent estimates with reduced sampling variation for heteroscedastic linear models 
can be obtained by implementing weighted versions of the regression quantile estimators, 
where weights are based on the sparsity function at a given quantile and covariate value 
(Koenker and Portnoy 1996; Koenker and Machado 1999). In the linear location-scale 
model this simplified to using an n× n weights matrix, W = Γ−1, where the p× 1 vectorΓΓ
of scale parameters γ would usually have to be estimated in applications (Gutenbrunner 
and Jurec̆ková 1992; Koenker and Zhao 1994; Koenker and Machado 1999). The weighted 
regression quantile estimates then are given by: 

    
n p 

min  ρτ yi − bj xij  wi , (2.2) 
i=1 j=0 

where wi is a weight, ρτ (e) = e(τ − I(e < 0)), and I(·) is the indicator function assigning 
1’s for negative residuals and 0’s for nonnegative residuals. This is easily implemented by 
multiplying y and X by W and then using the unweighted estimator (2.1). 

3. TEST STATISTIC 

The drop in dispersion D test was based on a modification of the permutation test 
developed for least absolute deviation (LAD) regression (Cade and Richards 1996). The 
reduced parameter model y − X2ξ(τ) =  X1β1(τ) + ΓΓΓε is constructed by partitioning 
X = (X1,X2), where X1 is n× (p− q) and X2 is n× q; and by partitioning β = (β1,β2), 
where β1(τ) is a (p−q)×1 vector of unknown nuisance parameters under the null and β2(τ) 
is a q×1 vector of parameters specified by the null hypothesis H0 : β2(τ) = ξ(τ) (frequently 
ξ(τ) = 0) in the full parameter model y = X1β1(τ)+X2β2(τ)+ΓΓΓε; and y,ΓΓΓ, and ε are 
as above. The sum of weighted absolute deviations minimized in (2.1) for estimating the 
weighted version of the full parameter model Wy = WX1β1(τ) + WX2β2(τ) + WΓΓΓε, 
where W is a weights matrix as in (2.2), are denoted SAFw(τ ) and for the reduced parameter 
model Wy − WX2ξ(τ) = WX1β1(τ)+WΓΓΓε are denoted SARw(τ ). For homogeneous 
error models W = I, where I is the n × n identity matrix. The test statistic 

Do = (SARw(τ) − SAFw(τ))/SAFw(τ), (3.1) 

was evaluated by permuting the weighted residuals under the null model to the weighted full 
model matrix WX. By taking a large random sample m of the n! possible permutations, 
probability under the null hypothesis was approximated by the proportion of permuted test 
statistic values greater than or equal to the observed test statistic, where the observed test 
statistic counts as one of the permuted values [P = ((the number ofD ≥ Do)+1)/(m+1)]. 
When the error distributions are assumed homogeneous so that W = I and τ = 0.50, this 
test statistic is identical to the statistic of Cade and Richards (1996) for LAD regression. 
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The weights, W, serve to eliminate the effects of heterogeneous errors so that permuting 
residuals from the weighted estimates provide an approximation of the sampling distribution 
of D. 

Permuting residuals (e = Wy − WX1b1) under the null, reduced parameter model 
does not yield exact permutation probabilities except when the null parameter is just an 
intercept (β0) and W = I. This permutation approach due to Freedman and Lane (1983) 
was found to have perfect correlation asymptotically with the exact test for least squares 
regression, which is only possible when β1 is known (Anderson and Robinson 2001), and 
has performed well in simulations for least squares (Kennedy and Cade 1996; Anderson 
and Legendre 1999; Legendre 2000) and least absolute deviation regression (Cade and 
Richards 1996). There is some correlation (−(n − 1)−1) among the residuals for least 
squares regression estimates and they do not have constant variance (E[ee′] =  σ2(I − 
X1(X′ −1X′ 

1X1) 1)), implying that they are not exchangeable (Good 2002; Commenges 
2003). Dependency among the residuals decreases with increasing sample size providing 
some asymptotic justification for treating them as exchangeable random variables (Randles 
1984; Good 2002). 

For a linear estimator like least squares regression, Commenges (2003) found that 
linear transformations that preserve approximate exchangeability of the residuals from a 
model with p − q parameters must reduce the dimensions of the matrix to n − (p − q) or 
n− (p− q)+1. A similar proof for quantile regression—which is not a linear estimator—is 
not available, but the concept remains relevant. It is known that an estimate for a quantile 
regression model with p − q parameters must have at least p − q residuals equal to 0 
(Koenker and Machado 1999). Whenever p − q >  1 there will be a mass of residuals at 
zero (F−1(τ |X1) =  0), whereas the error distribution that is being approximated under e 

the permutation argument does not have this mass density at zero. Therefore, to provide 
approximately exchangeable residuals under the null model, we deleted all but 1 of the p−q 
zero residuals whenever p − q >  1 and reduced the dimension of e to n − (p − q) + 1. To 
permute e with dimension n− (p− q)+1 against the n× p matrix X, we randomly deleted 
(p − q) − 1 rows of  X at each permutation. This allowed all rows of the design matrix to 
affect the permutation distribution of the test statistic D while using only n − (p − q) + 1 
rows of X for the quantile regression estimate at each permutation. 

An additional problem with the standard permutation structure occurs whenever the null 
model is forced explicitly (H0 : β0(τ) =  0) or implicitly (weighted estimates that do not 
include all X associated with the weights function) through the origin. There is additional 
sampling variation not accounted for by the usual permutation distribution of the test statistic 
because a null model that is constrained through the origin no longer has residuals with 
τ -quantile = 0, that is, F−1(τ |X1) /= 0. This is similar to the property that the mean of the e 

residuals /= 0 when least squares regression is constrained through the origin. If the number 
of positive, negative, and zero residuals are denoted by N+, N−, N 0, respectively, and if 
N 0 = p− q under a null model that includes an intercept, then there are at most nτ negative 
residuals where N− ≤ nτ ≤ N− + N 0 and at most n(1 − τ) positive residuals where 
N+ ≤ n[1 − τ ] ≤ N+ + N 0 (Koenker and Bassett 1978; Koenker and Portnoy 1996). 
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When the null model does not include an intercept, the limits on the number of positive 
(negative) residuals can differ from these values consistent with random binomial variation 

∗ ∗such that F−1(τ |X1) = 0, where τ is the proportion from a random binomial variable withe 

probability τ given n. Consequently, we modified a recently proposed double permutation 
scheme for least squares regression through the origin (Legendre and Desdevises 2002) 
for quantile regression. At each permutation, the proportion τ∗ was generated as a random 
binomial variable given n and τ . The null model residuals were centered on their τ∗-quantile 

∗ ∗by e ∗ = e − F−1(τ |X1) and the centered residuals e were permuted to X and the teste 

statistic D computed by (3.1). 

4. SIMULATION EXPERIMENT 

We first conducted a set of Monte Carlo simulations with homogeneous errors to es
tablish the performance for models having a simple error structure. A greater range of 
simulations were then conducted for models with error heterogeneity requiring weighted 
estimates because these are the conditions where quantile regression estimates are most 
useful. Normal (µ = 0, σ  = 1), uniform (min = −2,max = 2), and lognormal (median = 
0, σ = 0.75) error distributions were used to provide responses with symmetric, unimodal 
variation with greatest density at the center, symmetric variation with constant density, and 
asymmetric variation with lower density in the upper tail. Error distributions were centered 
on their 0.50, 0.75, 0.90, 0.95, or 0.99 quantiles so that Fεεε

−1(τ |X) = 0, providing a range 
of central to extreme regression quantiles. Note that similar simulation results for quantiles 
in the lower tail (0.25, 0.10, 0.05, and 0.01) would be obtained for the symmetric normal 
and uniform error distributions. 

Simple two-parameter and six-parameter multiple regression models were simulated for 
n = 20, 30, 60, 90, 150, and 300. Independent variables were structured to have a range of 
values and correlation structure similar to those expected in many ecological investigations. 
Independent variables were structured so that X0 was a column of 1’s for the intercept; X1 

was uniformly distributed (0, 100); X2 was negatively correlated (r = −0.89) with X1 

specified by the function X2 = 4,000 − −20X1 +N(µ = 0, σ  = 300); X3 was positively 
correlated (r = 0.94) with X1 specified by the function X3 = 10 +0.4X1 +N(µ = 0, σ  = 
16); X4 was a 0, 1 indicator variable randomly assigning half the sample to each of two 
groups; and X5 was the multiplicative interaction of X3 and X4. Thus, X1 ranged from 0 
to100, X2 had most values in the range 0 to 5,000 and was inversely related to X1, and X3 

provides values in the range 0 to 60 and was positively related to X1. Variables X2 and X3 

were negatively correlated (r = −0.85) with each other through their indirect functional 
relation with X1. The indicator variable (X4) and its interaction with X3 (X5) allowed the 
effect of X3 for the regression quantile function to differ in slopes, intercepts, or both terms 
for the two groups. 

The p = 6 parameter model was used because it allowed us to evaluate the permutation 
test for subsets of predictors where multicollinearity existed among continuous variables and 
for testing interactions with categorical variables. These are conditions common in linear 
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model applications where improperly constructed permutation tests often fail to maintain 
correct Type I errors (Cade and Richards 1996; Kennedy and Cade 1996; Anderson and 
Legendre 1999; Anderson and Robinson 2001; Good 2002). Permutation procedures that 
perform properly for multicollinear predictors also perform properly for uncorrelated pre
dictors. We limited our simulations for weighted estimates to using the known weights to 
minimize the extra computing required to estimate weights for the large set of conditions 
we simulated and to eliminate confounding interpretations of test performance with a par
ticular method of estimating weights. Nonnull parameter values for power simulations were 
selected to provide a range of small to larger effects that had power < 1 for most effects for 
most quantiles so that differences across quantiles, sample sizes, and between the D test 
and quantile rank score test would be evident. 

Each combination of conditions (quantile, error distribution, sample size, and model 
structure) was sampled 1,000 times and the test statistic Do was computed for each sam
ple. Probabilities were evaluated with separate m + 1 = 10,000 random samples of the 
permutation distribution for D. Cumulative distribution function (cdf) plots of the Type I 
error probabilities under the null hypothesis were graphed and compared with the expected 
uniform cdf. Point estimates for α = 0.05 and 0.10, corresponding to coverage for 95% 
and 90% confidence intervals, were graphed across the combination of model conditions. 
The 99% binomial confidence intervals for 1,000 simulations (0.076 to 0.124 for α = 0.10 
and 0.032 to 0.068 for α = 0.05) were used as a guide to judge when estimated Type I 
error rates exceeded variation expected from the sampling simulations. Power under the al
ternative hypotheses was graphed only for α = 0.05 across all combinations of conditions, 
although cdf plots were initially examined. 

All data for the simulation studies were generated with functions in S-Plus 2000 (In
sightful, Inc., Seattle, WA). Regression quantile estimates and test statistics were computed 
by Fortran 95 routines implemented in the Blossom software available from the U. S. Ge
ological Survey (www.fort.usgs.gov/products/software/blossom/blossom.asp). 

4.1 HOMOGENEOUS ERROR STRUCTURE: SIMPLE REGRESSION 

The simple two-parameter regression model y = β0 + β1X1 + ε with β0 = 6.0 and 
β1 = 0.0 was evaluated for H0 : β1 = 0. Type I error rates were well maintained at all 
sample sizes, error distributions, and quantiles, consistent with exact exchangeability for 
this hypothesis (Figure 2). Type I errors for the 0.75 quantile were nearly identical to those 
for the 0.50 quantile for this and subsequent simulations and, therefore, were not graphed. 
We also evaluated Type I error rates for H0 : β0 = 0.0 with β1 = 0.10 and β0 = 0.0 in this 
regression model. The double permutation procedure maintained correct Type I error rates 
for testing the intercept except for n < 60 for τ = 0.95 and n < 300 for τ = 0.99 where 
they were liberal (Figure 2). Using the standard rather than the double permutation scheme 
for H0 : β0 = 0 resulted in slightly liberal Type I error rates as shown for the lognormal 
error distribution with n = 90 (Figure 3). 

Power to detect nonzero slopes for β1 = 0.01, 0.05, 0.10, and 0.20 was progressively 
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lower moving from the 0.50 to 0.99 quantile and this reduction was greatest for the lognormal
error distribution, less for the normal, and least for the uniform error distribution, consistent
with changes in densities of observations around the quantiles of these distributions. Power
increased with increasing effect size and sample size as desired. Power to detect nonzero
intercepts for β0 = 0.5, 1.0, 2.0, and 3.0 with the double permutation scheme decreased
with increasing quantile for the lognormal error distribution, with no effective power for

Figure 2. Estimated Type I error rates for α = 0.05 (open) and 0.10 (solid); for the permutation D test for
homogeneous lognormal (circles), normal (triangles), and uniform (squares) error distributions; for H0 : β0 = 0
(double permutation) and H0 : β1 = 0 in the model y = β0 + β1X1 + ε, and H0 : β3 = 0 (drop zero residuals,
reduced rank regression) in the model y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε for τ = {0.50,
0.90, 0.95, and 0.99}; and for n = 20, 30, 60, 90, 150, and 300. Fine dotted lines are 99% binomial confidence
intervals around α = 0.05 and 0.10 for 1,000 random samples used at each combination of H0: n, and quantile.
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the 0.99 quantile and n < 150. Normal and uniform error distributions had less reduction
in power across quantiles for this hypothesis, maintaining effective power for all sample
sizes up to and including the 0.99 quantile. Power increased with increasing effect size and
sample size as desired. Graphs of all power simulations are in the online Appendix.

Figure 3. Cumulative distributions of 1,000 estimated Type I errors for permutation approximation of H0 : β0 = 0
in the modely = β0+β1X1+ε; H0 : β1 =0 in the weighted modelwy = wβ0+wβ1X1+w(1+γX1)εwithγ =
0.05 andw = (1+γX1)−1; and forH0 : β3 = 0 in the modely = β0+β1X1+β2X2+β3X3+β4X4+β5X5+ε;
for 0.50, 0.90, 0.95, and 0.99 quantiles; for n = 90; and the lognormal error distribution. Cdf’s compare the
standard approach of permuting residuals from the null model (dashed lines) with double permutation schemes
for H0 : β0 = 0 and H0 : β1 = 0 and deletion of zero residuals and reduced dimension regression for H0 : β3 =
0 (solid lines). Fine dotted line is expected cdf of uniform distribution.
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4.2 HOMOGENEOUS ERROR STRUCTURE: MULTIPLE REGRESSION 

The six-parameter model y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε with 
β0 = 36.0, β1 = 0.10, β2 = −0.005, β4 = 2.0, and β3 = β5 = 0.0 was evaluated 
for Type I error rates for H0 : β3 = 0. Here the dimension of e was reduced to n − 4 
as there were p − q = 5 parameters under the null model. Type I error rates were well 
maintained for n >  20 for 0.50, n >  60 for 0.90, and n >  90 for 0.95 quantiles (Figure 
2). Only the uniform error distribution had Type I error rates near nominal values for the 
0.99 quantile (Figure 2). The slightly liberal nature of the standard compared to the reduced 
zero residuals permutation approach is illustrated for the lognormal error distribution and 
n = 90 (Figure 3). We also evaluated Type I error rates for H0 : β4 = 0 in the six-parameter 
model with β0 = 36.0, β1 = 0.10, β2 = −0.005, β3 = 0.05, and β4 = β5 = 0.0 and 
found a similar pattern. Power was not investigated for multiple regression models with 
homogeneous errors. 

4.3 HETEROGENEOUS ERROR STRUCTURE: SIMPLE REGRESSION 

The two-parameter weighted regression model wy = wβ0+wβ1X1+w(1+γX1)ε with 
γ = 0.05, β0 = 6.0, and β1 = 0.0 was evaluated for Type I error rates for H0 : β1 = 0 using 
the known weights w = (1 + 0.05X1)−1. Type I error rates using the double permutation 
scheme were well maintained for 0.50 to 0.90 quantiles, becoming increasingly liberal 
for 0.95 to 0.99 quantiles with decreasing sample size for normal and lognormal error 
distributions (Figure 4). Type I error rates were well maintained for the uniform error 
distribution at higher quantiles and smaller sample sizes. Examining the cdf’s of Type I 
errors for this hypothesis for the lognormal error distribution and n = 90 demonstrated 
that the double permutation scheme provided better Type I error rates than the standard 
permutation approach (Figure 3). The null weighted model is implicitly forced through 
the origin because the column vector of 1’s for the intercept have been multiplied by w 
and, therefore, the residuals no longer have their expected properties when the objective 
function (2.1) is minimized. Type I error rates for H0 : β0 = 0 with the double permutation 
scheme also were evaluated for the two-parameter weighted regression model wy = wβ0 + 
wβ1X1 +w(1 + γX1)ε with γ = 0.05, β1 = 0.10, and β0 = 0.0 using the known weights 
w = (1 + 0.05X1)−1 and followed a pattern similar to those for H0 : β1 = 0 (Figure 4). 

Power to detect β1 = 0.01, 0.05, 0.10, and 0.20 for the weighted regression model 
with heterogeneous errors decreased with increasing quantile and decreasing sample size 
more for the lognormal than the normal and uniform error distributions. Power for the 
lognormal error distribution and the 0.99 quantile was unreliable for n <  300 because 
of excessively liberal Type I error rates associated with the double permutation scheme. 
Power to detect β0 = 0.5, 1.0, 2.0, and 3.0 followed a similar decline with increasing 
quantile and decreasing samples size as for homogeneous error distributions, becoming 
almost nonexistent for the 0.99 quantile of the lognormal error distribution with n = 300. 
Uniform and normal error distributions had effective power for the 0.99 quantile at smaller 
n. Again, power increased with increasing effect size and sample size as desired. Power 
graphs are in the online Appendix. 
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4.4 HETEROGENEOUS ERROR STRUCTURE: MULTIPLE REGRESSION

The six-parameter model wy = w(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 +
(1 + γX1)ε) with γ = 0.05, β0 = 36.0, β1 = β2 = β3 = β4 = β5 = 0, and known
weights w = (1 + 0.05X1)−1 was evaluated for Type I error rates for the full model

Figure 4. Estimated Type I error rates for α = 0.05 (open) and 0.10 (solid); for the double permutation D test
for H0 : β0 = 0 and H0 : β1 = 0; for the weighted model wy = w(β0 + β1X1 + (1 + γX1)ε), γ = 0.05, and
w = (1 + γX1)−1; with lognormal (circles), normal (triangles), and uniform (squares) error distributions; for
τ = {0.50, 0.90, 0.95, and 0.99}; and for n = 20, 30, 60, 90, 150, and 300. Fine dotted lines are 99% binomial
confidence intervals around α = 0.05 and 0.10 for 1,000 random samples used at each combination of error
distribution, H0 :, n and quantile.
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hypothesis H0 : β1 = β2 = β3 = β4 = β5 = 0. Type I error rates using the double
permutation procedure were well maintained until n < 60 for 0.95 and n < 300 for
0.99 quantiles, where liberal error rates occurred for the lognormal distribution (Figure 5).
Type I error rates were better maintained at smaller n and more extreme quantiles for the

Figure 5. Estimate Type I error rates for α = 0.05 (open) and 0.10 (solid); for the permutation D test for H0 :
β1 = β2 = β3 = β4 = β5 = 0 (double permutation), H0 : β3 = 0, and H0 : β3 = β5 = 0 (delete zero residuals,
reduced dimension regression); for heterogeneous lognormal (circles), normal (triangles), and uniform (squares)
error distributions in the weighted model wy = w(β0 +β1X1 +β2X2 +β3X3 +β4X4 +β5X5 +(1+γX1)ε),
γ = 0.05, w = (1 + γX1)−1; for τ = { 0.50, 0.90, 0.95, and 0.99}; and for n = 20, 30, 60, 90, 150, and 300.
Fine dotted lines are 99% binomial confidence intervals around α = 0.05 and 0.10 for 1,000 random samples
used at each combination of error distribution, H0, n, and quantile.
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normal and uniform error distributions. Power estimated with 1 of the 5 slope parameters 
(β3 = 0.10, 0.15, 0.20, and 0.25) allowed to be nonzero was low to nonexistent for the 0.99 
quantile, and increased with increasing effect size and sample size for other quantiles. Power 
for this and other hypotheses for the multiple regression models was evaluated only for the 
lognormal error distribution to reduce the amount of computing and reporting (Appendix). 
Power for normal and uniform error distributions would be greater than or equal to that for 
the lognormal error distribution for the higher quantiles. 

Type I error rates for subhypotheses involving continuous variables in the six-parameter 
weighted model with β0 = 36.0, β1 = 0.10, β2 = −0.005, β4 = 2.0, and β3 = β5 = 0.0 
were evaluated for H0 : β3 = 0 and H0 : β3 = β5 = 0. Type I error rates were well 
maintained by the reduced zero residuals permutation procedure for 0.50 to 0.95 quantiles 
and n > 30, becoming liberal at smaller n and more extreme quantiles for the lognormal 
and normal error distributions, and more so for H0 : β3 = β5 = 0 than for H0 : β3 = 0 
(Figure 5). Only the uniform error distribution had reasonable Type I error rates for the 0.99 
quantile. Power for H0 : β3 = 0 was estimated with β3 = 0.10, 0.15, 0.20, and 0.25 for 
the lognormal error distribution. Power was low for the 0.90 and 0.95 to nonexistent for the 
0.99 quantiles but otherwise increased with increasing effect size as desired (Appendix). 
Subhypotheses involving categorical predictors in the six-parameter weighted model with 
β0 = 36.0, β1 = 0.10, β2 = −0.005, β3 = 0.05, and β4 = β5 = 0.0 were evaluated 
for Type I error rates for H0 : β4 = 0 and H0 : β4 = β5 = 0 (Appendix) and had 
similar patterns as for subhypotheses for continuous predictors evaluated above. Power 
was evaluated for the subhypothesis H0 : β4 = 0 for β4 = 1.5, 3.0, 6.0, and 12.0 and 
the lognormal error distribution. Power declined with increasing quantiles and decreasing 
sample size, but increased with increasing effect size (Appendix). 

4.5 PERFORMANCE RELATIVE TO RANK SCORE TESTS 

We compared the ability of the drop in dispersion D test to maintain valid Type I error 
rates relative to the conventional rank score T test (Cade et al. 2006) across the same set 
of simulation conditions. The conventional rank score T test has its probability evaluated 
under the null hypothesis by referencing the observed test statistic to a chi-square distribution 
with q df. In Figure 6, we bound the sample size (n) and quantile (τ) space where each test 
maintained correct Type I error rates by hypothesis tested and number of model parameters 
(p) for all three error distributions. The rank score T test provided valid Type I error rates 
for tests of the intercept (H0 : β0 = 0) at more extreme quantiles and smaller samples 
(n < 300) for both homogeneous and heterogeneous error models (Figure 6). The rank 
score T test also provided valid Type I error rates at smaller samples (n < 60) for all 
quantiles when testing subhypotheses in multiple regression models (Figure 6). However, 
in the weighted heterogeneous error models, the D test provided valid Type I error rates 
at more extreme quantiles for moderate sample sizes (60 < n < 300). The D test also 
provided valid Type I error rates at more extreme quantiles and smaller samples (n < 300) 
for testing slopes (H0 : β1 = 0) in simple regression models with homogeneous errors and 
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Figure 6. Sample sizes and quantiles providing valid Type I errors and power > α = 0.05 for at least one nonzero
effect for the permutation D test and rank score T test based on simulations for n = 20, 30, 60, 90, 150, and
300; τ = {0.50, 0.75, 0.90, 0.95, 0.99}; for lognormal, normal, and uniform homogeneous and heterogeneous
error distributions; for p = 2 and 6 parameter models; and hypotheses in Figures 2–5. Black shaded regions
are where only T rank score test was valid, white regions are where only permutation D test was valid, and gray
shaded regions are where both were valid. Thin contour lines are effective ranks of 2 and 4, where effective rank
= ((1 − τ) × n) ÷ p for τ ≥ 0.50.
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when testing all slopes (H0 : β1 = β2 = β3 = β4 = β5 = 0) in multiple regression models 
with heterogeneous errors. 

We also graphed functions for the effective rank of the quantile regression models, 
where effective rank = ((1−τ )×n)÷p for τ ≥ 0.50 summarizes the parameter dimensions 
as a ratio of order statistic to number of parameters for comparing inference procedures 
for quantile regression (Chernozhukov and Umantsev 2001). Both the D test and the T 
rank score test always provided valid Type I error rates for effective ranks ≥4, commonly 
for effective ranks 2–4, and occssionally for effective ranks < 2 (Figure 6). Thus, both 
tests provided valid inferences for smaller effective ranks than the ≥25 recommended for 
asymptotic methods based on the variance/covariance matrix (Chernozhukov and Umantsev 
2001). 

We compared relative power of the D test to the T rank score test by effective rank 
for those parameter regions in Figure 6 where both tests maintained valid Type I error rates 
(Figure 7). As effective ranks reached and exceeded 10, relative power approached 1 for all 
hypotheses. For hypotheses on the intercept, relative power often was < 1 and decreased 
with decreasing effective ranks especially for lognormal error distributions and smaller n. 
For hypotheses on other parameters, relative power was ≥ 1 and increased as effective 
ranks decreased. For effect sizes not included in Figure 7, relative power approached 1 as 
effect sizes increased away from the null hypothesized value of zero and power of each test 
approached 1. Relative power increased as effect sizes were closer to the null hypothesized 
value of zero and power of each test was further from 1. Because power of the permutation 
version of the F rank score test was similar to the chi-square T rank score test (Cade et al. 
2006), the relative power of D to the permutation F rank score test was similar to relative 
power of D to T . However, like the D test, the permutation F rank score test provides better 
Type I error rates at smaller sample sizes for more extreme quantiles for parameters other 
than the intercept (Cade et al. 2006). 

5. EXAMPLE APPLICATION 

The initial analyses of Lahontan cutthroat trout standing crop as related to stream 
channel morphology suggested the nonlinear model y = exp(β0 + β1X1 + ε), where y 
is trout m−1 and X1 is width:depth ratio, was a reasonable approximation (Dunham et al. 
2002). We estimated the weighted linear form w(ln y) = wβ0 +wβ1X1 +w(γ0 − γ1X1)ε, 
and estimates for selected regression quantiles were plotted by exponentiating to back 
transform to the nonlinear form (Figure 1, p. 108). The vector of weights w we used were 
identical to those used with quantile rank score tests (Cade et al. 2006) and the weighted 
least squares estimate. Weights w = (1.310 − 0.017X1)−1 were estimated by computing 
the average pairwise differences between the 76 unweighted regression quantile τ = [0, 1] 
estimates, b0(τ) to estimate γ0 and b1(τ) to estimate γ1 in the standard deviation function 
γ0 − γ1X1. Estimates of parameters for all quantiles were plotted as a step function with 
90% confidence intervals for 19 quantiles between 0.05 and 0.95 by increments of 0.05 
(Figure 1(b) and 1(c)). Starting values for the manual iteration of the test inversion were 
based on interval endpoints estimated by the rank score tests. These values were then used 
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Figure 7. Relative power of the permutation D test compared to T rank score test by effective rank, where effective
rank = ((1 − τ) × n) ÷ p for τ ≥ 0.50, for sample sizes, quantiles, and hypotheses where both tests maintained
valid Type I errors in Figure 6. Only one effect size is graphed per hypothesis. Power was estimated for lognormal
(circles), normal (triangles), and uniform (squares) error distributions for simple regression models but only for
the lognormal error distribution for multiple regression models. Relative power was always near 1 for effective
ranks >40, which were not graphed.
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as hypothesized parameter values of ξ(τ ) in the transformation y − X2ξ(τ) to test the 
H0 : β2(τ ) = ξ(τ) with (3), where β2 was either β0 or β1. We used m + 1 = 100,000 
permutations to compute probabilities for the D tests associated with confidence interval 
endpoints. 

The 90% confidence intervals estimated by inverting the D test (Figure 1) were smoother 
across quantiles than those based on the rank score tests (Cade et al. 2006) because the per
mutation distribution for the D test was much more continuous than the distribution of 
the rank score test. Linear interpolation between hypothesized parameter values was not 
required to achieve P = α = 0.10 with the D test as it was for the rank score tests (Koenker 
1994; Cade et al. 2006). The D test based 90% confidence intervals for β1 were 47 to 143% 
(median = 93%) of the length of those based on the T rank score test (Cade et al. 2006), 
shorter for 13 of 19 quantiles with greatest reduction in length for lower quantiles. Similarly, 
the D test based 90% confidence intervals for β0 were 64 to 118% (median = 96%) of the 
length of those based on the T rank score tests, shorter for 11 of 19 quantiles with greatest 
reduction in length also for lower quantiles. Differences between the D test and the quantile 
rank score based intervals were not sufficient to alter any conclusions about the effects of 
width:depth ratios on cutthroat trout populations. Confidence bands estimated by the D test 
supported an interpretation that increasing stream width:depth ratios from 15 to 45 decreased 
the highest 20% of trout densities (τ ≥ 0.80) by 1 to 64%  [exp(−0.0003 × 30) = 0.991 
and exp(−0.0344 × 30) = 0.356], similar to conclusions based on the quantile rank score 
confidence intervals (Dunham et al. 2002; Cade et al. 2006). There was weak evidence that 
lowest quantiles (τ ≤ 0.10) of trout density increased slightly with stream width:depth 
ratio, but most quantiles (0.10 < τ  <  0.80) of trout density did not change as indicated by 
confidence intervals including zero (Figure 1). 

The interpretation of this pattern was that physical habitat as measured by width:depth 
ratio was a constraint limiting trout abundance only for some of the observations and other 
factors were limiting at most locations and times (Dunham et al. 2002). To explore additional 
factors that might be limiting trout abundance, Dunham et al. (2002) also considered a model 
that included an indicator variable (X2) assigning a 0 for streams with nonnative brook 
trout (Salvelinus fontinalis), a possible competitor, or connected to migratory habitats and 
assigning a 1 for isolated streams without brook trout. We considered a weighted model, 
w(ln y) = wβ0 +wβ1X1 +wβ2X2 +wβ3X1X2 +w(γ0 −γ1X1)ε, similar to the unweighted 
model used by Dunham et al. (2002) to examine whether the data supported separate slopes 
[H0 : β3(τ ) = 0] for the two groups of streams. Our weighted estimates and the Dunham 
et al. (2002) unweighted estimates of β3(τ ) were −0.029 to −0.017 for lower quantiles 
(τ <  0.55), decreasing to −0.044 to −0.035 for higher quantiles (τ ≥ 0.55), indicating a 
stronger negative relationship between Lahontan cutthroat trout abundance and width:depth 
ratio in isolated streams without brook trout. However, because the 90% confidence intervals 
for β3(τ ) formed by the rank score test inversion overlapped zero slightly for all but the 
highest quantiles (τ ≥ 0.90), Dunham et al. (2002) concluded there was little evidence 
supporting the separate slopes model. We estimated 90% confidence intervals for β3(τ) 
by inverting the D test and found intervals for τ ≥ 0.55 excluded zero, whereas intervals 
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for τ < 0.55 included zero. The greater power of the D test provided more evidence 
of a stronger negative relationship between higher quantiles of Lahontan cutthroat trout 
abundance and width:depth ratio for isolated streams without brook trout. 

6. DISCUSSION 

Our modifications of the standard approach of permuting residuals from the null model 
were successful at providing valid Type I error rates when quantile regression models were 
forced through the origin or had a mass of zero residuals due to multiple parameters. How
ever, using the double permutation scheme for estimates forced through the origin resulted 
in some loss of power at smaller n and more extreme quantiles compared to the chi-square 
quantile rank score test (Cade et al. 2006). A similar problem was noted when the double 
permutation scheme was used to evaluate the rank score test (Cade et al. 2006). Computing 
the random binomial proportion associated with the double permutation procedure results 
in many identical values of 1.0 for extreme quantiles with small n. The double permutation 
procedure will require n much greater than 300 to work reasonably with quantiles ≥0.99. 

The deletion of zero residuals and reduced dimension quantile regression used when 
null models had multiple parameters provided slightly more conservative Type I error rates 
for the D test than either permutation or Chi-square evaluations of the rank score statistic 
at smaller n (<60). This was attributed to the reduction in sample size of the permuted 
residuals required by the D test when testing subhypotheses. However, power often was 
substantially greater for the D test compared to rank score test of subhypotheses when 
n ≥ 60. The only hypothesis where rank score tests consistently had better power than the 
D test was when testing the intercept. 

Our approach of randomly deleting rows of the design matrix X to make it conform to 
the reduced dimension of the residuals e is only one of several possible approaches. It also 
would be possible to just delete the rows of X corresponding to those with the deleted zero 
residuals. The dimension of X also could be reduced by Gram-Schmidt orthogonalization 
(Commenges 2003). It remains to be determined if either of these or other alternatives 
provide any advantage. 

The drop in dispersion D test appears to be a useful addition to the growing arsenal of 
inference procedures for linear quantile regression analyses with small to moderate sample 
sizes. Despite the benefits of greater power and reduced interval lengths, inverting the D 
test to estimate confidence intervals is a computationally burdensome procedure compared 
to estimating confidence intervals by inverting the chi-square T rank score test (Koenker 
1994). Routines that iterate towards selected confidence intervals based on inverting the D 
test need to be developed with some form of user guided starting values and increments to 
step towards a solution. 

Our simulation experiment avoided the issue of how to estimate weights for het
eroscedastic models by using the known standard deviation function. In applications, this 
function is not known and the weights must be estimated. We used a simple pairwise dif
ference approach based on the initial unweighted estimates for estimating weights in our 
example application. Other approaches for estimating weights include regressing absolute 
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values of residuals from an unweighted fit of the 0.50 quantile on the independent vari
ables for linear location-scale models (Zhou and Portnoy 1998) and the sparsity estimation 
approach for more general heteroscedastic models (Koenker and Machado 1999). 

APPENDIX 

An online Appendix available at www.fort.usgs.gov/staff/staffprofile.asp?StaffID=115 
has graphs for additional Type I error and power simulations. 
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