Developing a Customized STEP Implementation

in the context of PDM application domain

Dr.-Ing. Anna Wasmer

PDTec GmbH D-76131 Karlsruhe, Germany

Fon: +49-721-9658-675 Fax: +49-721-9658-263 E-Mail: wasmer@pdtec.de

E-Mail: wasmer@pdtec. Web: www.pdtec.de

NASA STEP Workshop, Pasadena, CA, January 16/19, 2001

PD Tec.

Challenges of eEngineering communication

- eEngineering requires high degree of communication
 - I Concurrent/ simultaneous engineering
 - OEM Supplier collaboration
 - Use of catalogue/standard parts
- Need for expanded life cycle management through
 - Strategic partnerships
 - Development cooperations
 - Inclusion of key suppliers into business workflow
 - Global environment
- Exchange of 'just' geometry is not sufficient
 - Exchangeability of product definitional information (e.g. product identification) and organizational information (e.g. approval) required
- Data managed by PDM systems is a basis for eEngineering communication

PDTec Gmb

-

Customization areas for PDM

- Commercial PDM systems often are toolkits that need to be customized
 - Customer specific data model
 - » adapt/extend the PDM standard data model
 - » build / implement own data model
 - Customer specific scope and constraints
 - » Terminology
 - » Attribute value domains (e.g. names of approval or lifecycle states)
 - » Part numbering systems
 - Customer specific business practices and processes, e.g.
 - » implement processes to support their specific business practices (object lifecycles, roles, signatures, ..)
 - » use of assembly structure or document structure to describe geometric relationships and transformation matrices between parts
 - Customized user interface

PDTec GmbH Jan-01, 3 ununu natao al

PD Tec.

Need for customizable processors - 1

- Initial processor customization according to system customization
- Continuous evolution and change of implementations
 - E.g. new data types, attributes and attribute value sets
- Different mapping "variations" may be necessary to communicate with other applications (e.g. PDM, ERP, CAD,...) and organizations
 - Different instantiation practices
 - Bilaterally agreed attribute value mappings
 - Support different views of the product, e.g. as designed, as built

PDTec GmbH Jan-01, 4

www.pdtec.de

Need for customizable processors - 2

- Evolution and change of supported standards
 - l e.g. new revisions; migration to modules approach
- Ability to use and support selection of different standards and target data models
 - I Different set of target modules or schemas (e.g. STEP APs)
 - Different representation format of target data set (e.g. STEP part 21 or part 28/XML)
- Specific system environments
 - e.g. network distribution, client-server, web based access, integration with exchange tools

PDTec Gmb

www.pdtec.c

PD Tec.

Consequences

- System vendors / processor implementors
 - I Standard system processors have to be easily customizable
 - » customer specific data model, scope and constraints
 - » customer specific business practices and processes
 - » evolution and change of supported standards
 - » support of different standards/ target data models
- User companies
 - Use implementation technology that provide
 - » good support for initial processor development/customization
 - » good support for continuous evolution of processor according to PDM implementation phases
 - » flexibility to support different exchange scenarios and business relationships
 - » possibility to include different mapping "variations" to optimize exchange with selected partners
 - » easy integration in changing system environments
 - » migration path to new standards and target data models

PDTec Gmbl

:

PDTec. Steps for developing a Customized STEP Processor

- (1) Create data repositories
 - I Identify STEP target data models (PDM schema, APxxx, set of modules)
 - Generate EXPRESS representation of customized PDM data model
 - » e.g. tool for automatic extraction
- (2) Develop system adapter
 - Define business practices and rules depending on specific user settings
 - » e.g. when to perform certain actions (e.g. check-in/-out, replace, add, etc.)
 - Business Logic implementation
 - Import /export data of data structures and attached files via API
- (3) Develop Mapping engine
 - Mapping specification (EXPRESS-X)
 - Definition of extensible configuration tables e.g. attribute value mappings, bilateral agreements, etc.
 - Automatic generation of mapping engine
- (4) Additional functionality (e.g. PDM GUI extensions for data selection, browsing and editing. checking modules)
- Steps (2), (3), and (4) can be parallelized

PD Tec

The Mapping Language EXPRESS-X

- Structural data mapping language to
 - I allow an unambiguous specification of the relationship between models defined in EXPRESS (ISO 10303-11)
 - I support mapping of data defined by one EXPRESS model to data defined by another EXPRESS model
- Defined as extension of the EXPRESS language
- Available as part 14 of the SC4/STEP series standards
- Committee draft (CD) successfully balloted (Dec. 2000)
- 10303-14 will go forward for registration as a DIS (Draft International Standard), after ballot comment resolution
- Generation of EXPRESS-X Map statements from textual mapping specifications (e.g. mapping tables)

PDTec.

EXPRESS-X Fundamental Concepts

- Explicit specification of one-way mappings between n source and m target EXPRESS schemas
 - EXPRESS-X does not support the explicit definition of inverse mappings in the same mapping specification
- Modular structure of mappings
 - I Mappings can be REFERENCEd like EXPRESS SCHEMAs
- Declarative approach of the specification
 - I Independence of execution order
 - Readability
 - I Same level of abstraction as mapped data models
- Procedural extensions
 - Inclusion of predefined algorithms on source and target data
- Clear separation between description and execution model

PDTec. General Structure of an EXPRESS-X Specification

- Identification of source and target schemas
- Use of externally defined mappings and functions
- (Data-) Type mapping
- Declaration of constants (EXPRESS syntax) and target/view instances which are not directly related to source data
- Declaration of procedures and functions (EXPRESS syntax)
- MAP and VIEW declarations
 - MAP specification of the mapping between pre-existing source and target schemas (entities)
 - definition of a view schema (view entities) derived from one or more source schemas (source entities)

PDTec. **Conclusions** Advantages of system adapter and mapping engine as separate processor components I Changes in system API's or technology replacement (e.g. web based interface) do not affect mapping engine Reuse of sys. adapter for mappings to different target schemas » Support of additional standards (STEP data models, or others) Use of EXPRESS-X reduces development time for data mappings and allows easy adaptation of mapping engine Independence of data representation format on target side » Changes in target schema/ mapping do not affect system adapter Parallelization of development and customization work » use of different experts Distribution in the network • Easy migration to new technology components (e.g. web) Easy integration of additional development tools (schema extractor, schema comparison, graphical mapping tool)

Ç