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1. Introduction

In discussing the two papers in this session, “Sample size considerations for multilevel surveys”
by Michael P. Cohen and “Two sided coverage intervals for small proportions based on survey
data” by Philip S. Kott, Per Gosta Andersson, and Olle Nerman, I will follow a format.

I will first make some general comments. Then for each of these papers (which I will consider in
order of their presentation), I will:

(A)  Discuss the contents of the paper
(B) Place this discussion in a wider context, including some

comment on related problems and possible solutions

Firstly, general comments. Both sets of authors are to be commended, both for their choice of
topic and for their presentations. The two problems have strong implications for survey design
and analysis. They are also important issues when minimizing or reducing survey costs. Survey
designs should be optimized for the intended type(s) of analysis, or else resources are not
properly focused. Good confidence and coverage intervals should neither be under-estimated nor
overly conservative, especially when sampling for rare or relatively rare population
characteristics.

2. Optimal design for multilevel surveys

The paper “Sample size considerations for multilevel surveys” by Michael Cohen considers how
best to design a sample survey when the intended analysis is not the usual estimation of (sub-)
population means or construction of cross-classified tables. Instead, he has looked at the question
of how best to design a survey when the primary analysis will be multilevel modeling of the
survey data. ie the fitting of linear or non-linear models with hierarchical structure and fixed or
random coefficients.

The distinction made between descriptive and analytic surveys is certainly an important one.
Because of improved computing resources and ease of use of statistical techniques for survey
data (through packages like Pccarp, Sudaan and WesVar), the emphasis is slowly moving toward
analytic surveys, where more than means and simple contingency tables are required. For this



reason, as Michael Cohen notes, considering optimal design for such surveys, rather than simply
relying on known optimality results for descriptive surveys is an important area, not just from a
statistical but also a survey cost point of view

I see this as an important area for another reason. I cannot comment on surveys undertaken in the
USA, but in New Zealand large and consequently expensive national surveys are too often
undertaken and either a very large percentage of the budget is spent on design and field work and
little beyond summary statistics is completed (leaving a rich resource largely untapped), or else
analytic results are wanted after field work is complete but the design and/or budget place severe
constraints on what can then be done.

I have a number of particular comments on the paper.

It is important to distinguish between structure in the population and structure in the sample, eg
there can be clustering in the sample design without clustering in the population, but often there
is both.

There is as Cohen noted a rather confusing difference in notation used in sample surveys and in
the multilevel modeling literature: eg

- sample surveys: neighborhood = 1st stage, household=2nd stage
- multilevel modeling: neighborhood = level 2, household=level 1

Consistency of notation would be welcome, but these opposing conventions seem well
established.

The analysis in Cohen’s paper looks at the case where the number of units sampled at the finer
level is equal for all groups, or first stage units. In practice, eg for people within households,
there can be unequal numbers sampled. It would be useful to have an extension of the optimal
design results to such unbalanced models.

The focus of the paper is on randomization inference. It is also useful to consider what in
multilevel models for surveys is random with respect to the survey design (leading to
randomization or design-based inference), and what is random with respect to the multilevel
model (leading to superpopulation inference). The two inferential frameworks are often linked,
and it is useful to make them explicit. For example, in the simple model used in Section 5 of the
paper, the superpopulation model assumes exchangeability within neighborhood (ie households
within each neighborhood have the same statistical properties (eg mean, variance), with the same
variance but different means for all neighborhoods. This is worth checking both against the
sample data, and against what is known about the population at design stage. There is no point
having an optimal design for a superpopulation model that does not adequately describe the
actual situation. The point is that superpopulation models are not to be ‘plucked from the air’, but
must reflect the relevant aspects of the underlying population.

The approximation that n~=n-1 made in equation (3), does not hold when sample size at the
second stage is small, and the extension of the results to this case (eg for people within
households) would be useful, even if as Cohen states, the results are not mathematically elegant.
Similarly the equation for nopt does not guarantee that nopt is an integer, and the rounding effect



may be important when nopt is small, as would be the case if nopt were number of people to be
sampled within household. Rounding nopt by say 20% also has the same percentage effect on
total sample size, since the same percentage rounding occurs at all higher levels in the model (ie
earlier stages of the design). The importance of finite population corrections in this context may
also warrant investigation. An analysis of how nopt is affected by the fact that rho is estimated
rather than known would also be useful.

Further possible extensions may include:
- multivariate optimality: looking at principal components has proved useful for descriptive

surveys. Is it applicable or useful in analytic ones?
- using a combined randomization / superpopulation approach, given the analytic models have

a superpopulation setting (eg time series, regression, logistic regression, relative risks,
generalized linear models)

What follows below is a summary of some of currently unpublished results (which I presented
last year in a seminar to the Washington Statistical Society). These begin to clarify the links
between optimal sample design and the superpopulation structure for generalized linear models.

Linear models can be written in the form:

X= +Y ß e

where Y is a vector of observations, X variables are assumed known predictor variables, ß  is a
vector of regression coefficients, ε is the error vector with mean zero and variance covariance
matrix V which would be σ2I  for a simple linear regression. In general V has to be a positive
definite symmetric matrix.

Generalized linear models extend this framework by allowing Y to be some function g of the
observations Y0, namely g(Y0). Linear models have this link function g equal to the identity. The
solution using generalized least squares makes it clear that, at each iteration for a generalized
linear model, a linear model is actually being fitted, but that the underlying metric specified via V
is changing at each iteration. See for example, del Pino (1989). Extensions to the case where
some of the components of ß  are random are possible.

To extend the generalized linear model to a superpopulation and then a randomisation context,
let Y=(Y1, Y2, Y3,….YN)T where N is the population size, X is N*p, ε is N*1, and V is N*N.
Then define the superpopulation by ξ and the expectation with respect to ξ by E. Note that E is
defined for each i and leaves these labels i intact, in general. If the ξ distribution is stochastically
degenerate, as is the case for purely design based inference, then the elements of ε are fixed
quantities because Yi has only one value for a given i.

Define an N*N matrix χ with consisting of zeros and ones, with all off-diagonal elements equal
to zero, and n of the N diagonal elements of χ  equal to one. (Note that here n is the total sample
size.) Then χ  is a sample selection matrix, and if π is defined as the N*N matrix with all off



diagonal elements equal to zero and ith diagonal element equal to πi the selection probability for
the ith population element, and E is expectation with respect to the survey design, p, then

E(χ π -1 Y) = Y

Note that for a particular sample s only n of the N elements of χ π -1 Y are non-zero and each of
the non-zero elements is just Yi  / πi . The elements of χ π -1 Y can be permuted so that the first n
are non-zero without loss of generality.

What we know have is a structure that allows us to see the relationship between the
superpopulation structure and the design, and hence to optimize that design for a given model, in
this case the generalized linear model which determines the ξ superpopulation distribution.

The discussion given below can be extended to random and mixed parameter models for ß , but
the fixed parameter case only is considered below for simplicity.

Given a sample of size n, construct

χ π -1 Y  =  χ π -1 X ß  + χ π -1ε

Distinguish two cases:

(a) ε is fixed with respect to the superpopulation, which is the usual design based assumption
(b) ε has stochastic properties with respect to the superpopulation.

Under (a)

Varp (χ π -1ε)  =  π -1(πd  #  ε εT) π -1

where Varp denotes expectation with respect to the design, # indicates a Hadamard product (ie
elementwise multiplication), and πd has i,j th element [πij - πi πj].

ie    Varp (χ π -1ε)  has i,j th element  [(πij - πi πj) / (πi πj)] εi εj

In general there are approximations necessary because χ π -1 X is stochastic, but this is true of
any regression technique applied to unit level survey data. In practice if X is known for all
population elements, using X rather than χ π -1 X is better. This is the case, for example, if the
matrix X designates membership of various subpopulations (the size of which is known, and
membership of which is known for all sampled i), or if X is null so that χ π -1 Y  =  χ π -1ε.

In this latter case, the estimator of a sample mean is the Horwitz-Thompson estimator  Σs Yi  / πi

and the variance estimator is the usual estimator ie Σιεs Σ jεs [(πij - πi πj) / πij] YiYj /((πi πj).



This result shows that the Horvitz-Thompson estimator is the optimal estimator for the simplest
possible generalized linear model, where the error structure rather than being stochastic with
respect to some superpopulation, is fixed for every i=1,2,….N.

Under (b), ε is stochastic with respect to the superpopulation.

More specifically, this implies, E(ε) = 0, and E(εεT) = V, so that

Varpξ (χ π -1ε)  =  Varpξ (π -1χ ε)        since  χ and π are both diagonal matrices
 =  π -1 Varpξ (χ ε)  π -1

 =  π -1 (πnd  #  V)  π -1

 = Vpξ  say

where Varpξ denotes variance with respect to the joint design superpopulation distribution, πnd

has i,jth element πij , πii = πi , and as before #  denotes the Hadamard product.

Note that if V is diagonal then Vpξ = π -1 V = V π -1, and if V is diagonal with equal diagonal
elements σ2, then Vpξ  = π -1 σ2.

In general, inversion of Vpξ  is necessary to get estimates of the parameters ß  in the generalized
linear model. The n*n submatrix of Vpξ , V11p ξ say, that is defined by the sample is not however
all that is necessary to specify the corresponding n*n submatrix of Vpξ

-1, namely Vpξ
(11) (see Rao,

1973, p33, for example) so that in general the design and superpopulation properties of all N
units are required to find GLS or IGLS solutions, even though χ π -1 Y and χ π -1 X contain only
n non-zero elements or rows.

When Vpξ  is diagonal however, Vpξ
(11) = V11p ξ

-1, and when V = E(εεT) is diagonal with equal
elements, then , Vpξ

(11) = V11p ξ
-1 = πs -1 σ-2, where πs is the diagonal n*n submatrix of π which

contains selection probabilities for the sampled elements only. Defining Xs, Ys in the parallel
manner, then

^
1 1( )T T

s s s sX X Xπ π− − −=ß Y

which is the ‘π-weighted’ estimator used for example in Skinner, Holt and Smith (1989), and by
Sudaan and WesVar. This estimator does not use any of the joint selection probabilities {πij:
i=1,2,…N; j=1,2,…N} however, and also requires very strong distributional assumptions on V.
Being able to ignore the joint selection probabilities, and assuming no clustering in the
population are both assumptions that will only be met occasionally with real populations and

complex survey designs. eg in the linear regression case, the variance of 
^

ß  is estimated to be the
same for a simple random sample as for an epsem cluster design, which is clearly not always
true. The methods outlined above are more general, because they allow for more detailed
specification of superpopulation structure, and for incorporation of joint selection probabilities.



They also lead to some interesting results about optimal survey design.

Detailing these in full would take more time and space than is available here. What is given here
is a very brief summary, without proof, of some useful results:

- If V were diagonal, we could choose Vpξ  =  σ-2 I where I is the identity matrix for some σ2 ie
πi = 1 / σi

2 where V = diag(σ1
2, σ2

2, σ3
2, …… σN

2 ).
- However V is not diagonal in general, and it is not possible to make the off-diagonal

elements of Vpξ , ie  (πij σij / πi πj), equal to zero since setting πij equal to zero is not a
possibility if unbiased estimates of variance are required, even for a simple mean statistic.

- McElroy (1967) has shown that ordinary least squares and general least squares give the
same parameter estimates, when both models include i (a vector of ones) as one of the
columns of X, if and only if the variance – covariance matrix of the errors (which here is
Vpξ ) can be written as Vpξ  = aI + biiT  , where a and b are scalars. Thus if V has equal
diagonal elements, the optimality requirement is that (πij σij / πi πj) =k where k is a constant,
ie  πij is proportional to σiσj / σij = 1 / corr ξ (εi, εj ), so that the πij should be chosen as
inversely proportional to the corresponding superpopulation covariances.

- There is also a more general extension of McElroy, due to Mathew (1983) which considers
when two general least squares solutions are equal. Using this, and making approximations
of O(N-1), yields πi proportional to 1 / σi

2, and πij proportional to 1  / σij ie choose selection
probabilities inversely proportional to the superpopulation variance for each i, and joint
selection probabilities should be smallest when two population elements are highly
correlated. What is interesting is that is what experienced survey designers actually do (even
in large government surveys when superpopulations are seldom mentioned).

3.  Two sided coverage intervals for small proportions

The paper by Philip S. Kott, Per Gosta Andersson, and Olle Nerman,. “Two sided coverage
intervals for small proportions based on survey data” is another important area. Small
proportions occur often, for example in health surveys, when sampling for relatively rare
characteristics. However the central issue of getting only a small amount of information on
people having the characteristic, even from a relatively large survey, is not confined to health
surveys, as the comments below will indicate. Surveys of this type are very resource intensive
and more accurate information on confidence intervals or coverage for small proportions would
be useful not just for analysis but also at design stage, especially where information is sought for
sub-populations.

Again, I have a number of particular comments on the paper.

The focus in the paper is on two sided confidence intervals; a solution to the ‘one sided’ problem
remains illusive.

It would be useful to have empirical results on the utility of the methods in the paper in ‘real life’
situations, as well as those presented here from simulation.



A comparison of this paper with that of Korn and Graubard (1998) would be useful . Korn and
Graubard look at using the Clopper-Pearson confidence intervals for small proportions, and
replacing the sample size n in these formulae with the effective sample size n* = n/deff, where
deff is the design effect. They showed, based on a household survey where the ratio of largest to
smallest sample survey weighting was less than ten, that the coverage properties of such ‘exact’
binomial intervals were better than logit transform confidence intervals, normal based confidence
intervals, and intervals based on the Poisson approximation to the binomial.

It is interesting to compare Korn and Graubard’s conclusions with the comment in the present
paper that this technique of using effective sample sizes instead of actual sample sizes does not
work particularly well with the Wilson method of estimating coverage intervals. It would be
useful to know why. Some consideration of the number of moments that must be estimated, even
given a small sample, may be useful when considering stability properties of the Kott -
Andersson - Nerman estimator. Its optimality for particular proportions rather than over the
whole possible range of p is however clearly an advantage if the stability issue can be resolved.

Further possible research areas include:

Sensitivity issues, given the discrete nature of the problem. For a small proportion there can be a
small number of successes even in a large sample. ie the sample size on its own is not a
particularly good measure of the information content, eg the New Zealand Gaming Survey 1999,
where n~=6000, but number of problem and pathological gamblers in the sample was less than
200. This is particularly important for sub-population estimates.

It would be useful to have a technique for confidence interval estimation (or for estimating
coverage) that will allow for balanced repeated replicates since this technique is frequently used
in practice. One possible issue with the Wilson method and its amendments is that required
moments beyond the second cannot be estimated from the half samples inherent in BRR. This
issue is connected to the open question of how well these higher moments can be estimated in
situations where even estimating the first two (ie mean and variance) is not always entirely
straightforward.

Extensions to the situation where BRR is used, or one-sided confidence intervals are required
may be possible, eg by use of the bootstrap.

At this stage, I would like to describe a novel use of the bootstrap as it can be applied to sample
survey problems (We have called the technique the ‘exchangeable bootstrap’). Although it also
can be used for more general problems, it provides an alternative solution to the problem of
confidence intervals with good coverage for small proportions. This is illustrated with reference
to a nationwide survey of problem and pathological gamblers in New Zealand in Gray, Haslett,
and Kuzmicich (2001).

Essentially, the exchangeable bootstrap partitions the population into sub-populations that can be
considered exchangeable, eg subgroups having the same (superpopulation) mean and variance.
For example, when estimating a mean, a simple random sample is an optimal design technique



when all the population units can be considered as a single exchangeable group. The concept of
exchangeable groups can be considered as the explicit basis for determining strata, when
minimizing the design variance of a mean, total, or proportion during the design stage of a
survey. Exchangeable groups need not however be strata. They may be subdivisions of strata, but
they may also cut across strata and may use the same or different allocation variables.

Once the exchangeable groups have been determined, the realized sample can be allocated to
these groups. The bootstrap sample is now drawn and, for a linear estimator, the bootstrap
estimate is formed as follows:
- For each unit, i, in the sample, take the sample survey weight for unit i, and multiply it by the

realized value of an observation drawn from the particular exchangeability group to which
unit i belongs.

- Sum the products over the whole sample.

This bootstrap estimator can be shown to have some useful properties, given the correct
exchangeability groupings:
e.g. For estimators of means, totals and proportions,
- It is design-superpopulation unbiased if the sample survey estimator is design unbiased.
- It is consistent for the population mean if and only if the design based sample survey

estimator is consistent.

One very nice feature of the exchangeable bootstrap is that if the exchangeable groups are poorly
chosen, then the average of the bootstrap estimates is very different to the sample survey
average. This provides a very useful diagnostic for proper choice of exchangeable groups. For
further details, and a detailed example based on the New Zealand Gaming Survey data, see Gray,
Haslett and Kuzmicich (2001).

The exchangeable bootstrap has potentially wider application than to estimation of small
proportions or even of linear or linearizable statistics. Some of its properties for linearizable
statistics are already known (again see Gray, Haslett and Kuzmicich, 2001). In particular, it holds
promise for sound estimation of small proportions and their confidence intervals from sample
survey data, even for sub-populations. As Gray, Haslett and Kuzmicich show it has useful
stability properties even when the ratio of smallest to largest sample survey weight exceeds fifty.

4. Conclusion:

Both of the presented papers focus on important topics, not only because the problems are
statistically interesting, but also because they have major cost implications for large scale sample
surveys.

In addition to the possibility of cost reductions, both papers also offer opportunities for better
survey design, better data, and sounder statistical analysis. They are both topics deserving
considerable further research.

The authors are to be thanked both for their papers and for their choice of topics.
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